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The idea that the Majorana neutrino should be identified as a Bogoliubov quasiparticle is applied to the
seesaw mechanism for the three generations of neutrinos in the Standard Model. A relativistic analog of the
Bogoliubov transformation in the present context is a CP-preserving canonical transformation but modifies
charge conjugation properties in such a way that the C-noninvariant fermion number–violating term
(condensate) is converted to a Dirac mass term. Puzzling aspects associated with the charge conjugation of
chiral Weyl fermions are clarified.
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I. INTRODUCTION

We have recently witnessed a remarkable progress in
neutrino physics [1]. Those achievements in experimental
and theoretical studies of neutrino physics are nicely
summarized in many textbooks and reviews, for example,
Refs. [2–6]. The major remaining issue is a better under-
standing of the extremely small neutrino masses, and the
seesaw mechanism provides a convenient framework to
analyze this fundamental problem [7–9]. Recently, we
discussed the basic issue of Majorana neutrinos in the
seesaw mechanism [10,11]. A relativistic analog of the
Bogoliubov transformation, which converts a C-noninvar-
iant fermion-number “condensate” to a Dirac mass and
changes the charge conjugation properties of vacuum, is
shown to be crucial to understand the Majorana neutrinos in
a logically consistent manner.
To be more explicit, a relativistic analog of the

Bogoliubov transformation has been introduced to resolve
the well-known puzzling feature of the charge conjugation
of chiral Weyl fermions

νLðxÞ ¼
ð1 − γ5Þ

2
νðxÞ: ð1Þ

The commonly adopted convention of charge conjugation

ðνLðxÞÞC ≡ CνLTðxÞ; ð2Þ

which is required to define the Majorana fermion in the
seesaw mechanism, changes at the same time the chirality
(helicity) of the neutrino [2–5]. This definition leads to
many puzzling results [10]. Those contradictions are
resolved if one uses a relativistic analog of Bogoliubov
transformation, which is a canonical transformation and
converts a C-noninvariant fermion-number condensate to a
Dirac mass, and we suggested the idea that the Majorana
neutrino should be identified as the first Bogoliubov
quasiparticle among elementary particles [11]. We empha-
size that the above-mentioned puzzling features turned out
to be not a matter of notational convention but rooted in an
important conceptual issue of the fermion vacuum.
In this paper, we extend the idea of the Majorana

neutrino being the first Bogoliubov quasiparticle among
elementary particles to the full three generations of neu-
trinos. We study the Lagrangian for the three families of
neutrinos,

L ¼ ν̄LðxÞiγμ∂μνLðxÞ þ n̄RðxÞiγμ∂μnRðxÞ
− ν̄LðxÞmDnRðxÞ − ð1=2ÞνTLðxÞCmLνLðxÞ
− ð1=2ÞnTRðxÞCmRnRðxÞ þ H:c:; ð3Þ

where nRðxÞ is a right-handed counterpart of νLðxÞ,mD is a
diagonal 3 × 3Dirac mass matrix, andmL andmR are 3 × 3
real symmetric matrices by assuming CP symmetry, for
simplicity. The antisymmetry of C and Fermi statistics
imply that mL and mR are symmetric, and CP symmetry
implies mL ¼ m†

L and mR ¼ m†
R. Thus, mL and mR are real

symmetric. We follow the notational conventions of
Ref. [12].
One may define a new Dirac-type variable,

νðxÞ≡ νLðxÞ þ nRðxÞ; ð4Þ
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in terms of which the above Lagrangian is rewritten as

L ¼ ð1=2Þfν̄ðxÞ½i=∂ −mD�νðxÞ þ ν̄cðxÞ½i=∂ −mD�νcðxÞg
− ð1=4Þ½νcðxÞϵ1νðxÞ þ ν̄ðxÞϵ1νcðxÞ�
− ð1=4Þ½νcðxÞγ5ϵ5νðxÞ − ν̄ðxÞγ5ϵ5νcðxÞ�; ð5Þ

where ϵ1 ¼ mR þmL and ϵ5 ¼ mR −mL, which are real
symmetric matrices. The C and P transformation rules for
the Dirac-type field νðxÞ are defined by

νcðxÞ ¼ Cν̄TðxÞ; νpðxÞ ¼ iγ0νðt;−x⃗Þ; ð6Þ

and thus νðxÞ ↔ νcðxÞ under C and νcðxÞ → iγ0νcðt;−x⃗Þ
under P; we adopt the charge conjugation convention in
which C ¼ iγ2γ0 and the “iγ0 parity,” νpðxÞ ¼ iγ0νðt;−x⃗Þ
as in (6), since they preserve the reality of the Majorana
fermion in the Majorana representation. CP is then
given by

νcpðxÞ ¼ iγ0Cν̄Tðt;−x⃗Þ: ð7Þ

The above Lagrangian (5) is CP conserving, although C
and P (iγ0 parity) are separately broken by the last term. We
are going to explain how the C-violating Lagrangian (5)
can consistently describe Majorana neutrinos which are the
exact eigenstates of C symmetry.

II. SEESAW MECHANISM

A. Perturbative formulation

To set up the stage for the analysis of the Bogoliubov
quasifermion in the seesaw mechanism, we first consider
the simplest case with mL ¼ 0 and treat the Dirac mass
term containing mD in (5) as a small perturbation. For this
purpose, we apply an orthogonal transformation in (5),
νðxÞ → OνðxÞ [and thus νcðxÞ → OνcðxÞ], and diagonalize
the real symmetric matrix ϵ1 ¼ ϵ5 ¼ mR; after this oper-
ation, the Dirac massmD becomes a 3 × 3 nondiagonal real
symmetric matrix. We thus have the zeroth-order
Lagrangian:

L0 ¼ ð1=2Þfν̄ðxÞi=∂νðxÞ þ ν̄cðxÞi=∂νcðxÞg
− ð1=4Þ½νcðxÞmRνðxÞ þ ν̄ðxÞmRν

cðxÞ�
− ð1=4Þ½νcðxÞγ5mRνðxÞ − ν̄ðxÞγ5mRν

cðxÞ�: ð8Þ

This Lagrangian is diagonalized as

L0 ¼ ð1=2Þψ−ðxÞiγμ∂μψ−ðxÞ
þ ð1=2ÞψþðxÞiγμ∂μψþðxÞ − ð1=2ÞψþðxÞmRψþðxÞ

ð9Þ

if one parametrizes

�
νðxÞ
νcðxÞ

�
¼
 

1þγ5
2

ψþðxÞ þ 1−γ5
2

ψ−ðxÞ
1−γ5
2

ψþðxÞ − 1þγ5
2

ψ−ðxÞ

!
ð10Þ

or, equivalently,

ψþðxÞ ¼ νRðxÞ þ νcLðxÞ;
ψ−ðxÞ ¼ νLðxÞ − νcRðxÞ: ð11Þ

Note that νcL ≡ ½ð1 − γ5Þ=2�νc and νcR ≡ ½ð1þ γ5Þ=2�νc,
and they are left- and right-handed, respectively. Our
convention of charge conjugation for chiral fermions,
which turns out to be convenient in the following analyses,
thus differs from the convention commonly used in the
seesaw mechanism in (2).
The C symmetry νcðxÞ ¼ CνðxÞT is satisfied in (10) if

the relations

ψcþðxÞ ¼ CψþðxÞT ¼ ψþðxÞ;
ψc
−ðxÞ ¼ Cψ−ðxÞT ¼ −ψ−ðxÞ ð12Þ

hold, showing that the free fields ψþðxÞ and ψ−ðxÞ are
Majorana fermions. The small Dirac mass term is written as

Lmass ¼ −
1

2
½ν̄ðxÞmDνðxÞ þ νcðxÞmDν

cðxÞ�

¼ 1

2
½ψ̄þγ5mDψ− − ψ̄−γ5mDψþ�: ð13Þ

One may perform a second-order perturbation analysis by
treating the Dirac mass term mD in (5) as a small
perturbation. The result is, symbolically,

ð1=2!Þψ̄−γ5mDhTψþψ̄þimDγ5ψ−

≃ ð−i=2Þψ̄−mD
1

mR
mDψ−; ð14Þ

using hTψþψ̄þi ¼ i
p−mR

near on-shell =p ¼ 0 of ψ−. A
quick way to obtain the above result is to exponentiate
Lmass in the Dyson formula and expand it to the second
order in Lmass; by contracting the fields ψþ, one identifies
the induced mass (14). This symmetric mass term,

m̃ab ≡
X
c

ðmDÞac
1

mc
R
ðmDÞcb; ð15Þ

is added to the massless fermion ψ− in (6). We thus obtain
the effective Lagrangian

Leffective ¼ ð1=2Þψ−ðxÞiγμ∂μψ−ðxÞ − ð1=2Þψ−ðxÞm̃ψ−ðxÞ
þ ð1=2ÞψþðxÞiγμ∂μψþðxÞ
− ð1=2ÞψþðxÞmRψþðxÞ; ð16Þ
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which shows that the massless neutrinos acquire small
masses after the diagonalization of m̃. This perturbative
formulation is convenient to see the essence of the seesaw
mechanism.

B. Exact treatment

To perform a general analysis of a relativistic analog of
the Bogoliubov transformation, an exact treatment of the
seesaw Lagrangian is important. We start with the
Lagrangian (5) and write the mass term as

ð−2ÞLmass ¼ ð ν̄R ν̄cR Þ
� 1

2
ðϵ1 þ ϵ5Þ mD

mD
1
2
ðϵ1 − ϵ5Þ

��
νcL
νL

�

þ H:c:; ð17Þ

where

νcL ≡ CνRT; νcR ≡ CνLT: ð18Þ

Note again that these conventions differ from the quantity
defined in the common convention in the seesaw mecha-
nism (2); in our definition, νcL ¼ ½ð1 − γ5Þ=2�νc and νcR ¼
½ð1þ γ5Þ=2�νc are left and right-handed, respectively. Since
the mass matrix appearing is real and symmetric, we can
diagonalize it by an orthogonal transformation as

O

� 1
2
ðϵ1 þ ϵ5Þ mD

mD
1
2
ðϵ1 − ϵ5Þ

�
OT ¼

�
M1 0

0 −M2

�
; ð19Þ

where M1 and M2 are 3 × 3 real diagonal matrices. We
denote one of the eigenvalues as −M2 instead of M2 to
define the natural Majorana mass later. We thus have

ð−2ÞLmass ¼ ð ν̃R ν̃cR Þ
�
M1 0

0 −M2

��
ν̃cL
ν̃L

�
þ H:c:;

ð20Þ

with

�
ν̃cL
ν̃L

�
≡O

�
νcL
νL

�
;

�
ν̃R

ν̃cR

�
≡O

�
νR

νcR

�
: ð21Þ

Hence, we can write

L ¼ ð1=2Þfν̃LðxÞi=∂ν̃LðxÞ þ ν̃cLðxÞi=∂ν̃cLðxÞ þ ν̃RðxÞi=∂ν̃RðxÞ
þ ν̃cRðxÞi=∂ν̃cRðxÞg
− ð1=2Þð ν̃R ν̃cR Þ

�
M1 0

0 −M2

��
ν̃cL
ν̃L

�
þ H:c:

ð22Þ

We now define two fields by

ψþðxÞ ¼ ν̃RðxÞ þ ν̃cLðxÞ;
ψ−ðxÞ ¼ ν̃LðxÞ − ν̃cRðxÞ; ð23Þ

which satisfy the charge conjugation properties ψþðxÞ ¼
CψþTðxÞ and ψ−ðxÞ ¼ −Cψ−

TðxÞ, remembering our con-
vention ν̃cL ¼ ½ð1 − γ5Þ=2�ν̃c and ν̃cR ¼ ½ð1þ γ5Þ=2�ν̃c.
Equivalently, one can also write

�
ν̃ðxÞ
ν̃cðxÞ

�
¼
� 1þγ5

2
ψþðxÞ þ 1−γ5

2
ψ−ðxÞ

1−γ5
2

ψþðxÞ − 1þγ5
2

ψ−ðxÞ

�
: ð24Þ

We then have

L ¼ 1

2
ψþðxÞ½i=∂ −M1�ψþðxÞ þ

1

2
ψ−ðxÞ½i=∂ −M2�ψ−ðxÞ;

ð25Þ

which is the result of the conventional diagonalization
[2–6].

III. BOGOLIUBOV QUASIPARTICLE

We now analyze the conflicts of the above seesaw
mechanism with the operator charge conjugation sym-
metry. In quantum field theory, the simple matrix operation
)12 ) has to correspond to the application of a unitary C

operator to the quantum fields. In the quantum framework,
the definition of a charge conjugated spinor as ψc ¼ Cψ̄T

can be regarded as a classical operation, for which a
quantum realization C has to exist.
To simplify the notations and to discuss both the

perturbative and the exact treatment in the previous section
on equal footing, we denote the fields νðxÞ and νcðxÞ,
respectively, in this and the next section as standing for
either νðxÞ and νcðxÞ of the free Lagrangian in (35), or ν̃ðxÞ
and ν̃cðxÞ of the exact Lagrangian in (22).
When one defines the operator charge conjugation of

Majorana fermions by

CψþðxÞC† ¼ ψþðxÞ;
Cψ−ðxÞC† ¼ −ψ−ðxÞ; ð26Þ

one can confirm that this operation in (24) does not send
νðxÞ to νcðxÞ, although the classical C symmetry νcðxÞ ¼
CνðxÞT is satisfied.
This conflict is also understood by analyzing (23), which

is rewritten below in the notation of the present section as

ψþðxÞ ¼ νRðxÞ þ νcLðxÞ;
ψ−ðxÞ ¼ νLðxÞ − νcRðxÞ:
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To ensure the consistent operator charge conjugation of
ψ�ðxÞ in the above formulas, recalling that νcL ¼ ½ð1 − γ5Þ=
2�νc ¼ CνRT and νcR ¼ ½ð1þ γ5Þ=2�νc ¼ CνLT , it is com-
monly assumed [2–5] that one can find a suitable charge
conjugation operator C (on an unspecified vacuum) which
satisfies

CνRðxÞC† ¼ CνRT; CνLðxÞC† ¼ CνLT; ð27Þ

and thus (26) is satisfied. But this leads to a puzzling result
for the unitary charge conjugation operator using

νLðxÞ ¼ ð1−γ5Þ
2

νLðxÞ, which is

CνLðxÞC† ¼
ð1 − γ5Þ

2
CνLðxÞC† ¼

ð1 − γ5Þ
2

CνLðxÞT ¼ 0;

ð28Þ

and similarly for νRðxÞ. Moreover, the well-known C- and
P-violating weak interaction Lagrangian is written as

LWeak ¼ ðg=
ffiffiffi
2

p
ÞēLγμWð−Þ

μ ðxÞνL þ H:c:

¼ ðg=
ffiffiffi
2

p
ÞēLγμWð−Þ

μ ðxÞ½ð1 − γ5Þ=2�νL þ H:c: ð29Þ

If one assumes again CνLðxÞC† ¼ CνLðxÞT as C-trans-
formation law, one obtains ambiguous results; namely,
the first expression in (29) implies that LWeak is invariant
under C, while the second expression implies LWeak → 0
[10]. One may find further puzzling aspects arising from
the ansatz (27). For example, one encounters a similar
ambiguity in the free action for a Weyl fermion

LWeyl ¼ ψLðxÞi=∂ψLðxÞ
¼ ψLðxÞi=∂½ð1 − γ5Þ=2�ψLðxÞ; ð30Þ

if one uses the classical transformation rule of charge
conjugation ðψLðxÞÞC ¼ CψLðxÞT ; the first expression is
charge conjugation invariant, while the second expression
leads to a vanishing Lagrangian. We emphasize that those
puzzling aspects in (29) and (30) arise from the assumed
classical transformation rule of charge conjugation,
ðνLðxÞÞC ¼ CνLðxÞT , irrespective of the presence or
absence of the operator C. [One may recall that, in
Lagrangian field theory, we first define the classical
symmetry operation and then look for the quantum operator
to realize it by the Noether theorem or other methods.
Those examples, Eqs. (29) and (30), show that we find no
sensible classical operation.] The ansatz (27) does not
work; the quantity ðνLðxÞÞC ¼ CνLðxÞT represents a con-
venient auxiliary object but not a charge conjugation
of νLðxÞ.
In comparison, adopting an alternative convention of

charge conjugation (again on an unspecified vacuum), i.e.,

CνLðxÞC† ¼ CνRT; CνRðxÞC† ¼ CνLT; ð31Þ

which is suggested by our classical convention for charge
conjugation, νcL ¼ CνRT and νcR ¼ CνLT , and the charge
conjugation of a Dirac field CνðxÞC† ¼ Cν̄TðxÞ, does not
lead to any apparently puzzling results. Then, we have the
explicit form in (23)

ψþðxÞ ¼
ð1þ γ5Þ

2
νðxÞ þ ð1 − γ5Þ

2
νcðxÞ;

ψ−ðxÞ ¼
ð1 − γ5Þ

2
νðxÞ − ð1þ γ5Þ

2
νcðxÞ: ð32Þ

The operator charge conjugation of the right-hand side in
the first relation, for example, gives

C
�ð1þ γ5Þ

2
νðxÞ þ ð1 − γ5Þ

2
νcðxÞ

�
C†

¼ ð1þ γ5Þ
2

νcðxÞ þ ð1 − γ5Þ
2

νðxÞ

≠
ð1þ γ5Þ

2
νðxÞ þ ð1 − γ5Þ

2
νcðxÞ; ð33Þ

and the basic requirement of (26), CψþðxÞC† ¼ ψþðxÞ, is
not satisfied in this case either. We are therefore unable to
maintain the natural operator charge conjugation in (23) by
simply changing the convention.
To resolve these conflicts in a systematic manner, a

relativistic analog of Bogoliubov transformation, ðν; νcÞ →
ðN;NcÞ, defined as

�
NðxÞ
NcðxÞ

�
¼
�
cos θνðxÞ − γ5 sin θνcðxÞ
cos θνcðxÞ þ γ5 sin θνðxÞ

�
; ð34Þ

with a suitable parameter θ has been used for the single-
flavor seesaw case [10,11]. This Bogoliubov transforma-
tion (we simply use “Bogoliubov transformation” for the
more precise “a relativistic analog of Bogoliubov trans-
formation” in the sequel) maps a linear combination of a
Dirac field ν and its charge conjugate νc to another Dirac
field N and its charge conjugate Nc; to be precise, all these
fields are “Dirac-type fields.”Note that, by definition,Nc ¼
CN̄T and νc ¼ Cν̄T , and the transformation (34) satisfies
the (classical) consistency condition Nc ¼ CN̄T using the
expressions given by the right-hand sides. We can then
show that

Lfree ¼
1

2
fN̄i=∂N þ N̄ci=∂Ncg

¼ 1

2
fν̄i=∂νþ ν̄ci=∂νcg ð35Þ

and the anticommutators are preserved, i.e.,
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fNðt; x⃗Þ; Ncðt; y⃗Þg ¼ fνðt; x⃗Þ; νcðt; y⃗Þg;
fNαðt; x⃗Þ; Nβðt; y⃗Þg ¼ fNc

αðt; x⃗Þ; Nc
βðt; y⃗Þg ¼ 0: ð36Þ

Thus, Bogoliubov transformation satisfies the canonicity
condition; these anticommutators are established irrespec-
tive of the mass values of νðt; x⃗Þ and Nðt; x⃗Þ. We emphasize
that the Bogoliubov transformation (34) preserves the CP
symmetry as a unitary operation on quantum fields,
although it does not preserve the transformation properties
under iγ0 parity and C separately [10]. The present
Bogoliubov transformation, which is a canonical trans-
formation, is expected to preserve dynamical properties,
but it critically changes the charge conjugation properties.
A transformation analogous to (34) has been successfully
used in the analysis of neutron-antineutron oscillations [13]
and in the discussion of Majorana neutrinos in some classes
of seesaw models [10].
The mixing angle θ in (34) is given by the formula

sin 2θ ¼ ϵ5=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

D þ ðϵ5=2Þ2
p ð37Þ

in the case of a single-flavor model [10]. If one sets
mD ¼ 0, we have θ ¼ π=4, which is independent of
ϵ5 ¼ mR −mL. Thus, the Bogoliubov transformation with
θ ¼ π=4 is universally valid for a multigeneration model
independently of mR and mL as long as the Dirac mass mD
is treated as a small perturbation. Moreover, for the exact
solution (22), it will be shown later that the same θ ¼ π=4 is
chosen. We thus adopt θ ¼ π=4 for the analysis of three
generations in this paper.
The transformation (34) with θ ¼ π=4 gives

1ffiffiffi
2

p ðNðxÞ þ NcðxÞÞ ¼ νRðxÞ þ CνRTðxÞ;
1ffiffiffi
2

p ðNðxÞ − NcðxÞÞ ¼ νLðxÞ − CνLTðxÞ; ð38Þ

namely, two Majorana fermions,

ψ ð1Þ
M ¼ 1ffiffiffi

2
p ðNðxÞ þ NcðxÞÞ;

ψ ð2Þ
M ¼ 1ffiffiffi

2
p ðNðxÞ − NcðxÞÞ; ð39Þ

are naturally defined in terms of the Bogoliubov quasifer-
mion NðxÞ in the new vacuum,1 with the property

CN j0iN ¼ j0iN; ð40Þ

where the C operator in N vacuum is denoted as CN . At this
moment, we postulate the existence of CN and j0iN with
CNNðxÞC†N ¼ CN̄TðxÞ. Similarly, we postulate the exist-
ence of Cν and j0iν, which satisfy

Cνj0iν ¼ j0iν; ð41Þ

and CννðxÞC†ν ¼ Cν̄TðxÞ. We later discuss if we can justify
those postulates in the present model of the seesaw
mechanism.

The Majorana fermions satisfy CNψ
ð1Þ
M C†N ¼ ψ ð1Þ

M and

ψ ð1Þ
M ¼Cψ ð1Þ

M

T
, and CNψ

ð2Þ
M C†N¼−ψ ð2Þ

M and ψ ð2Þ
M ¼ −Cψ ð2Þ

M

T
,

the first being even and the second being the odd eigen-

fields of the charge conjugation operator CN. The fields ψ
ð1Þ
M

and ψ ð2Þ
M correspond to the conventional definitions of

Majorana fermions in terms of Weyl fermions on the right-
hand side of (38), but they do not support the operator
charge conjugation Cν in the original vacuum j0iν as we
have demonstrated in (33).
The definition of a Majorana fermion by itself, which is

expressed as a linear superposition of fermion and anti-
fermion, implies a certain “condensation” of the fermion
number in the vacuum. (See Ref. [14] for an analysis of the
change of vacua, in a case not directly related to the
Bogoliubov transformation.) The Bogoliubov transforma-
tion helps define the eigenstates of charge conjugation CN
in the new vacuum in a consistent manner, and the conflicts
related to Majorana fermions are resolved in the new
vacuum defined by CN after the Bogoliubov transformation,
which is precisely what the first relation of (38) implies.
We can also solve (38) in terms of the Majorana fermions

(39) as

�
νðxÞ
νcðxÞ

�
¼
 
ð1þγ5

2
Þψ ð1Þ

M ðxÞ þ ð1−γ5
2
Þψ ð2Þ

M ðxÞ
ð1−γ5

2
Þψ ð1Þ

M ðxÞ − ð1þγ5
2
Þψ ð2Þ

M ðxÞ

!
: ð42Þ

The Majorana fermions ψ ð1Þ
M ðxÞ and ψ ð2Þ

M ðxÞ, which agree
with ψþðxÞ and ψþðxÞ in (24), respectively, belong to
definite representations of the basic symmetries P and T
and thus C due to the CPT symmetry of field theory on the
Minkowski space-time, if they are chosen as the primary
dynamical degrees of freedom. With this choice of funda-
mental fields, the natural quantum realization of the charge
conjugation in (42) is CN , under which we have

CNψ
ð1Þ
M ðxÞC†N → ψ ð1Þ

M ðxÞ;
CNψ

ð2Þ
M ðxÞC†N → −ψ ð2Þ

M ðxÞ: ð43Þ

However, in the left-hand side of (42), this operation does
not send ν to νc, which would be expected if the operator

1The definition ψ ð2Þ
M ¼ 1ffiffi

2
p

i
ðNðxÞ − NcðxÞÞ with an imaginary

factor i which satisfies ψ ð2Þ
M ¼ Cψ ð2Þ

M

T
is often used, but this

definition requires an antiunitary C to maintain Cψ ð2Þ
M C† ¼ ψ ð2Þ

M .
We stick to the tradition of unitary C with only the time reversal
being antiunitary. In physical applications (with canonical quan-

tization), our definition of ψ ð2Þ
M ¼ 1ffiffi

2
p ðNðxÞ − NcðxÞÞ with

Cψ ð2Þ
M C† ¼ Cψ ð2Þ

M

T ¼ −ψ ð2Þ
M does not lead to any contradiction.
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charge conjugation were preserved. This shows that
CN ≠ Cν. See also (24). This mismatch is caused by the
construction of the Majorana fermions via Weyl fermions,
although the classical consistency condition νcðxÞ ¼
CνðxÞT is satisfied.
We thus conclude that we have to identify the physical

Majorana neutrinos with those defined in terms of
Bogoliubov quasifermions NðxÞ in (39) to maintain the
consistent operator charge conjugation property. Namely,
those Majorana neutrinos are the Bogoliubov quasiparticles
defined in a new vacuum. This analysis works for the
general conversion from Weyl fermions to Majorana
fermions, as long as ϵ5 ¼ mR −mL ≠ 0, namely,

mR ≠ mL; ð44Þ

which causes the C (and iγ0-parity) breaking in the starting
Lagrangian in (5). (This criterion is more clearly seen in the
case of a single flavor [10]). It is possible to exactly
diagonalize the C-violating Lagrangian in terms of Weyl
fermions as in (22) but impossible to rewrite it in terms of
Majorana fermions, which are the precise eigenstates of the
charge conjugation, as in (25) in a logically consistent
manner. This shows that the appearance of the Bogoliubov
quasiparticle is generic.
The Bogoliubov transformation is applied to the so-

called type-III seesaw model [15] also when one regards the
extra self-conjugate neutral fermion as providing a right-
handed component [11]. To include the dimension-5
operator of Weinberg [16] in the present analysis, which
is closely related to the so-called type-II seesaw model [17],
one may start with the exact solution for a general set of
parameters and consider a suitable limiting case such as
mR → ∞withmL kept fixed in the very end of the analysis.
For the very special case ϵ5 ¼ mR −mL ¼ 0, the original

Lagrangian in (5) is C and CP invariant, and it is written as

L ¼ ð1=2Þ
�
ψþðxÞ

�
i=∂ −

�
mD þ ϵ1

2

��
ψþðxÞ

þ ψ−ðxÞ
�
i=∂ −

�
mD −

ϵ1
2

��
ψ−ðxÞ

�
ð45Þ

in terms of two well-defined Majorana fermions

ψ�ðxÞ ¼
νðxÞ � νcðxÞffiffiffi

2
p : ð46Þ

In other words, the Majorana fermions are consistently
defined in terms of the starting fields νðxÞ and νcðxÞ
without the help of the Bogoliubov transformation. To
our knowledge, no practical physical application of this
specific case is known in neutrino physics. This case
has been discussed in the context of neutron oscilla-
tions [13,14].

IV. EXACT OPERATOR ANALYSIS

We now want to make the definitions of the vacua j0iν
and j0iN and charge conjugation operators defined on them
more explicit.
In the three-generation seesaw model (5), the exact

solution in terms of Weyl fermions is given by (22),
namely,

L¼ ν̄ðxÞi=∂νðxÞ− ð1=2Þ½νRM1ν
c
L− νcRM2νL�þH:c:; ð47Þ

which is written as

L ¼ ν̄ðxÞi=∂νðxÞ þ ð1=4Þ½ν̄ðM1 þM2Þγ5νc
− νcðM1 þM2Þγ5ν�
− ð1=4Þ½ν̄ðM1 −M2Þνc þ νcðM1 −M2Þν� ð48Þ

if one defines the Dirac-type variable

νðxÞ ¼ νL þ νR: ð49Þ

We now define two 3 × 3 diagonal real matrices by

E1 ¼ M1 −M2; E5 ¼ M1 þM2; ð50Þ

we then have

L ¼ ν̄ðxÞi=∂νðxÞ þ ð1=4Þ½ν̄E5γ5ν
c − ν̄cE5γ5ν�

− ð1=4Þ½ν̄E1ν
c þ νcE1ν�: ð51Þ

Note that the terms with E1 are C invariant, while the terms
with E5 are C violating. When one compares this
Lagrangian with the original single-flavor Lagrangian (5)
where mD, ϵ1, and ϵ5 are set to be real numbers instead of
3 × 3 matrices, one recognizes that the exact solution is
three copies of the single-flavor model with vanishing
Dirac mass.
From the definition of the parameter θ of the Bogoliubov

transformation with mD ¼ 0 in (37), one obtains θ ¼ π=4.
The basic Bogoliubov transformation is thus given by

�
NðxÞ
NcðxÞ

�
¼
 1ffiffi

2
p ½νðxÞ − γ5ν

cðxÞ�
1ffiffi
2

p ½νcðxÞ þ γ5νðxÞ�

!
; ð52Þ

and one obtains the Lagrangian for the Bogoliubov
quasiparticle as

L ¼ N̄ðxÞi=∂NðxÞ − 1

2
N̄ðxÞE5NðxÞ

−
1

4
½N̄ðxÞE1NcðxÞ þ NcðxÞE1NðxÞ�; ð53Þ

which is charge conjugation invariant. The essence of the
present Bogoliubov transformation is a CP-preserving
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canonical transformation which modifies the charge con-
jugation properties. One sees that the C-noninvariant
fermion number–violating condensate with E5 in (51) is
converted to a Dirac mass of the Bogoliubov quasiparticle
NðxÞ in (53). E5 is an analog of the “energy gap” in the
Bardeen-Cooper-Schrieffer theory. See also the mass gen-
eration in the Nambu–Jona-Lasinio model [18].
Using the Majorana-type fields

ψþðxÞ ¼
1ffiffiffi
2

p ½NðxÞ þ NcðxÞ�;

ψ−ðxÞ ¼
1ffiffiffi
2

p ½NðxÞ − NcðxÞ�; ð54Þ

which satisfy the charge conjugation properties ψþðxÞ ¼
CψþTðxÞ and ψ−ðxÞ ¼ −Cψ−

TðxÞ if one defines charge
conjugation by NðxÞ → NcðxÞ, we have

L ¼ 1

2
ψþðxÞ

�
i=∂ −

1

2
ðE5 þ E1Þ

�
ψþðxÞ

þ 1

2
ψ−ðxÞ

�
i=∂ −

1

2
ðE5 − E1Þ

i
ψ−ðxÞ: ð55Þ

To define the vacuum and charge conjugation operator in
the present model, we assume that ψ�ðxÞ are genuine
Majorana fields and examine their consistency with the
C-transformation properties of other fermions. Since
ðE5 � E1Þ=2 are diagonal, we have six free Majorana
fermions, for which we define the vacuum j0iM in the
standard manner,

ψ ðþÞ
� ðxÞj0iM ¼ 0; ð56Þ

where ψ ðþÞ
� ðxÞ stand for the positive frequency compo-

nents. It is also straightforward to define the charge
conjugation operator for the free fermions, which satisfies

CMψþðxÞC†M ¼ CψþðxÞT ¼ ψþðxÞ;
CMψ−ðxÞC†M ¼ Cψ−ðxÞT ¼ −ψ−ðxÞ; ð57Þ

with CMj0iM ¼ j0iM, following the procedure in the text-
book [12]; in fact, the operator charge conjugation has the
form CM ¼ exp½iπn̂ψ−

�, with the number operator n̂ψ−
¼P

p⃗;sa
†
ψ−aψ−

of ψ−ðxÞ, and thus acts on ψþðxÞ in a trivial
manner.
Since we can invert (54) as

NðxÞ ¼ 1ffiffiffi
2

p ½ψþðxÞ þ ψ−ðxÞ�;

NcðxÞ ¼ 1ffiffiffi
2

p ½ψþðxÞ − ψ−ðxÞ�; ð58Þ

which satisfy CMNðxÞC†M ¼ NcðxÞ, one can choose

j0iN ¼ j0iM; CN ¼ CM: ð59Þ

In contrast, we have from (24) in the notation of the present
section

�
νðxÞ
νcðxÞ

�
¼
� 1þγ5

2
ψþðxÞ þ 1−γ5

2
ψ−ðxÞ

1−γ5
2

ψþðxÞ − 1þγ5
2

ψ−ðxÞ

�
; ð60Þ

which shows

CMνðxÞC†M ¼ CM

�
1þ γ5

2
ψþðxÞ þ

1 − γ5
2

ψ−ðxÞ
�
C†M

¼
�
1þ γ5

2
ψþðxÞ −

1 − γ5
2

ψ−ðxÞ
�
≠ νcðxÞ:

ð61Þ

We thus conclude Cν ≠ CM, if one defines CννðxÞC†ν ¼
νcðxÞ. This CνðtÞ is time dependent since the C symmetry
thus defined is not a symmetry of the original Lagrangian
(47). If one should define the vacuum by Cνð0Þj0iν ¼ j0iν,
then j0iM ≠ j0iν. This shows that the vacuum of Majorana
fermions is different from the vacuum of Weyl fermions
[11]. The Majorana fermion in the present context may be
properly called a Bogoliubov quasiparticle.

V. DISCUSSION

We have identified the Majorana neutrinos in the seesaw
model as Bogoliubov quasiparticles in a natural manner by
extending the analysis of a relativistic analog of the
Bogoliubov transformation to the three generations of
neutrinos, when C and P are violated with mR ≠ mL. The
interpretation of the Majorana neutrino as a Bogoliubov
quasiparticle is thus generic, and it supports our suggestion
that the Majorana neutrino should be identified as the first
Bogoliubov quasiparticle among elementary particles [11].
The present analysis of the Majorana neutrino as the
Bogoliubov quasiparticle may be compared to the recent
interest in Majorana fermions in condensed matter physics
where the Bogoliubov quasiparticle is well known, but the
idea of Majorana fermions is new [19–21].
In the course of the analysis of the Bogoliubov trans-

formation, we recognized that the exact formula of the
neutrino mass is given by a difference of large masses

mν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
mR

2

�
2

þm2
D

s
−
mR

2
≃
m2

D

mR
ð62Þ

and the famous ratio of two numbers appears as an
approximation [10]. This property also holds in the
three-generation model (55),

mν ¼
1

2
ðE5 − E1Þ: ð63Þ

It would be interesting to analyze the possible implications
of this fact.

MAJORANA NEUTRINO IN THE SEESAW MECHANISM AND … PHYS. REV. D 97, 055042 (2018)

055042-7



ACKNOWLEDGMENTS

We thank Masud Chaichian for stimulating discussions.
This work is supported in part by the Magnus Ehrnrooth
Foundation. The support of the Academy of Finland under
the Projects No. 136539 and No. 272919 is gratefully
acknowledged.

Note added.—Our relativistic analogue of the Bogoliubov
transformation, which was introduced to define the proper
charge conjugation of the Majorana neutrino starting with the
C-violating seesaw Lagrangian, is related to the Pauli–Gürsey
transformation [22,23].We thankM.Fukugita andT.Yanagida
for calling the Pauli–Gürsey transformation to our attention.

[1] K. A. Olive et al. (Particle Data Group Collaboration),
Review of Particle Physics, Chin. Phys. C 38, 090001
(2014).

[2] M. Fukugita and T. Yanagida, Physics of Neutrinos and
Application to Astrophysics (Springer, Berlin, 2002).

[3] C. Giunti and C.W. Kim, Fundamentals of Neutrino Physics
and Astrophysics (Oxford University, Oxford, 2007).

[4] S. Bilenky, Introduction to the Physics of Massive and
Mixed Neutrinos, Lecture Notes in Physics Vol. 817
(Springer, Berlin, 2010).

[5] Z.-Z. Xing, in “Proceedings of the 1st Asia-Europe-Pacific
School of High-Energy Physics (AEPSHEP),” CERN
Yellow Report No. CERN-2014-001, 2012, p. 177.

[6] J. W. F. Valle and J. Romao, Neutrinos in High Energy and
Astroparticle Physics (Wiley-VCH, Weinheim, 2015).

[7] P. Minkowski, μ → eþ γ at a rate of one out of 109 muon
decays?, Phys. Lett. 67B, 421 (1977).

[8] T. Yanagida, in “Proceedings of Workshop on Unified
Theory and Baryon Number in the Universe,” edited by
O. Sawada and A. Sugamoto, KEK Report No. 79-18,
1979, p. 95; M. Gell-Mann, P. Ramond, and R. Slansky,
Supergravity, edited by P. van Nieuwenhuizen and D. Z.
Freedman (North-Holland, Amsterdam, 1979), p. 315.

[9] R. N. Mohapatra and G. Senjanovic, Neutrino Mass and
Spontaneous Parity Nonconservation, Phys. Rev. Lett. 44,
912 (1980).

[10] K. Fujikawa and A. Tureanu, Naturalness in see-saw
mechanism and Bogoliubov transformation, Phys. Lett. B
767, 199 (2017).

[11] K. Fujikawa and A. Tureanu, Majorana neutrino as Bogo-
liubov quasiparticle, Phys. Lett. B 774, 273 (2017).

[12] J. D. Bjorken and S. D. Drell, Relativistic Quantum Fields
(McGraw-Hill, New York, 1965).

[13] K. Fujikawa and A. Tureanu, Parity-doublet theorem for
Majorana fermions and neutron oscillation, Phys. Rev. D
94, 115009 (2016); Baryon number violation and novel

canonical anti-commutation relations, Phys. Lett. B 777,
240 (2018).

[14] L. N. Chang and N. P. Chang, Structure of the Vacuum and
Neutron and Neutrino Oscillations, Phys. Rev. Lett. 45,
1540 (1980).

[15] R. Foot, H. Lew, X. G. He, and G. C. Joshi, See-saw
neutrino masses induced by a triplet of leptons, Z. Phys.
C 44, 441 (1989).

[16] S. Weinberg, Baryon- and Lepton-Nonconserving Proc-
esses, Phys. Rev. Lett. 43, 1566 (1979).

[17] E.Ma andU. Sarkar, NeutrinoMasses andLeptogenesis with
Heavy Higgs Triplets, Phys. Rev. Lett. 80, 5716 (1998); see
also earlier related papers, W. Konetschny and W. Kummer,
Nonconservation of total lepton number with scalar bosons,
Phys. Lett. 70B, 433 (1977); T. P. Cheng and L. F. Li,
Neutrino masses, mixings and oscillations in SUð2Þ×
Uð1Þ models of electroweak interactions, Phys. Rev. D 22,
2860 (1980); R. N. Mohapatra and G. Senjanovic, Neutrino
masses andmixings in gaugemodelswith spontaneous parity
violation, Phys. Rev. D 23, 165 (1981).

[18] Y. Nambu and G. Jona-Lasinio, Dynamical model of
elementary particles based on an analogy with supercon-
ductivity. 1., Phys. Rev. 122, 345 (1961).

[19] C. Chamon, R. Jackiw, Y. Nishida, S.-Y. Pi, and L. Santos,
Quantizing Majorana fermions in a superconductor, Phys.
Rev. B 81, 224515 (2010).

[20] C. W. J. Beenakker, Annihilation of Colliding Bogoliubov
Quasiparticles Reveals their Majorana Nature, Phys. Rev.
Lett. 112, 070604 (2014).

[21] F. Wilczek, The Physics of Ettore Majorana (Cambridge
University Press, Cambridge, England, 2015).

[22] W. Pauli, On the conservation of the lepton charge, Nuovo
Cimento 6, 204 (1957).

[23] F. Gürsey, Relation of charge independence and baryon
conservation to Pauli's transformation, Nuovo Cimento 7,
411 (1958).

KAZUO FUJIKAWA and ANCA TUREANU PHYS. REV. D 97, 055042 (2018)

055042-8

https://doi.org/10.1088/1674-1137/38/9/090001
https://doi.org/10.1088/1674-1137/38/9/090001
https://doi.org/10.1016/0370-2693(77)90435-X
https://doi.org/10.1103/PhysRevLett.44.912
https://doi.org/10.1103/PhysRevLett.44.912
https://doi.org/10.1016/j.physletb.2017.01.069
https://doi.org/10.1016/j.physletb.2017.01.069
https://doi.org/10.1016/j.physletb.2017.09.051
https://doi.org/10.1103/PhysRevD.94.115009
https://doi.org/10.1103/PhysRevD.94.115009
https://doi.org/10.1016/j.physletb.2017.12.034
https://doi.org/10.1016/j.physletb.2017.12.034
https://doi.org/10.1103/PhysRevLett.45.1540
https://doi.org/10.1103/PhysRevLett.45.1540
https://doi.org/10.1007/BF01415558
https://doi.org/10.1007/BF01415558
https://doi.org/10.1103/PhysRevLett.43.1566
https://doi.org/10.1103/PhysRevLett.80.5716
https://doi.org/10.1016/0370-2693(77)90407-5
https://doi.org/10.1103/PhysRevD.22.2860
https://doi.org/10.1103/PhysRevD.22.2860
https://doi.org/10.1103/PhysRevD.23.165
https://doi.org/10.1103/PhysRev.122.345
https://doi.org/10.1103/PhysRevB.81.224515
https://doi.org/10.1103/PhysRevB.81.224515
https://doi.org/10.1103/PhysRevLett.112.070604
https://doi.org/10.1103/PhysRevLett.112.070604
https://doi.org/10.1007/BF02827771
https://doi.org/10.1007/BF02827771
https://doi.org/10.1007/BF02747705
https://doi.org/10.1007/BF02747705

