Dempster’s Rule of Combination is
#P-complete®

Pekka Orponen
Department of Computer Science, University of Helsinki

Teollisuuskatu 23, SF-00510 Helsinki, Finland

Abstract

We consider the complexity of combining bodies of evidence according
to the rules of the Dempster—Shafer theory of evidence. We prove that,
given as input a set of tables representing basic probability assignments
mi,..., My over a frame of discernment ©, and a set A C O, the prob-
lem of computing the combined basic probability value (m1®. . .Omy)(A) is
#P-complete. As a corollary, we obtain that while the simple belief, plau-
stbility, and commonality values Bel(A), PI(A), and Q(A) can be com-
puted in polynomial time, the problems of computing the combinations
(Beli @ ... @ Bely)(A), (PL @ ... PlL)(A), and (Q1 @ ... D Qn)(A) are
P-complete.

1 Introduction

The Dempster—Shafer theory of evidence [8] has recently been attracting increas-
ing attention as a theoretically well-founded way of dealing with the problem
of uncertain information in artificial intelligence systems (cf. [2, 5, 6, 11]). The
apparently prohibitive computational complexity of the method has, however,
so far rendered it of only limited practical use. The problem of complexity was
pointed out already by J. Barnett in his first paper introducing the Dempster—
Shafer theory to the wider AT community [1], and since then research has cen-
tered on finding efficient implementations of the method in certain restricted
situations [1, 4, 9, 10].

The main tool provided by the theory is Dempster’s rule of combination,
which is a formula for combining evidential information provided by different
sources. It is generally taken for granted that the complexity of applying this
formula grows exponentially in the number of evidential sources (e.g., [4] p.

*Work supported by the Academy of Finland. This research was carried out while the
author was visiting the Department of Computer Science, University of Toronto.

324; [9] p. 271), and Barnett is sometimes credited as having proved this fact.
However, in a footnote to his paper, Barnett explicitly states: “I have not proved
this. However, if the formulae [. . .] are directly implemented, then the statement
stands.” ([1], p. 871). Actually, as we shall see, the claim of the exponential
complexity of Dempster’s rule is slightly inaccurate. We show that the function
computed by the rule is # P-complete [12, 13][3, pp. 168-169], thus verifying its
exponential (or, rather, superpolynomial) complexity — but only assuming the
truth of the unproved, though eminently plausible hypothesis that P # #P.
The complexity of Dempster—Shafer computations has recently also been
studied by Provan, although from a point of view somewhat different from ours

[7].

2 Basic Notions

Dempster—Shafer theory concerns itself with the unknown value of some quantity
f, constrained to lie within a frame of discernment, or universe ©. A source
of evidence concerning the true value of @ is represented as a basic probability
assignment (b.p.a.) over ©. This is simply a mapping m associating to each
subset A of © a real number (or, for computability reasons, a rational) m(A)
that represents the strength of evidence in favor of the proposition § € A. Tt
should be emphasized that m(A) represents primary evidence focused on the
set A: the evidence for a set A is not considered to be part of the evidence
supporting the proper supersets of A. A b.p.a. m : P(0©) — Q is constrained
to satisfy the following axioms:

1. m(A4) > 0 for every A C O;
2. m(0) = 0;

3. Yaco m(A) = L.

A number of functions can be defined for summarizing the primary evidence
represented by a basic probability assignment, the most important ones being
the belief, plausibility, and commonality functions. The belief value of a set
A C O, Bel(A4), represents the total weight of evidence supporting A, and is

defined as
Bel(A) = Z m(B).
BCA

The plausibility value of A, P1(A), is the total weight of evidence not in contra-
diction with A, defined as

The commonality value of A, Q(A), represents the weight of evidence equally
in support of all the elements of A, i.e., the evidence focused on supersets of A:

Q(A) = > m(B).

BDA

For lack of a better term, we shall refer to the functions Bel, Pl, and @ collec-
tively as summary functions.

The information provided by two evidential sources, represented as basic
probability assignments mj and msy over a common universe ©, may be com-
bined by means of Dempster’s rule of combination to a joint b.p.a., denoted by
my @ ma, over the same universe. The basic idea is to assign to a set A C ©
the combined weight

Z ml(Al)mg(Ag).
ANAs=A
It is easy to verify that this simple scheme indeed yields a b.p.a., except that
it may assign a nonzero weight to the empty set. Therefore, the weight of the
empty set is explicitly set to zero, and the rest of the weights are normalized by
a factor of K~1, where

K= Z ml(Al)mz(Az).
A1NA#0

This scheme is readily generalized to an arbitrary number of b.p.a.’s: given a
sequence of b.p.a.’s m1, msa, ..., m,, their combination m = @?:1 m; 1s defined
as

m(0) = 0
m(A) =]{_1 Z ml(Al)mg(AQ) oMy, (An)
N, Ai=4
for A # 0, where

K= Y mi(A)my(As) mp(An).
e
Dempster’s rule is extended to the summary functions in the obvious way;

for instance, the combination of two belief functions Bel; and Bels, determined
by b.p.a.’s m; and ms is defined as

(Beh (o) Belz)(A) = Z (m1 (o) TTQ)(B)

BCA

We shall relate Dempster’s rule to the class # P! of functions [12, 13][3, pp.
168-169]. A function f mapping strings over some alphabet X to integers be-
longs to this class if there is a nondeterministic polynomial time Turing machine

1Read “number-P”.

M that on each input # € ¥* has exactly f(z) accepting computation paths;
in this case we say that M counts f. The class #P is a functional analogue of
the better known class N P of decision problems: to each N P decision problem
there corresponds in a natural way a # P counting function (i.e., the function
counting “witnesses” or accepting computations), and vice versa. A function f
is #P-complete if it belongs to # P, and any other function in #P can be com-
puted by some deterministic polynomial time Turing machine that is allowed to
access values of f at unit cost. The generic # P-complete function is

#SAT(F) = the number of satisfying truth assignments to Boolean formula F'.

Here the formulas F' may be restricted to be in conjunctive normal form. It is
easy to see that if P # NP, then #P-complete functions cannot be computed
in polynomial time.

One minor technical issue in proving results about the Dempster—Shafer
functions and the class # P is that the former map into the rationals, not inte-
gers. To overcome this problem, let us represent rationals as pairs of integers
and fix some suitable one-to-one encoding of such pairs into integers, say

code(p,q) = (p+q)(p+q+1)+2q.

Then we can say that a function f : ¥* — Q is in #P if there is a function

F¢:X* — N in #P such that for all z, f°(z) = code(p, ¢), and f(z) = p/q.

Lemma 2.1 Let f,g: % — N be two functions in #P. Then also the function
(f/9) : T* — Q, where (f/g9)(x) = f(x)/g9(x) for each x € ¥, is in #P.

Proof. By the above encoding, it is sufficient to prove that the class of #P-
functions with range A is closed under addition and multiplication. Let f and
g be two such functions, and let M; and M, be two nondeterministic Turing
machines counting f and g, respectively. The following Turing machine M’ then
counts (f +¢): on input z, M’ first makes a nodeterministic move to determine
whether to count f or g; in the former case it simulates M; on z; in the latter
case it simulates M,. Similarly, (fg) can be counted by the following machine
M": on input z, M" first simulates My on input z; if M; accepts, then M"
simulates M, on z; otherwise it rejects. O

3 The Complexity of Dempster’s Rule

In order to analyze the complexity of the summary functions Bel(A), P1(4),
and Q(A), we must decide what is to be counted into the size of the input, viz.
how is the underlying basic probability assignment m represented. There are
two possibilities: either the input contains the set A for which the value of a
summary function is required, together with a table listing the non-null values
of m(B), or m is presented as a functional oracle, and only A is counted into the

input. The former model, which we consider to be the natural one, and hence
use below, corresponds to a situation where an evidential source provides us in
advance with a set of at most polynomially many (in the size of the universe
©) possibilities B such that all B with m(B) # 0 are included. The other
model would correspond to a situation where either the values m(B) come from
some database of astronomical size, or the evidential source can be employed
to compute all the values m(B) as required, without our knowing in advance a
polynomial-size set of possibilities covering all the non-null entries.

If a basic probability assignment m is presented explicitly as a table of the
non-null entries, as suggested, then all the simple summary functions Bel(A),
PI(A), Q(A) relative to m can easily be computed in polynomial, in fact linear
time. The computational complexity gets out of hand only when Dempster’s
rule is applied.

Theorem 3.1 Given as input a sequence of b.p.a.’s mi, my, ..., m, over some
universe O, and a set A C ©, it is a #£P-complete problem to compute the value

m(A) = (D=, mi)(A).

Proof. Let us prove first that the problem is in #P. Recall that

m(A) =K! Z ml(Al)mZ(A2) e mn(An):
ﬂiA’:A

where
N, A0

A nondeterministic Turing machine that counts m(A), i.e., that on input
(m1,...,mp; A) has exactly code(p, q) accepting paths, where p/q = m(A), can
be obtained as follows. For each i and B such that m;(B) # 0, let m;(B) be
presented in the input as p;(B)/q;(B), where p;(B) and ¢;(B) are integers. The
machine first deterministically computes, for each i, the least common multiple
M; of the nonzero denominators ¢;(B), B € ©. Then it replaces the tables for
the functions m; by tables for functions m}, where m{(B) = M;m;(B). Now
each of the tables m] has only integer entries, and

22N, Ai=a ami(Ar) - -ma(4,)

m(4) = EﬂAﬂml(A) ()
(M- Ma) ™ 32 gima mi(Ar) - omy (An)
= LM Zﬂ Az ML(A1) - my (An)
= SI/I(/,

where
= YT mi(Ar) e my(An),
ﬂiAi:A
K=) mi(A)--ml(An).

), 40

By Lemma 2.1 it is now sufficient to show that both the values S’ and
K' can be obtained by a # P-computation. To generate exactly S’ (resp. K')
accepting computations, our machine can guess a sequence of sets A;,..., A, C
© and check whether (), A; = A (resp. [); Ai # 0). If this is the case, then
the machine branches, by making more nondeterministic moves, into exactly
my (A1) ---m! (A,) accepting computations; otherwise it ends this branch in a
rejecting state. The total number of accepting computations thus obtained from
all the parallel branches is clearly S’ (resp. K').

We now proceed to prove that computing m(A) is #P-hard. This we do by
showing that the problem of computing #SAT(F) for an arbitrary conjunctive
normal form Boolean formula F can be reduced to the problem of computing
m(A) for a suitably chosen input (ms,...,my; A). Thus, let F = C1 A...ACYy
be a c.n.f. Boolean formula over the variables z1,...,2,; we may assume that
for every variable z;, some clause C; contains either one of the literals z; or z;,
but no clause contains both. The corresponding sequence of basic probability
assignments myq, ..., m, is constructed as follows. We choose as our universe
the set @ = {1,..., k, x} and consider, for each i = 1,..., n, the sets T}, F}:

T; = {x}uU{j|clause C; does not contain literal z;}
F;

{*} U {j|clause C; does not contain literal T; }.

Because of our assumptions on the literals, the sets T; and F; are not equal, and
we may define a b.p.a. m; as:

m; (T;) = my (Fy) = 1/2;
m;(B) =0, for B #1T;, F;.

We now claim that there is a one-to-one, onto correspondence between the
truth assignments

h:{zy,...,za} — {t, f}

that make formula F' true, and sequences of sets Ay,..., A, C © such that
(; Ai = {*} and m1 (A1) -m,(A,) #0.

Given a truth assignment h, let us define for ¢ =1,... n:

Ty ifh(x) =t
A —{ Fy if h(z;) = £.

First, it is clear that because T; # F; for every ¢, this mapping is one-to-one
everywhere on its domain (which includes satisfying as well as nonsatisfying
truth assignments). To see that truth assignments satisfying F' map to set
sequences with the requisite properties, consider the sequence (A;) associated
with a satisfying assignment h. Denoting A = (), A;, it is clear that ‘*’ € A,
and that mi(A1)---mp(A,) = 27" # 0. To show that in fact ‘*’ is the only
element in A, observe that since h is a satisfying truth assignment, it is the case
for any index j that either there is a literal #; in C; such that h(z;) = ¢, in
which case A; = 7; and j ¢ A; D A; or there is a literal Z; in C} such that
h(z;) = f, in which case A; = F; and again j ¢ A; D A.

To show that the mapping is onto, let A;, ..., A, be a sequence of sets such
that A =), A; = {*} and my(Ay)---m,(A,) # 0. Since m;(B) = 0 for all
B #T;, F;, infact A; € {T;, F;} for each i = 1,...,n, and we can define a truth
assignment h as follows:

ot A =T
h(zi) = { f if A; = Fi.
It is clear that h maps to the sequence Ay, ..., A, under the above correspon-

dence. To verify that h satisfies F', assume to the contrary that there is a clause
C; in F' that is not true under h. Then it is the case for each variable z; that
if h(z;) = t, then C; does not contain z;, and so j € T; = A;; similarly, if
h(z;) = f, then C; does not contain Z;, and so j € F; = A;. It follows that
JjE€A=();Ai, and A £ {x}.

Having thus established the desired correspondence, we observe further that

for any sequence of sets Ay, ..., Ap,if mi(A1) - -mp(Ay) # 0, then my(Ay) -+ -mu(4,)

27". Also, there are no sequences such that (), A; = 0 and my (A1) ---m,(An) #
0, so the normalization constant K is in this case equal to 1. It follows that if
we could compute the value m({x}) = (@, m;)({*}), we could also easily obtain
the value #SAT(F'), because

m({x}) = K=" > mi(A1)---ma(An)
N, Ai={*}

= (# satisfying assignments for F") - 27"

O

Corollary 3.2 Given as input a sequence of b.p.a.’s my, mso, ..., m, over some
universe ©, and a set A C O, the problems of computing the values (;_, Bel;)(A),

(B, PL)(A), and (B;_, Qi)(A) are #P-complete.

Proof. Let us first verify that the quantities can be computed in #P. On
input (my,ms,...,my; A), A # 0, a nondeterministic Turing machine count-

ing (D, Bel;)(A) (resp., (P, PL)(A), (B, Qi)(A)) operates as follows: it first

guesses an arbitrary set B and checks that B C A (resp., BNA# 0, BD A);if
this is the case, it proceeds to count the value (@, m;)(B), otherwise it rejects.

The # P-hardness of the first two problems follows immediately from the
proof of Theorem 3.1, because

(EB Bel;)({+}) = m({+})

and

(@ P k) = 1= (@ Bel)({x}) = 1 = m({+}).

Superficially, computing Q(A) = (P, Qi)(A) might seem an easier task,
because it can be shown that Q(A) = K~1Q1(A)Q2(A) - Qn(A) [8, p. 61], and
each of the values Q1(A4), ..., @n(A) can be computed in polynomial time. Thus
computing Q(A) is only of the same complexity as computing the normalization
constant K. But in fact a small modification to the proof of Theorem 3.1 shows
that also this problem is # P-complete. If we just remove the element ‘*’ from
the construction in the proof throughout, then the resulting proof establishes

that
22N, ai=0 Ma(A1) - ma(4n)
=1-K
= #SAT(F)-27".
Thus, given an oracle for computing Q(A), we could easily compute the quan-

tities K = Q1(A) - Qn(A4)/Q(A) and #SAT(F) = 2"(1 — K) in polynomial

time. O

Acknowledgment

I wish to thank Ms. Irene Jaamaa for constructive discussions on the topic of
Dempster—Shafer theory.

References

[1] Barnett, J. A., Computational methods for a mathematical theory of evi-
dence, in: Proceedings, 7th Int. Joint Conf. Artificial Intelligence, Vancou-
ver, BC (1981) 868-875.

[2] Bhatnagar, R. K. and Kanal, L. N., Handling uncertain information: A re-
view of numeric and non-numeric methods, in: Kanal, L. N. and Lemmer, J.
F. (Eds.): Uncertainty in Artificial Intelligence (Elsevier — North-Holland,
Amsterdam, 1986) 3-26.

(3]

[10]

[11]

[12]

[13]

Garey, M. R. and Johnson, D. S., Computers and Intractability: A Guide
to the Theory of NP-completeness (W. H. Freeman & Co., New York, NY,
1979).

Gordon, J. and Shortliffe, E. H.;, A method for managing evidential rea-
soning in a hierarchical hypothesis space, Artificial Intelligence 26 (1985)
323-357.

Gordon, J. and Shortliffe, E. H., The Dempster—Shafer theory of evidence,
in: Buchanan, B.G. and Shortliffe, E. H. (Eds.): Rule-Based Ezpert Sys-
tems: The MYCIN Ezxperiments of the Stanford Heuristic Programming
Project (Addison-Wesley, Reading, MA, 1985) 272-292.

Pearl, J., Probabilistic Reasoning in Intelligent Systems: Networks of Plau-
sible Inference (Morgan Kaufmann, San Mateo, CA, 1988).

Provan, G. M., A logic-based analysis of Dempster Shafer theory, Interna-
tional Journal of Approzimate Reasoning (to appear).

Shafer, G., A Mathematical Theory of Evidence (Princeton University
Press, Princeton, NJ, 1976).

Shafer, G. and Logan, R., Implementing Dempster’s rule for hierarchical
evidence, Artificial Intelligence 33 (1987) 271-298.

Shenoy, P. P. and Shafer, G., Propagating belief functions with local com-
putations, IEEE Ezpert, 1(3) (1986) 43-52.

Stephanou, H. E. and Sage, A. P., Perspectives on imperfect information
processing, IEEE Trans. Syst., Man, Cybern. SMC-17 (1987) 780-798.

Valiant, L. G., The complexity of computing the permanent, Theoret. Com-
put. Sci. 8 (1979) 189-201.

Valiant, L. G., The complexity of enumeration and reliability problems,

SIAM J. Comput. 8 (1979) 410-421.

