
ON THE SAMPLE COMPLEXITY OF FINDING
GOOD SEARCH STRATEGIES

Pekka Orponen∗

University of Helsinki
Department of Computer Science
SF-00510 Helsinki, Finland

Russell Greiner†

University of Toronto
Department of Computer Science
Toronto, Ont. M5S 1A4, Canada

ABSTRACT

A satisficing search problem consists of a set of probabilistic experiments to be performed in some order,
without repetitions, until a satisfying configuration of successes and failures has been reached. The cost of
performing the experiments depends on the order chosen. Earlier work has concentrated on finding optimal
search strategies in special cases of this model, such as search trees and and-or graphs, when the cost
function and the success probabilities for the experiments are given. In contrast, we study the complexity of
“learning” an approximately optimal search strategy when some of the success probabilities are not known
at the outset. Working in the fully general model, we show that if n is the number of unknown probabilities,
and C is the maximum cost of performing all the experiments, then

2(
nC

ε
)2 ln

2n

δ

trials of each undetermined experiment are sufficient to identify, with confidence 1 − δ, a search strategy
whose cost is within ε of the optimal.

INTRODUCTION

Consider the following situation (from [3]): A sequence of tests are to be performed to decide whether a
product specimen is satisfactory. There is a cost associated with each test, and the tests are related by
precedence constraints so that certain tests can only be performed after the results of others are known. Let
us assume for the moment that the probabilities of a specimen passing each test are independent of each
other and known at the outset. It is desired to find a testing sequence that obeys the precedence constraints
and minimizes the expected cost before a decision to either accept or reject the specimen can be made.

This is a simple example of a satisficing search problem (term due to Simon and Kadane [6]), where the
goal is to find a single satisfactory configuration of events (in this case, an informative combination of test
results) at minimum expected cost. Other examples of such problems include, e.g, screening employment
candidates for a position [3], competing for prizes at a quiz show [3], mining for gold buried in Spanish
treasure chests [6], and performing inference in simple expert systems [7]. Garey gave in [3] an efficient
algorithm for finding optimal search strategies (in the sense of minimal expected cost) for satisficing search
problems when the precedence constraints can be represented as a tree. The more general problem of search
in directed acyclic graphs was later studied by Simon and Kadane [6]. They, however, did not explicitly
suggest any efficient algorithm for finding optimal search strategies, and in fact the problem of finding
optimal strategies in this case is NP-hard [4]. Also satisficing searches in and-or graphs would be of interest;
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unfortunately, here again it can be shown that finding optimal strategies is NP-hard, even when all the
success probabilities are 1 [8]. Still, partial results can be obtained for restricted classes of strategies: for
instance, Natarajan has presented an efficient algorithm for finding optimal depth-first search strategies for
and-or trees [5].

All these algorithms take as input a description of the search graph, together with a listing of the costs
of the experiments and their success probabilities. In most real-life situations, of course, the actual success
probabilities of the experiments are not known and must be estimated, typically by sampling. A natural
question then arises: just how many samples are needed to guarantee, with a high level of confidence, that
a strategy based on the resulting estimates really is close to optimal? A moment’s reflection on any of the
proposed algorithms shows that they are very sensitive to estimation errors: small changes in the success
probabilities may lead to drastically different strategies.

However, as we shall show below, even though the structure of the optimal strategy is very sensitive to
the actual values of the probabilities, its cost is not. Given a search graph G with n unknown experiment
success probabilities, we can think of the optimal search cost of G as a function of the unknown probabilities.
We show below how to bound the partial derivatives of this function, leading to the following result: for any
values of parameters ε, δ > 0, if at least

N(G; ε, δ) = 2(
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trials of each undetermined experiment are performed, where C is the maximum cost of performing all the
experiments, then the probability estimates obtained are good enough to guarantee, with probability 1− δ,
that the cost of an estimated optimal strategy differs from the cost of the actual optimal strategy by at most
an additive term of ε. In terms of pac-learnability theory [9], we can say that N(G; ε, δ) samples of each
experiment are sufficient to “learn” a good search strategy.

A very special case of our problem was studied by Barnett in [1]; namely the robustness of the Garey–
Simon–Kadane algorithm against errors in probability estimates when there are two independent experiments
(and, consequently, only two alternative search strategies).

BASIC NOTIONS: SEARCH STRUCTURES AND STRATEGIES

A satisficing search structure is a four-tuple I = 〈E, p,R, c〉, where

• E = 〈e1, . . . , en〉 is a set of experiments;

• p = 〈p1, . . . , pn〉 is a vector of mutually independent success probabilities for the experiments;

• R is a result function mapping subsets of E × {+,−}, such that for no experiment e, both 〈e,+〉 and
〈e,−〉 appear in the set, to the set {S,F ,U} (for Success, Failure, Undecided);

• c is a cost function mapping ordered subsets of E (i.e., finite sequences without repetition) to nonneg-
ative reals, so that for all sequences σ and experiments e, where σ does not contain e, c(σ · e) ≥ c(σ).

The notion of a satisficing search structure generalizes that of a weighted and-or search graph. As an
illustration, consider the and-or tree on the left in Figure 1. We can represent this as a search structure by
having just four experiments e1, . . . , e4, corresponding to the leaves of the tree, and letting p1, . . . , p4 be the
success probabilities of the respective search subgoals. (In general, we could model also the possibility of a
search terminating at an internal vertex, cf. [3, 6, 7].) Some representative values of the appropriate result and
cost functions in this case are R({〈e1,+〉}) = U , R({〈e1,+〉, 〈e2,+〉}) = S, R({〈e1,−〉, 〈e3,−〉, 〈e4,−〉}) = F ;
and c(〈e1〉) = 2, c(〈e1, e2〉) = 4, c(〈e1, e4, e3〉) = 9.

A strategy for a search structure I = 〈E, p,R, c〉 is a binary tree s whose internal nodes are labelled by
experiments in E, and terminal nodes by S or F . The label of a node u is denoted by l(u), and the two
immediate descendants of an internal node u are denoted by u+ and u−. No label e ∈ E is repeated on any
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Figure 1: An And-Or Tree and an Associated Strategy Tree

path π = 〈u1, . . . , uk, t〉 from the root to a leaf t in s, and the label of the terminal node is l(t) = R(Lπ),
where 〈e,+〉 ∈ Lπ (〈e,−〉 ∈ Lπ) if and only if for some node u ∈ π, l(u) = e and u+ ∈ π (resp. u− ∈ π).
One possible strategy for our example and-or tree is indicated on the right in Figure 1.

Based on the cost function of I, we can associate a cost to each node u in s as follows. Let us first
define the cost of a path π = 〈u1, . . . , uk〉 in s as c(π) = c(〈l(u1), . . . , l(uk)〉) if uk is not a leaf, and
c(π) = c(〈l(u1), . . . , l(uk−1)〉) otherwise; as a special case, c(〈〉) = 0. Let π = 〈u1, . . . , uk〉 be the unique path
from the root of s to the predecessor uk of u, and define c(u) = c(π · u) − c(π). The probability of a path
π = 〈u1, . . . , uk〉 is defined as

p(π) =

k−1∏
i=1

p±ui
, where p±ui

=

{
pj , if l(ui) = ej and ui+1 = u+i ,
1− pj if l(ui) = ej and ui+1 = u−i .

The (expected) cost of a strategy s is defined as c(s) =
∑
π p(π)c(π), where the sum is over all complete

paths from the root to a leaf in s.
Given a class of strategies S and a search structure I, a strategy s ∈ S is optimal for I within S if s is a

strategy for I, and for any other s′ ∈ S that is a strategy for I, c(s′) ≥ c(s).
Since all the structures we are dealing with are finite, optimal strategies can always be found by exhaustive

search (assuming that the class S is decidable). Of course, exhaustive search is in general impractical,
and if we are dealing with search structures with concise encodings, such as and-or graphs, it is not even
guaranteed that the optimal strategies will have useful polynomial-size representations. As pointed out in
the introduction, however, in many interesting special cases optimal strategies have simple representations
and can be determined in polynomial time.

For the remainder of this paper, we assume that some class of search structures I and a class of strategies
S of interest have been fixed. Moreover, we assume the existence of an algorithm s∗(I) that is capable of
mapping any structure I ∈ I to an optimal strategy for I within S.



THE COMPLEXITY OF FINDING A GOOD STRATEGY

We consider the situation where repeated searches are to be performed over the same structure I, but some
of the success probabilities pi are not known at the outset. By a slight abuse of notation, we let I denote
also the corresponding partially specified search structure, and let I(p) denote this structure completed with
a probability vector p. The cost of any strategy s for the partially specified I will now be determined only
relative to the missing probabilities; we denote by c(s; p) the cost of a strategy s when the missing values
are given by a vector p.

Our question of interest is: given a partially specified search structure I, and constants ε, δ, how much
sampling effort is needed to obtain a strategy for I that with confidence 1− δ has a cost within an error of
ε from optimal? We obtain the following bound:

Theorem 1 Let I = I(r) = 〈E, p0 · r,R, c〉 be a partially specified search structure, where the vector p0

contains the known probability values, and the parameters r = 〈r1, . . . , rn〉 stand for the unknown probabilities.
Assume that, in a particular situation, the correct values for the parameters r are given by p = 〈p1, . . . , pn〉.
Let ε, δ > 0 be given constants. Denoting C = max{c(π)|π is a permutation of E}, let p̂ = 〈p̂1, . . . , p̂n〉 be
an estimate for p, where each p̂i is obtained as the relative frequency of successes in

N ≥ N(I; ε, δ) = 2(
nC

ε
)2 ln

2n

δ

trials of experiment ei. Then

Pr[ c(s∗(I(p̂)); p) ≤ c(s∗(I(p)); p) + ε ] ≥ 1− δ.

(In other words, an estimated optimal strategy based on the probabilities p̂ is, with probability 1 − δ,
only an additive cost of ε worse in the actual environment than the truly optimal strategy.)

Proof. Given probability vectors p, p′, let us for brevity denote cp(p
′) = c(s∗(I(p)); p′). To restate the

theorem in this notation: we are claiming that if N ≥ N(I; ε, δ), then Pr[cp̂(p) − cp(p) ≤ ε] ≥ 1 − δ. Note
that since s∗(I(p)) is an optimal strategy for probabilities p, it is always the case that cp̂(p) ≥ cp(p). We
split the proof into two lemmas:

Lemma 1 If N ≥ N(I; ε, δ), then Pr[ for all i = 1, . . . , n : |p̂i − pi| ≤ ε
2nC ] ≥ 1− δ.

Lemma 2 If it is the case that for all i = 1, . . . , n : |p̂i − pi| ≤ ε
2nC , then cp̂(p)− cp(p) ≤ ε.

Proof of Lemma 1. This is a straightforward application of the Chernoff bound for the probability in the
tail of a binomial distribution. A simple form of the bound (see, e.g. [2, p. 12]) states that if N experiments

are performed to obtain an estimate p̂i for a probability pi, and λ ≥ 0, then Pr[|p̂i − pi| > λ] ≤ 2e−2Nλ
2

.
We apply this with N = N(I; ε, δ), λ = ε

2nC to obtain the bound

Pr[|p̂i − pi| >
ε

2nC
] ≤ 2 exp

(
−2[2(

nC

ε
)2 ln

2n

δ
](

ε

2nC
)2
)

=
δ

n
.

Hence if N ≥ N(I; ε, δ), then

Pr[ for all i = 1, . . . , n : |p̂i − pi| ≤
ε

2nC
]

= 1− Pr[ for some i = 1, . . . , n : |p̂i − pi| >
ε

2nC
]

≥ 1− n · δ
n

= 1− δ.



Proof of Lemma 2. Since cp̂(p)− cp(p) ≤ |cp̂(p)− cp̂(p̂)|+ |cp̂(p̂)− cp(p)|, we can again split the proof in
two parts:

Lemma 2.1 If the condition of Lemma 2 holds, then |cp̂(p)− cp̂(p̂)| ≤ ε
2 .

Lemma 2.2 If the condition of Lemma 2 holds, then |cp̂(p̂)− cp(p)| ≤ ε
2 .

Proof of Lemma 2.1. Observe that for any strategy s for I, the cost function c(s; r) is everywhere
differentiable with respect to the variables r = 〈r1, . . . , rn〉. We shall compute the partial derivatives ∂c

∂ri
.

Let us first introduce some notation. Given any node uj in s, let πj denote the path leading from the
root of s to uj . The set of terminal nodes below uj is denoted by t(uj). If ul ∈ t(uj), let πjl denote the path
from uj to ul, and if ul ∈ t(u+j ), let π+

jl denote the path from u+j to ul. Let c(s+j ) denote the “expected cost
of the +-subtree of uj”:

c(s+j ) = c(u+j ) +
∑

ul∈t(u+
j
)

p(π+
jl)c(π

+
jl),

Analogous definitions hold for ul ∈ t(u−j ), p(π−jl), and c(s−j ).
Recall that in s, any experiment label can occur at most once on each path from the root to a leaf.

By adding zero-cost nodes to the paths we may, without changing the function c(s; p), assume that in fact
every label occurs exactly once on each path. Let u1, . . . , uk be the nodes in the (modified) tree s with
label ei. We may partition the paths in s according to which of the nodes uj they pass through, and use
this representation to obtain a very simple formula for the influence of variable ri on the function c(s; r), as
follows:

c(s; p) =
∑
π

p(π)c(π)

=

k∑
j=1

∑
ul∈t(uj)

p(πl)c(πl)

=

k∑
j=1

 ∑
ul∈t(u+

j
)

p(πl)c(πl) +
∑

ul∈t(u−j )

p(πl)c(πl)


=

k∑
j=1

 ∑
ul∈t(u+

j
)

p(πj)rip(π
+
jl)(c(πj) + c(u+j ) + c(π+

jl)) +
∑

ul∈t(u−j )

p(πj)(1− ri)p(π−jl)(c(πj) + c(u−j ) + c(π−jl))


=

k∑
j=1

p(πj)

ri ∑
ul∈t(u+

j
)

p(π+
jl)(c(πj) + c(u+j ) + c(π+

jl)) + (1− ri)
∑

ul∈t(u−j )

p(π−jl)(c(πj) + c(u−j ) + c(π−jl))


=

k∑
j=1

p(πj)

ri
c(πj) + c(u+j ) +

∑
ul∈t(u+

j
)

p(π+
jl)c(π

+
jl)

+ (1− ri)

c(πj) + c(u−j ) +
∑

ul∈t(u−j )

p(π−jl)c(π
−
jl)




=

k∑
j=1

p(πj)
[
ri(c(πj) + c(s+j )) + (1− ri)(c(πj) + c(s−j ))

]
=

k∑
j=1

p(πj)[c(πj) + ric(s
+
j ) + (1− ri)c(s−j )].



From this representation we immediately obtain the partial derivatives:

∂c

∂ri
=

k∑
j=1

p(πj)(c(s
+
j )− c(s−j )).

Moreover, since

c(s+j ) = c(u+j ) +
∑

ul∈t(u+
j
)

p(π+
jl)c(π

+
jl)

≤ c(u+j ) + ( max
ul∈t(u+

j
)
c(π+

jl))
∑

ul∈t(u+
j
)

p(π+
jl)

= max
ul∈t(u+

j
)
c(πjl) ≤ max

ul∈t(u+
j
)
c(πl) ≤ C

(and similarly for c(s−j )), we obtain the bound

| ∂c
∂ri
| = |

k∑
j=1

p(πj)(c(s
+
j )− c(s−j ))| ≤ C|

k∑
j=1

p(πj)| = C.

Consider then the strategy ŝ = s∗(I(p̂)), and the values of the associated cost function cp̂ = c(ŝ; r) for
vectors p and p̂. By the mean-value theorem, there is a vector r = p̂+ θ(p− p̂), 0 ≤ θ ≤ 1, such that

|cp̂(p)− cp̂(p̂)| = |
n∑
i=1

∂cp̂(r)

∂ri
(pi − p̂i)| ≤

n∑
i=1

C|pi − p̂i| ≤ nC
ε

2nC
=
ε

2
.

Proof of Lemma 2.2. Let us denote c∗(r) = cr(r) = mins∈S c(s; r). As a minimum of finitely many
continuous functions, c∗ is continuous. In particular, the projections of c∗ on each variable ri are piecewise
linear functions, differentiable everywhere except at finitely many points. Whenever the partial derivative
∂c∗(r)
∂ri

exists, it is the case that

|∂c
∗(r)

∂ri
| ≤ max

s∈S
|∂c(s; r)

∂ri
| ≤ C.

Given vectors p, p̂, let us denote p(i) = 〈p̂1, . . . , p̂i, pi+1, . . . , pn〉, and as special cases, p(0) = p and
p(n) = p̂. Then

|c∗(p̂)− c∗(p)| ≤
n∑
i=1

|c∗(p(i))− c∗(p(i−1))| ≤
n∑
i=1

C|p̂i − pi| ≤ nC
ε

2nC
=
ε

2
.

This concludes the proof of Lemma 2.1, and hence also of the Theorem. 2

CONCLUSION

We have proved a low-order polynomial bound on the number of samples needed to determine approximately
optimal search strategies in a very general model of satisficing search problems. This bound can be used
to obtain search strategy learning methods for any class of structures I conforming to the model, and any
class of strategies S, provided only that there is an algorithm s∗ capable of mapping any pair consisting of
a partially specified structure I ∈ I and a success probability vector p to a strategy s∗(I(p)) that is optimal
for the completed structure I(p) within S.
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