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SUMMARY

Inhibition of RNA polymerase I (Pol I) is a promising
strategy for modern cancer therapy. BMH-21 is a
first-in-class small molecule that inhibits Pol I tran-
scription and induces degradation of the enzyme,
but how this exceptional response is enforced is
not known. Here, we define key elements requisite
for the response. We show that Pol I preinitiation fac-
tors and polymerase subunits (e.g., RPA135) are
required for BMH-21-mediated degradation of
RPA194. We further find that Pol I inhibition and
induced degradation by BMH-21 are conserved in
yeast. Genetic analyses demonstrate that mutations
that induce transcription elongation defects in Pol I
result in hypersensitivity to BMH-21. Using a fully re-
constituted Pol I transcription assay, we show that
BMH-21 directly impairs transcription elongation by
Pol I, resulting in long-lived polymerase pausing.
These studies define a conserved regulatory check-
point that monitors Pol I transcription and is acti-
vated by therapeutic intervention.
INTRODUCTION

RNA polymerase I (Pol I) is a highly active enzyme compartmen-

talized in the nucleolus, where it synthesizes the most abundant

RNA species in the cell, the rRNAs (McStay and Grummt, 2008).

Transcription of rDNA by Pol I is the first, rate-limiting step in

ribosome biogenesis (Haag and Pikaard 2007; Russell and Zo-

merdijk 2006). The rate of ribosome biosynthesis is proportional

to cell growth and proliferation (Grummt 2010; Warner et al.,

2001). The relationship between ribosome synthesis and aggres-

sive cancer cell growth has been appreciated for more than a

century and was initially described by observation of enlarged

nucleoli in tumor cells (Montanaro et al., 2008). More recently,

factors driving Pol I transcription in cancers have been identified.

These include oncogenic activity by Myc, Ras/ERK, mTOR, and

Akt/PKB and loss of Pol I repression by tumor suppressors p53,

Rb, ARF, and PTEN genomic alterations (Bywater et al., 2013;
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Drygin et al., 2010). Despite the abundance of data showing

deregulation of Pol I transcription in human cancers, Pol I has

been an underexplored target for selective inhibition of cancer

cell growth. Recent identification of several small-molecule in-

hibitors of Pol I (BMH-21, BMH-9, BMH-22, BMH-23, CX-5461,

and ellipticine) have provided new tools to assess the links be-

tween Pol I transcription and cancer growth (Andrews et al.,

2013; Bywater et al., 2012; Drygin et al., 2011; Morgado-Palacin

et al., 2014; Peltonen et al., 2014a, 2014b). Studies in vitro and in

mouse models have shown therapeutic efficacy by the rRNA

transcription inhibitors (Bywater et al., 2012; Drygin et al.,

2011; Peltonen et al., 2014a). Translation of these advances to

cancer care will require identification of the mechanisms by

which the inhibitors influence Pol I.

We discovered the small-molecule BMH-21 in a high-

throughput screen for anticancer agents (Peltonen et al., 2010).

BMH-21 blocks Pol I transcription rapidly and profoundly and in-

duces proteasome-mediated degradation of the largest subunit

of Pol I, RPA194 (Peltonen et al., 2014a). This effect is unique to

BMH-21 and is not observed by other inhibitors that affect Pol I

(CX-5461, actinomycin D, topoisomerase I, and II poisons) (Pel-

tonen et al., 2014a). BMH-21 binds GC-rich DNA in a non-cova-

lent, charge-dependent manner without activating a DNA dam-

age response (Colis et al., 2014a; Peltonen et al., 2010, 2014a).

We have shown that BMH-21 causes destabilization of

RPA194 in a manner independent of several DNA damage and

replication checkpoint kinases (Colis et al., 2014a; Peltonen

et al., 2014a). Furthermore, the degradation of RPA194 corre-

lates with BMH-21-mediated cancer cell death. These findings

indicate that degradation of RPA194 may reflect a regulatory

step in Pol I transcription and be of therapeutic value.

The large subunit of Pol II, Rpb1, is degraded in response to

stalled transcription complexes, and this pathway is considered

a regulatory process by which cells resolve transcription elonga-

tion blocks (Wilson et al., 2013). BMH-21 does not affect Rpb1

under conditions in which RPA194 is degraded, but on the other

hand, cell stresses that cause Rpb1 degradation do not affect

RPA194 (Peltonen et al., 2014a). Thus, the pathways thatmonitor

transcription and induce degradation of Pols I and II are distinct.

Pols I and II are structurally and functionally related multisubu-

nit polymerases (Engel et al., 2013; Fernández-Tornero et al.,

2013; Martinez-Rucobo and Cramer 2013). We recently
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Figure 1. Rapid Inhibition of Pol I Transcrip-

tion and Dissociation of Pol I from rDNA

(A) A375 and HCT116 cells treated with increasing

doses of BMH-21 for 72 hr were analyzed by cell

counting, WST1, and CellTiter Blue viability as-

says. Expression of nucleolar RPA194 was

analyzed using immunofluorescence and quanti-

tative analysis.

(B) Diagram of human rRNA coding locus and

location of qPCR and ChIP primers.

(C) A375 cells were treated with BMH-21 (1 mM) for

the indicated times, and rRNA synthesis was

analyzed by qRT-PCR using primers for short-lived

50ETS (50-external transcribed spacer) rRNA.

50ETS primer locations as shown in (B). Mean ±

SEM of n = 5 biological replicates are shown.

(D) A375 cells were treated with BMH-21 (1 mM) for

the indicated times followed by western blotting

analysis for RPA194 and RPA135.

(E) RPA194 ChIP-qPCR of A375 cells treated with

BMH-21 (1 mM) for the indicated times. Primer lo-

cations are shown in (B). Data are represented as

mean ± SEM of n = 3 biological replicates.

See also Figure S1.
published that Pols I and II have evolved divergent enzymatic

properties, resulting in potentially different rate-limiting steps

during transcription elongation (Schneider 2012; Viktorovskaya

et al., 2013). These findings led us to test the hypothesis that

BMH-21 impairs transcription elongation by Pol I. We find that

BMH-21 leads to rapid clearance of Pol I from rDNA and that

this effect depends on efficient transcription initiation. We

show that RPA194 is stabilized by association with RPA135,

the second largest catalytic subunit, and depletion of RPA135

prevents degradation of RPA194 in the presence of BMH-21.

Remarkably, the effects of BMH-21 on Pol I are conserved in

Saccharomyces cerevisiae (brewer’s yeast). BMH-21 treatment

results in decreased Pol I transcription, degradation of A190

(the RPA194 homolog), and reduced cell viability. Furthermore,

yeast strains in which Pol I transcription elongation is selectively
C

impaired are hypersensitive to BMH-21,

supporting the idea that BMH-21, at least

in part, directly affects Pol I transcription.

Finally, we use fully reconstituted tran-

scription assays in vitro to demonstrate

that BMH-21 directly inhibits Pol I tran-

scription elongation, inducing pausing.

These findings reveal a new, conserved

Pol I-specific transcription checkpoint.

RESULTS

Rapid Inhibition of Pol I and
Clearance of the Enzyme from rDNA
We have shown that inhibition of Pol I

by BMH-21 activates a unique cellular

response resulting in the degradation of

RPA194 and that this degradation corre-

lates with its effectiveness to decrease
cancer cell viability (Peltonen et al., 2014a). To define the cellular

response to BMH-21 in more detail, we treated two cancer cell

lines with increasing concentrations of BMH-21 and tested for

loss of cell viability using three different readouts for cellular ac-

tivity (mitochondrial membrane potential, protein content, and

cell number) and compared those data with the nucleolar abun-

dance of RPA194. We found that loss of RPA194 tightly corre-

lated with decreased cell fitness in all assays after treatment

with BMH-21 (Figure 1A).

To describe the kinetics of the response to BMH-21, we

treated A375 cells with 1 mM BMH-21 and measured rRNA syn-

thesis and Pol I occupancy of the rDNA. The 50-external tran-
scribed spacer (50ETS) precursor is cleaved from the primary

rRNA transcript by early and rapid processing steps (01 and

A1) (Figure 1B), resulting in a short-lived RNA species whose
ell Reports 23, 404–414, April 10, 2018 405



abundance is generally reflective of the rRNA synthesis rate

(Mullineux and Lafontaine 2012; Popov et al., 2013). We

measured 50ETS precursor abundance using several primer

pairs by qPCR in cells treated with BMH-21 for 5, 15, 30, and

60 min (Figures 1B and 1C). We observed rapid (within 5 min)

decrease of the 50ETS transcripts that was especially prominent

using primers for the short-lived 50 end of the ETS transcript (up-

stream of the 01 cleavage site). The decrease of the 50ETS tran-

scripts downstream of the 01 cleavage site was slower, consis-

tent with their longer half-lives (Figure 1C). Regardless of the

50ETS primer used, a prominent inhibition of transcription was

observed within 1 hr.

We then assessed Pol I occupancy of the rDNA after BMH-21

treatment using chromatin immunoprecipitation (ChIP). Given

that we have previously shown that BMH-21 decreases the

half-life of RPA194 from more than 20 hr to approximately 1 hr

(Peltonen et al., 2014a), we first determined the abundance of

RPA194 by western blotting over a time course relevant for this

study. BMH-21 caused a prominent decrease of RPA194 within

3 hr (Figure 1D). In addition, we observe some decrease in

RPA135, in accordance with our previous findings (Peltonen

et al., 2014a). We then performed ChIP qPCR of cells treated

with BMH-21 for 0.5, 1, 3, or 6 hr using primers throughout the

gene body. The data showed that RPA194 was disengaged

from both the promoter and coding regions of the rDNA within

30 min of treatment (Figure 1E). Thus, the kinetics of loss of

RPA194 chromatin engagement was faster than the protein’s

degradation.

We have shown that the turnover of RPA194 is dependent on

the proteasome (Peltonen et al., 2014a). To further assess

whether the loss of Pol I chromatin engagement results from

its turnover, we treated cells with BMH-21 andMG132, a protea-

some inhibitor. As assessed by immunofluorescence and west-

ern blotting, and consistent with our previous observations,

MG132 abolished the decrease in RPA194 by BMH-21 and

led to substantial accumulation of RPA194 and the second

largest subunit, RPA135, in the nucleolar caps (Figures S1A

and S1B).

We then conducted ChIP-qPCR of cells treated with BMH-21

and MG132. Treatment of cells with MG132 somewhat

increased RPA194 on the gene body (Figure S1C). Enrichment

of RPA194 on the gene body following co-treatment of cells

with BMH-21 andMG132 was similar to the control (Figure S1C).

This finding suggests that BMH-21 causes loss of RPA194 from

rDNA in a manner that is at least partially dependent of RPA194

turnover.

Depletion of the Preinitiation Complex Factors Rescues
RPA194 Degradation
We hypothesized that BMH-21 impairs transcribing Pol I com-

plexes. If engaged Pol I transcription complexes are targets of

BMH-21-mediated protein turnover, then efficient transcription

initiation would be required to observe degradation of RPA194.

To test this hypothesis, we silenced factors required for tran-

scription initiation by Pol I: UBF, RRN3, and TAFI110. For each

depletion, two independent small interfering RNAs (siRNAs)

were used against each gene, and the depletion was confirmed

by western blotting (Figure 2) and qPCR (not shown). We then
406 Cell Reports 23, 404–414, April 10, 2018
treated the cells with BMH-21 and assessed changes in abun-

dance of RPA194 by western blotting and immunofluorescence.

As shown in Figure 2, depletion of each transcription initiation

factor led to rescue of RPA194 abundance in the BMH-21-

treated cells. Yet BMH-21 decreased Pol I transcription in the

knockdown cells, as shown by 50ETS qPCR and markers of

nucleolar stress in UBF-depleted cells, showing that transcrip-

tion inhibition alone was insufficient to cause RPA194 loss (Fig-

ure S2). The findings suggested that degradation of RPA194 re-

quires efficient loading of Pol I onto the rDNA.

BMH-21 Causes Cytoplasmic Redistribution of RPA135
The two largest Pol I subunits, RPA135 and RPA194, associate

and form the active center of Pol I (Engel et al., 2013; Fernán-

dez-Tornero et al., 2013; Schneider and Nomura, 2004). We

have shown that although RPA194 is dramatically depleted after

treatment with BMH-21, RPA135 abundance is only mildly

affected (Peltonen et al., 2014a). To identify the fate of RPA135

after treatment, we analyzed the effect of BMH-21 on RPA135

cellular distribution. Using immunofluorescence followed by

quantitative analysis, we observed that RPA135 nucleolar local-

ization was decreased over time (Figures 3A and 3B). The ki-

netics of loss of RPA135 from the nucleolus was similar to that

of RPA194 (Figures 3C and 3D) (Peltonen et al., 2014a). Fraction-

ation of cellular extracts showed that BMH-21 caused obvious

relocation of RPA135 into the cytoplasm, whereas RPA194

abundance decreased in both cytoplasm and nucleoplasm (Fig-

ures 3E and 3F). These changes were evident already within

30 min of exposure to BMH-21 and coincided with the observed

decrease in Pol I occupancy of the rDNA after treatment

(Figure 1E).

We show in Figure 2A that RPA194 and RPA135 were retained

in the nucleolar caps following treatment with BMH-21 and

MG132. To assess the distribution of the Pol I proteins biochem-

ically, we conducted cellular fractionation of cells treated in the

presence or absence of BMH-21 and MG132 for 3 hr. The cyto-

plasmic translocation of RPA135 was again evident following

exposure to BMH-21, but this effect was abrogated by MG132

(Figure 3G). Together, these data show that BMH-21 treatment

results in degradation of RPA194, but redistribution of RPA135,

suggesting that RPA135 nucleolar localization depends on

RPA194.

RPA135 Is Requisite for the Stability of RPA194
On the basis of the above findings, it is reasonable to expect that

dissociation of RPA194 from RPA135 may reduce RPA194 sta-

bility while at the same time affecting RPA135 distribution. To

test this model, we examined the effects of RPA135 depletion

on RPA194 abundance. RPA135 transcript and protein were

effectively decreased by siRNA treatment (Figures 4A–4D). Strik-

ingly, the depletion of RPA135 also led to a pronounced

decrease in RPA194, as shown by immunofluorescence analysis

and western blotting (Figures 4B–4D). Furthermore, we did not

observe any further decrease in RPA194 by BMH-21 in the

RPA135-depleted cells (Figures 4C and 4D), consistent with

the model that only transcriptionally active Pol I complexes are

subject to BMH-21-induced degradation. These data show

that RPA194 is unstable in the absence of RPA135.



Figure 2. Depletion of the Preinitiation Factors Rescues RPA194 Degradation by BMH-21

(A and B) A375 cells were transfectedwith two siRNAs targeting UBF, incubated for 72 hr, and treatedwith BMH-21 for 3 hr. (A)Western blotting for UBF, RPA194,

and NCL as loading control. Representative blots of n = 2 experiments. (B) Immunofluorescence analysis for RPA194. Merged images (RPA194, red; DNA, blue)

are shown. Scale bar, 10 mm.

(C andD) Depletion of RRN3 using siRNAs. A375 cells were transfected with two siRNAs targeting RRN3, incubated for 72 hr, and treatedwith BMH-21 for 3 hr. (C)

Western blotting for RRN3, RPA194, and a-tubulin as loading control. Representative blots of n = 2 experiments. (D) Immunofluorescence analysis for RPA194.

Merged images (RPA194, green; DNA, blue) are shown. Scale bar, 10 mm.

(E and F) Depletion of TAF1C using siRNAs. A375 cells were transfected with two siRNAs targeting TAF1C, incubated for 72 hr, and treated with BMH-21 for 3 hr.

(E)Western blotting for TAF1C, RPA194, and GAPDH as loading control. Representative blots of n = 4 experiments. (F) Immunofluorescence analysis for RPA194.

Merged images (RPA194, red; DNA, blue) are shown. Scale bar, 10 mm.

See also Figure S2.
Degradation of the Largest Pol I Subunit Is Conserved
among Eukaryotes
To test whether the effect of BMH-21 on rRNA synthesis is con-

served among eukaryotes, we exposed exponentially growing

Saccharomyces cerevisiae cells to 50 mM BMH-21 and

measured rRNA synthesis and A190 abundance (the yeast ho-

molog of RPA194). To measure rRNA synthesis, we measured

the abundance of pre-rRNA segments ITS1 or 50ETS. These

pre-rRNA segments are rapidly processed after their synthesis,
so intact pre-RNA measured is indicative of newly synthesized

rRNA. We found that BMH-21 caused a robust, rapid inhibition

of rRNA synthesis (Figure 5A) and degradation of A190 (Fig-

ure 5B). These data suggest that the cellular response to

BMH-21 is conserved across eukaryotic species.

Because the effects of BMH-21 are conserved, we took

advantage of the genetic capabilities of the yeast system to

test the model that BMH-21 targets the Pol I transcription elon-

gation complex. Previous studies have identified point mutations
Cell Reports 23, 404–414, April 10, 2018 407



Figure 3. BMH-21 Causes RPA135 Cellular Redistribution

(A and C) A375 cells were incubated with BMH-21 (1 mM) for the given times, followed by staining of the fixed cells for RPA135 (A, green) or RPA194 (C, red) and

counterstaining for DNA (blue). Scale bar, 10 mm.

(B and D) Quantitative image analysis of nucleolar RPA135 (B, n = 4 biological replicates) or RPA194 (D, n = 5 biological replicates). Mean and SEM are shown.

(E) Western blotting analysis of RPA194 and RPA135 in cytoplasmic and nucleoplasmic fractions. Loading controls are lamin A/C and a-tubulin.

(F) Quantification of n = 3 biological experiments in (E). Data are represented as mean ± SD; p value, Dunnett’s multiple comparison test. ns, non-significant; *p <

0.05; **p < 0.01.

(G) A375 cells were incubated with BMH-21 (1 mM) and/or MG132 (10 mM) for 3 hr followed by cellular fractionation and western blotting analysis for RPA194 and

RPA135. Loading controls are lamin A/C and GAPDH.

408 Cell Reports 23, 404–414, April 10, 2018



Figure 4. RPA135 Is Requisite for the Stability of RPA194

(A) A375 cells were transfected with control siRNAs or siRNAs targeting RPA135 and incubated for 48 hr, and RPA135 transcript was analyzed by qPCR. Fold

change is shown.

(B) Immunofluorescence staining of cells treated as in (A) for RPA135 (green) and RPA194 (red) and counterstained for DNA (blue). Scale bar, 10 mm.

(C) RPA135 was depleted using siRNAs. Cells were incubated for 72 hr following transfection with the siRNAs and then treated with BMH-21 (1 mM) for 3 hr.

Western blotting for RPA135, RPA194, and UBF and A43 as a loading controls.

(D) Quantification of n = 3 biological experiments in (C). Data are represented as mean ± SD; p, Student’s two-tailed t test. ns, non-significant; *p < 0.05; ***p <

0.001.
that impair individual steps in transcription by Pol I. Here, we

used two mutations that were identified for their negative effects

on transcription elongation by Pol I (rpa135-D784G and rpa190-

F1205H; Schneider et al., 2007; Viktorovskaya et al., 2013). We

also used a mutation in the RRN3 gene that selectively impairs

transcription initiation (rrn3-S213P; Claypool et al., 2004). We

exposed these mutant cells, as well as wild-type (WT) controls,

to BMH-21 and measured cell viability, rRNA synthesis, and

A190 abundance. We found that both ‘‘elongation’’ mutants

were hypersensitive to BMH-21, consistent with a role for the

compound during the elongation phase of transcription (Fig-

ure 6A). These mutants also displayed clear inhibition of rRNA

synthesis and degradation of A190, similarly to WT (Figures 6B

and 6C). On the other hand, when transcription initiation by Pol

I is impaired because of the rrn3 mutant allele, we found that

the cells’ viability in response to BMH-21 was comparable with

theWT, rRNA synthesis was inhibited, but A190 was not robustly

degraded. These observations are consistent with data

collected using mammalian cells (Figure 2) and with the model
that Pol I transcription elongation complexes are the substrate

for Pol I subunit degradation after exposure to BMH-21.

BMH-21 Directly Inhibits Transcription Elongation by
Pol I
These genetic and molecular data suggest that BMH-21 inhibits

transcription elongation by Pol I. To test this model directly, we

used a fully reconstituted transcription elongation assay for Pol

I in the presence and absence of BMH-21. We used a modified

yeast rDNA template in which C-residues in the initially tran-

scribed region have been mutated to G. Thus, we initiated tran-

scription in the absence of BMH-21 or CTP, synchronized elon-

gation complexes downstream of the promoter at the first

encoded C (position +56), and we split the reaction. To half of

the reaction, we added 1 mM BMH-21, and to the other, we

added a vehicle control (DMSO). Finally, we added heparin to

both reactions to serve as a trap and ensure single turnover re-

action conditions. After the addition of CTP, we collected sam-

ples as a function of time. RNA products were resolved on
Cell Reports 23, 404–414, April 10, 2018 409



Figure 5. BMH-21 Effect on Pol I Is Conserved in Yeast

(A) Cells were grown in YEPD and treated with 50 mM BMH-21 for indicated

times and harvested. RNA was purified and analyzed with RT-qPCR using

primers targeting the pre-rRNA segment ITS1, the abundance of which is

indicative of newly synthesized rRNA, and to ACT1 mRNA, for normalization

purposes. Data shown are representative of n = 3, and error bars represent SD

of technical replicates.

(B) Cells were grown in YEPD and treated with 50 mM BMH-21 for indicated

times. Cells were harvested, lysed, and analyzed for A190 and Pgk1 abun-

dance with western blot analysis. Data shown are averages of n = 3, and error

bars represent SEM of biological replicates. Significance was calculated using

one-way ANOVA. **p < 0.01.
polyacrylamide gels and visualized by phosphorimaging. A

representative gel is displayed in Figure 7A and quantification

in Figure 7B. The addition of BMH-21 to the elongation com-

plexes induced the accumulation of shorter products that repre-

sent major pause sites in the template. Consistent with the

appearance of these paused populations, we observed much

slower accumulation of the full-length product. Thus, BMH-21

directly inhibits transcription elongation by Pol I. In addition to

the dramatic effect of BMH-21 on transcription elongation rate,

we observed a modest (�20%) decrease in the amount of full-

length product accumulation. This observation suggests that

BMH-21 directly induces either premature termination or irre-

versible arrests of transcription elongation complexes. Together,
410 Cell Reports 23, 404–414, April 10, 2018
all of these biochemical observations are consistent with the

data collected from cell lines and in yeast strains supporting a

role for BMH-21 in direct inhibition of Pol I transcription

complexes.

DISCUSSION

Our studies show that BMH-21 inhibits rRNA synthesis in cancer

cells rapidly and robustly. The inhibition of rRNA synthesis leads

to proteasome-dependent degradation of the largest subunit of

Pol I, RPA194 (Peltonen et al., 2014a). The rapid degradation

of RPA194 closely correlated with decreased cancer cell survival

in response to BMH-21. In order to understand the basis of this

previously unknown degradation pathway for Pol I, it was neces-

sary to identify how BMH-21 targets Pol I transcription. We show

here that BMH-21 causes rapid inhibition of Pol I transcription

and decreased occupancy of Pol I on the rDNA. These rapid ki-

netic effects are observed before the abundance of RPA194 is

robustly decreased. Thus, transcriptionally active Pol I is some-

how perturbed or evicted from the rDNA prior to RPA194 degra-

dation. Remarkably, this effect of the compound is conserved in

yeast, and mutations that impair transcription elongation by Pol I

result in hypersensitivity to BMH-21. Taken together with the fact

that Pol I transcription elongation is directly inhibited by BMH-21

in vitro, we conclude that BMH-21 can have a direct effect on

rRNA synthesis and propose that it activates a conserved

pathway that monitors the efficiency of Pol I transcription. Here

we use the term ‘‘checkpoint’’ to describe the surveillance of

the integrity Pol I transcription. Activation of this ‘‘checkpoint’’

by BMH-21 or potentially other naturally occurring stresses spe-

cifically leads to the degradation of the largest subunit of Pol I.

Polymerases frequently encounter lesions or blocks in their

templates. In response to unsuccessful resolution of Pol II blocks

at DNA lesions, the Pol II subunit Rpb1 is marked for protea-

some-mediated degradation (Wilson et al., 2013). The degrada-

tion of Rpb1 leads to removal of the Pol II complex fromDNA and

is considered necessary for cell survival. Our work has identified

a similar clearance mechanism for Pol I. We have shown that

stimuli that cause destabilization of the large subunits of Pol I

and Pol II are different. BMH-21 does not cause degradation of

Pol II Rpb1, and conversely, UV that causes Rpb1 destabilization

has no effect on RPA194 degradation either in mammalian cells

(Peltonen et al., 2014a) or in the yeast (Richardson et al., 2012).

The degradation of RPA194 is mediated through the protea-

some, and a RPA194 deubiquitinating enzyme has been identi-

fied in the mammals (USP36; Peltonen et al., 2014a) and its

counterpart Upb10 in yeast (Richardson et al., 2012). In yeast,

A190 is particularly prone for degradation at low temperatures

when upb10 is deleted, suggesting activation of the checkpoint

also by physiological signals. In order to resolve these transcrip-

tion blocks, the enzyme is disengaged from rDNA, and RPA194/

A190 is marked for degradation. Because the rDNA is one of the

most highly transcribed loci in growing cells, BMH-21 is more

likely to intercalate into these loci and selectively perturb rDNA

transcription. The observed degradation of RPA194 only in the

cancer cells, but not in normal cells, further supports this model

and identifies the rDNA as a clear vulnerability rapidly prolifer-

ating cells.



Figure 6. BMH-21 Exposure Results in De-

fects in Pol I Elongation, and Inhibiting Initi-

ation Rescues A190 Degradation

(A) Cultures were grown in YEPD liquid media and

harvested. For the spot assay, 10-fold dilutions

were made, the first being 0.1 at A600, and 5 mL

were plated on YEPD plates containing indicated

concentrations of BMH-21. Plates were incubated

at indicated temperatures for 3 days.

(B) Cells were grown in YEPD and treated with

50 mM BMH-21 for 60 min. Cells were harvested,

lysed, and analyzed for A190 and Pgk1 abundance

with western blot analysis. Data shown are aver-

ages of n R 3, and error bars represent SEM of

biological replicates. Significance was calculated

using one-way ANOVA. *p < 0.05; **p < 0.01.

(C) Cells were grown in YEPD and treated with

50 mMBMH-21 for 30min and harvested. RNAwas

purified and analyzed for 50ETS abundance with

RT-qPCR. Data shown are representative of n = 3,

and error bars represent SD of technical replicates.
The change in RPA194 half-life by BMH-21 is profound,

whereas other Pol I subunits, with the exception of a minor

decrease in RPA135, are not affected (Peltonen et al., 2014a).

However, the nucleolar abundance of RPA135 decreases and

it is relocated in the cytoplasm after treatment with BMH-21.

We assessed whether RPA135 affects RPA194 stability.

Remarkably, the depletion of RPA135 substantially decreased

the abundance of RPA194. Furthermore, BMH-21-mediated

degradation of RPA194 was abrogated in cells with RPA135

knockdown. These findings suggest that RPA135 is required

for the stability of RPA194 and are concordant with our previous

demonstration in yeast that A190 and A135 maintain a stable as-

sociation through multiple rounds of transcription (Schneider

and Nomura 2004). The implication is profound, suggesting

that one subunit directly governs the stability of the catalytic

core of the enzyme.

The primary pathways regulating ribosome biogenesis are

conserved between yeast and mammals. Here, we find a

remarkable conservation of the key characteristics of the Pol I in-

hibitor that includes inhibition of rRNA synthesis, decreased

abundance of A190 and loss of yeast fitness. This enabled us

to use previously characterized Pol I elongation mutant strains

of A190 and A135 that have compromised elongation rates yet
C

maintain viability (Schneider et al., 2007;

Viktorovskaya et al., 2013). Both mutants,

compared with WT and an initiation-

impaired rrn3 mutant strain, displayed

increased sensitivity to BMH-21, empha-

sizing that the Pol I inhibitor particularly

hindered the growth of elongation

defective cells. Furthermore, BMH-21

decreased the abundance of A190 in the

elongation-impaired mutants, but not

in the initiation-impaired mutant strain,

which was concordant with the regulation

of RPA194 turnover observed in the

cancer cells. These studies support and
promote the concept that the elongation phase of transcription

presents a previously unappreciated vulnerability that can be

targeted for therapeutic intervention.

There are technical and conceptual limitations of the data and

interpretation. For example, Pol I inhibition by BMH-21 may only

affect loading of the polymerase at the promoter, or BMH-21

may inhibit promoter escape. Both scenarios would be consistent

with the rapid kinetics of inhibition and reduced Pol I rDNA asso-

ciation. However, it would be more difficult to explain how Pol I

degradation is induced when these steps are inhibited. We

showed that genetic depletion of members of the preinitiation

complex does not activate RPA194/A190 degradation, but in

contrast, the preinitiation complex is needed for polymerase

decay. Hence, polymerase loading is required. These findings

do not rule out that BMH-21 blocks promoter escape and need

to be addressed in future studies. We note, however, that we

do not observe increased Pol I pausing at the promoter on the ba-

sis of ChIP. However, ChIP may have technical limitations due to

changes in the antigen or accessibility to chromatin, or lack sensi-

tivity because of rapid clearance in detection of paused com-

plexes. Both the in vitro and genetic data are consistent with inhi-

bition of elongation activating the depletion of RPA194. However,

it also plausible that additional points of intervention exist.
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Figure 7. BMH-21 Directly Inhibits Pol I Transcription Elongation

(A) Promoter-dependent transcription was performed using purified yeast Pol I

and required transcription initiation factors in vitro. Transcription was initiated

by addition of 200 mM ATP and GTP and 20 mM UTP (+a32P-UTP), resulting in

elongation to the first encoded C residue (at +56). The reaction was split

equally, and BMH-21 (1 mM) or an equal volume of DMSO was added to the

separate reactions, followed by addition of CTP (200 mM), and samples were

collected as a function of time. RNAwas purified and run on an 8% acrylamide

denaturing gel. The gel was dried, exposed to a phosphor-image screen, and

visualized. Positions of relevant RNA products are labeled.

(B) Amount of 32P-RNA detected in the full-length product was quantified and

plotted as a function of time.
The kinetics of the induction of this checkpoint presents

another fascinating but complicated question. Transcription of

the rDNA is almost fully inhibited within 30 min, and at the

same time both RPA194 and RPA135 undergo changes in their

localization. The cytoplasmic translocation of RPA135 is pre-

vented by proteasome inhibition, which is indicative that

RPA135 localization depends on stability of RPA194. RPA194

half-life is decreased from more than 20 hr to 1 hr (Peltonen

et al., 2014a) and is thus lagging behind transcription inhibition.

It is possible that this kinetic delay represents a surplus of

RPA194/RPA135 complexes and/or that only complexes physi-

cally associating with rDNA are targeted for degradation. Inhibi-

tion of transcription initiation protects RPA194 from decay but

does not rescue rRNA synthesis. Thus, this checkpoint monitors
412 Cell Reports 23, 404–414, April 10, 2018
actively transcribing Pol I complexes. These complexes are

somehow marked for degradation and cleared from the DNA.

What is the initial mark on the enzyme? Is it ubiquitin? What ac-

tivates the mark, and are there several marking events as for Pol

II? Does the marking require the formation and relocalization of

RPA194 to the nucleolar caps observed preceding the degrada-

tion? What factors govern this checkpoint? These and other

questions must be answered to reveal the mechanism by which

eukaryotes monitor and protect the metabolism of the rDNA.

Several chemical tools have recently been described that

interfere with Pol I transcription. CX-5461 and ellipticine stabilize

G-quadruplex structures and cause DNA damage (Andrews

et al., 2013; Brown et al., 2011; Xu et al., 2017). Ellipticine targets

the preinitiation complex at the rDNA promoter, and similarly,

CX-5461 has been suggested to inhibit the preinitiation complex

engagement with the rDNA promoter (Andrews et al., 2013; Dry-

gin et al., 2011). Importantly, several chemotherapeutic agents,

such as topoisomerase I and II poisons, inhibit Pol I transcription

by blocking rDNA unwinding (Burger et al., 2010). RPA194 abun-

dance or Pol I activity could be potentially useful biomarkers for

identification of cancers sensitive to Pol I inhibitor therapies. To

facilitate the latter, we have recently developed an RNAprobe for

the detection of rRNA transcription in paraffin-embedded tumor

samples. This probe, detecting the short-lived 50ETS precursor

rRNA, directly reveals the remarkable increase in Pol I activity

between benign and carcinoma lesions (Guner et al., 2017).

These findings provide impetus for the translation of Pol I inhib-

itory strategies. Detailed understanding of the mechanisms of

action of each drug will be essential for the success of this goal.

EXPERIMENTAL PROCEDURES

Cell Culture and Reagents

A375 melanoma (CRL-1619) and U-2 OS osteosarcoma (HTB-96) cells were

from American Type Culture Collection. These cell lines were authenticated

using STR analysis by Johns Hopkins Genetic Resources Core Facility and

tested periodically forMycoplasma using qPCRwith negative results. The cells

weremaintained at 37�C in a humidified atmosphere containing 5%CO2. A375

cells were cultured in DMEM supplementedwith 10% fetal bovine serum (FBS)

and 4.5 g/L glucose and U-2 OS cells in DMEM with 15% FBS. The reagent

used in this study was 12H-benzo[g]pyrido[2,1-b]quinazoline-4-carboxamide,

N-[2(dimethylamino)ethyl]-12-oxo (BMH-21), which was synthesized as

described by Colis et al. (2014b) and verified for purity using liquid chromatog-

raphy/mass spectrometry (LC/MS) and 1H nuclear magnetic resonance

(NMR). MG132 was from Sigma-Aldrich and from Enzo LifeSciences.

Viability Assays

Cell viability was determined using WST-1 cell proliferation reagent (Roche Di-

agnostics), CellTiter Blue cell viability assay (Promega), or by counting the cells

using Cellometer Auto T4 (Nexelcom Bioscience LLC).

RNAi

For RNAi using small interfering siRNAs, cells were transfected with 10 nM of

targeting gene or negative control siRNAs using Lipofectamine RNAiMAX

(Invitrogen), and the cells were incubated for 48–72 hr. The following siRNAs

were used: UBTF (115986 and 108497), RRN3 (s29324 and s29325), TAF1C

(s17171 and s17172), and POLR1B/RPA135 (s38603 and s38605) (Ambion,

Thermo Fisher Scientific).

Immunofluorescence and Image Analysis

For all immunofluorescence procedures, we followed our earlier protocols

(Peltonen et al., 2014a). Cells grown on coverslips were fixed in 3.5%



paraformaldehyde or 100% methanol, permeabilized with 0.5% NP-40 lysis

buffer (50 mM Tris-HCl [pH 7.5], 150 mM NaCl, 0.5% NP-40, and 50 mM

NaF), and blocked in 3% BSA. The following primary antibodies were used:

POLR1B/RPA135 (4H6; Santa Cruz Biotechnology), POLR1A/RPA194 (C-1;

Santa Cruz Biotechnology), NPM (FC-61991; Invitrogen), NCL (4E2; Abcam),

and fibrillarin (ab5821; Abcam). Secondary antibodies used were Alexa 488

and Alexa 594-conjugated anti-mouse and anti-rabbit antibodies (Invitrogen).

DNA was stained with Hoechst 33342. Images were captured using DM6000B

wide-field fluorescence microscope (Leica). The microscope was equipped

with a Hamamatsu Orca-Flash 4.0 V2 sCMOS camera and LAS X software

by using 403/1.25–0.75 HCX PL APO CS oil and 633/1.40–0.60 HCX PL

APO Lbd.bl. oil objectives. Quantitative image analysis of nucleolar protein

expression was as described in Peltonen et al. (2014a) and was conducted

on at least 200 cells per sample on three to five fields.

Subcellular Fractionation

Cytoplasmic and nucleoplasmic fractions were prepared in the following

steps. Cells were lysed with hypotonic buffer (10 mM HEPES [pH 7.9],

1.5 mM MgCl2, 10 mM KCl, 0.5 mM DTT, and protease inhibitors), and

50 mg/mL digitonin was added. Cells were centrifuged at 2,000 3 g for 6 min

to isolate cytoplasmic fraction, and the cell pellet containing nuclei was subse-

quently lysed with isotonic buffer (5 mM HEPES [pH 8.0], 1.5 mM MgCl2,

10 mM KCl, 0.5 mM DTT, 330 mM sucrose, and protease inhibitors) and

layered over sucrose buffer (880 mM sucrose, 0.5 mM MgCl2, and protease

inhibitors). The nuclear fraction was centrifuged at 13,200 rpm for 30 min.

Nuclei were then lysed with nucleoplasmic extraction buffer (20 mM HEPES

[pH 7.9], 1.5 mM MgCl2, 150 mM KCl, 0.5 mM DTT, 0.2 mM EDTA, 10% glyc-

erol, and protease inhibitors), sonicated, and centrifuged. After centrifuging at

15,000 3 g for 20 min, the supernatant was recovered.

Immunoblotting

Cells were lysed in RIPA lysis buffer (50 mM Tris-HCl [pH 7.5], 150 mM NaCl,

1%NP-40, 0.1%SDS, and 1% sodium deoxycholate) supplemented with pro-

tease inhibitors (Roche), sonicated, and centrifuged at 13,200 rpm for 15 min.

Protein concentrations were measured using the Dc-Protein Kit (Bio-Rad).

Equal amounts of protein were separated on SDS-PAGE, blotted, probed for

target proteins, and detected using ECL (Perkin Elmer). The primary antibodies

used for detection were UBF (F-9; Santa Cruz Biotechnology), RRN3

(ab112052; Abcam), TAF1C (ab134394; Abcam), POLR1A/RPA194 (C-1;

Santa Cruz Biotechnology), POLR1B/RPA135 (H-15; Santa Cruz Biotech-

nology), RPA43 (HPA022416; Sigma-Aldrich), a-tubulin (10D8; Santa Cruz

Biotechnology), lamin A/C (H-110; Santa Cruz Biotechnology), and GAPDH

(14C10; Cell Signaling Technology). Horseradish peroxidase (HRP)-conju-

gated secondary antibodies were from DAKO or Santa Cruz Biotechnology.

Protein densitometry analysis was conducted using ImageJ software, and

the mean value normalized with loading control was used as final protein

band quantification.

qPCR and ChIP

qPCR for the mammalian cells was conducted essentially as described in

Peltonen et al. (2014a). The following primers were used: POLR1B (forward

GCCCAGCGGGCCTAGCCTAA, reverse TGATATCAGCCTGCACCGCGA),

50ETS (forward +21 CGACCTGTCGTCGGAGAG, reverse +82 GGTCACCGT

GAGGCCAGA; forward +1902 ATGGACGAGAATCACGAGCG, reverse +1952

CAGCCACGAACCCGACAC; forward +3288 GAAGCGTCGCGGGTCT, re-

verse +3433 CACGCGACACGACCAC). Isolation of chromatin, immunopre-

cipitation, and qPCR to detect rDNA sequences was as described in Peltonen

et al. (2014a).

Yeast Strains and Spot Assay

The following yeast strains were used: DAS217: MAT a ade2-1 ura3-1 trp1-1

leu2-3,112 his3-11,15 can1-100; DAS1064: same as DAS217, but rpa190-

F1205H; DAS178: same as DAS217, but MAT a and rpa135-D784G;

DAS659: same as DAS217, but MAT a and rrn3-S213P; DAS937: same as

DAS217, but A190-3HA7his::LEU2; DAS1061: same as DAS1064, but A190-

3HA7his::URA3; DAS1062: same as DAS178, but A190-3HA7his::URA3; and

DAS1063: same as DAS659, but A190-3HA7his::URA3. For the spot assay,
the cultures were grown in YEPD liquid media and harvested. For the

spot assay, 10-fold dilutions were made, the first being 0.1 A600, and 5 mL

per dilution was plated on YEPD plates containing indicated concentrations

of BMH-21. Plates were incubated at 30�C for 3 days.

Preparation of Yeast Lysates and Western Analysis

Cells were grown in YEPD and, in early log phase, were treated with 50 mM

BMH-21 in 0.1 M NaH2PO4 or an equivalent volume of the vehicle. Ten milliliters

of culture was harvested via centrifugation and washed with cold RIPA buffer.

Cells were lysed using a FastPrep homogenizer. Samples were loaded onto

8% polyacramide gels, transferred to polyvinylidene difluoride (PVDF) mem-

branes, and probed with antibodies (a-HA 12CA5 from Sigma-Aldrich to visu-

alize A190 and a-Pgk1 22C5D8 from Thermo Fisher Scientific to visualize

PGK1). A secondary a-mouse IgG conjugated to HRP (A9044; Sigma-Aldrich)

was used for detection. Western blots were visualized with chemiluminescence

(Chemidoc; Bio-Rad), and analyzed using Image Lab software.

Yeast RNA Isolation and RT-qPCR

Cells were grown in YEPD and, in early log phase, were treated with 50 mM

BMH-21 in 0.1MNaH2PO4 or an equivalent volume of the vehicle. Onemilliliter

of culture was flash-frozen in a dry ice/ethanol bath. Cells were lysed using hot

phenol lysis, and RNA was purified with acidic phenol/chloroform extraction

followed by precipitation in 1 M ammonium acetate in ethanol. cDNA was

synthesized using the SuperScript First-Strand Synthesis system (Thermo

Fisher Scientific). qPCR was performed using probes for ITS1, 50ETS, ACT1,
and 18S rRNA using the ViiA 7 Real Time PCR system (Thermo Fisher

Scientific), and data were analyzed using QuantStudio Real-Time PCR Soft-

ware. The following primers were used: ITS1 forward 50-TGGGCAAGAAGA

CAAGAGATGGAG-30; reverse 50-GTTTGTGTTTGTTACCTCTGGGCC-30; 50-
ETS forward 50-AATAGCCGGTCGCAAGACT-30; reverse 50-TCACGGAATGG

TACGTTTGA-30; ACT1 forward 50-TCCGGTGATGGTGTTACTCA-30; reverse
50-GGCCAAATCGATTCTCAAAA-30; 18S forward 50-TGGCCTACCATGGTTT

CAA-30; reverse 50-CTTGGATGTGGTAGCCGTTT-30.

In Vitro Transcription

Assays for transcription elongation by Pol I were performed as described pre-

viously (Viktorovskaya et al., 2013) with the notable exception that BMH-21

was added to a final concentration of 1 mM to the synchronized elongation

complexes (after initiation of transcription but prior to CTP release). An equal

volume of vehicle (DMSO) was added to control samples.

Statistical Methods

The following statistical methods were used: Student’s two-tailed t test, Dun-

nett’s multiple-comparison test, and one-way ANOVA; p values less than 0.05

were considered significant. The method used is indicated in each figure

legend.

SUPPLEMENTAL INFORMATION

Supplemental Information includes two figures and can be found with this

article online at https://doi.org/10.1016/j.celrep.2018.03.066.

ACKNOWLEDGMENTS

We thank Dr. Adam Ciesiolka, Dr. Manjula Nagala, and Dr. Joost Zomerdijk

(University of Dundee) for discussions and advice. We thank the following

funding sources: Academy of Finland (288364), NIH (P30 CA006973), the Uni-

versity of Alabama at Birmingham (UAB) Equity and Diversity Fellowship (NIH

R01 GM084946 and NIH R01 GM121404 to S.M.N.), NIH (1R01 CA172069 to

M.L.), NIH (R01 GM084946 to D.A.S.), and NIH (R01 GM121404 to M.L. and

D.A.S.).

AUTHOR CONTRIBUTIONS

Methodology and Experimentation, T.W., S.M.N, H.L., K.P., A.K., and D.A.S.;

Writing, T.W., S.M.N., D.A.S., and M.L.; Funding Acquisition and Supervision,

D.A.S. and M.L.
Cell Reports 23, 404–414, April 10, 2018 413

https://doi.org/10.1016/j.celrep.2018.03.066


DECLARATION OF INTERESTS

M.L. and K.P. hold patents on BMH-21, which are managed by The Johns

Hopkins University. The other authors declare no competing interests.

Received: November 9, 2017

Revised: February 16, 2018

Accepted: March 15, 2018

Published: April 10, 2018

REFERENCES

Andrews, W.J., Panova, T., Normand, C., Gadal, O., Tikhonova, I.G., and

Panov, K.I. (2013). Old drug, new target: ellipticines selectively inhibit RNA po-

lymerase I transcription. J. Biol. Chem. 288, 4567–4582.

Brown, R.V., Danford, F.L., Gokhale, V., Hurley, L.H., and Brooks, T.A. (2011).

Demonstration that drug-targeted down-regulation of MYC in non-Hodgkins

lymphoma is directly mediated through the promoter G-quadruplex. J. Biol.

Chem. 286, 41018–41027.

Burger, K., M€uhl, B., Harasim, T., Rohrmoser, M., Malamoussi, A., Orban, M.,

Kellner, M., Gruber-Eber, A., Kremmer, E., Hölzel, M., and Eick, D. (2010).

Chemotherapeutic drugs inhibit ribosome biogenesis at various levels.

J. Biol. Chem. 285, 12416–12425.

Bywater, M.J., Poortinga, G., Sanij, E., Hein, N., Peck, A., Cullinane, C., Wall,

M., Cluse, L., Drygin, D., Anderes, K., et al. (2012). Inhibition of RNA polymer-

ase I as a therapeutic strategy to promote cancer-specific activation of p53.

Cancer Cell 22, 51–65.

Bywater, M.J., Pearson, R.B., McArthur, G.A., and Hannan, R.D. (2013). Dys-

regulation of the basal RNA polymerase transcription apparatus in cancer. Nat.

Rev. Cancer 13, 299–314.

Claypool, J.A., French, S.L., Johzuka, K., Eliason, K., Vu, L., Dodd, J.A., Beyer,

A.L., and Nomura, M. (2004). Tor pathway regulates Rrn3p-dependent recruit-

ment of yeast RNA polymerase I to the promoter but does not participate in

alteration of the number of active genes. Mol. Biol. Cell 15, 946–956.

Colis, L., Peltonen, K., Sirajuddin, P., Liu, H., Sanders, S., Ernst, G., Barrow,

J.C., and Laiho, M. (2014a). DNA intercalator BMH-21 inhibits RNA polymer-

ase I independent of DNA damage response. Oncotarget 5, 4361–4369.

Colis, L., Ernst, G., Sanders, S., Liu, H., Sirajuddin, P., Peltonen, K.,

DePasquale, M., Barrow, J.C., and Laiho, M. (2014b). Design, synthesis, and

structure-activity relationships of pyridoquinazolinecarboxamides as RNA

polymerase I inhibitors. J. Med. Chem. 57, 4950–4961.

Drygin, D., Rice,W.G., and Grummt, I. (2010). The RNA polymerase I transcrip-

tion machinery: an emerging target for the treatment of cancer. Annu. Rev.

Pharmacol. Toxicol. 50, 131–156.

Drygin, D., Lin, A., Bliesath, J., Ho, C.B., O’Brien, S.E., Proffitt, C., Omori, M.,

Haddach, M., Schwaebe, M.K., Siddiqui-Jain, A., et al. (2011). Targeting RNA

polymerase I with an oral small molecule CX-5461 inhibits ribosomal RNA syn-

thesis and solid tumor growth. Cancer Res. 71, 1418–1430.

Engel, C., Sainsbury, S., Cheung, A.C., Kostrewa, D., and Cramer, P. (2013).

RNA polymerase I structure and transcription regulation. Nature 502, 650–655.

Fernández-Tornero, C., Moreno-Morcillo, M., Rashid, U.J., Taylor, N.M., Ruiz,

F.M., Gruene, T., Legrand, P., Steuerwald, U., and M€uller, C.W. (2013). Crystal

structure of the 14-subunit RNA polymerase I. Nature 502, 644–649.

Grummt, I. (2010). Wisely chosen paths—regulation of rRNA synthesis: deliv-

ered on 30 June 2010 at the 35th FEBS Congress in Gothenburg, Sweden.

FEBS J. 277, 4626–4639.

Guner, G., Sirajuddin, P., Zheng, Q., Bai, B., Brodie, A., Liu, H., Af Hällström, T.,

Kulac, I., Laiho, M., and De Marzo, A.M. (2017). Novel assay to detect RNA

polymerase I activity in vivo. Mol. Cancer Res. 15, 577–584.
414 Cell Reports 23, 404–414, April 10, 2018
Haag, J.R., and Pikaard, C.S. (2007). RNA polymerase I: a multifunctional mo-

lecular machine. Cell 131, 1224–1225.

Martinez-Rucobo, F.W., and Cramer, P. (2013). Structural basis of transcrip-

tion elongation. Biochim. Biophys. Acta 1829, 9–19.

McStay, B., and Grummt, I. (2008). The epigenetics of rRNA genes: from mo-

lecular to chromosome biology. Annu. Rev. Cell Dev. Biol. 24, 131–157.
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