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Abstract: Most of the studies in three-dimensional (3D) bioprinting have been traditionally based on
printing a single bioink. Addressing the complexity of organ and tissue engineering, however, will
require combining multiple building and sacrificial biomaterials and several cells types in a single
biofabrication session. This is a significant challenge, and, to tackle that, we must focus on the complex
relationships between the printing parameters and the print resolution. In this paper, we study the
influence of the main parameters driven multi-material 3D bioprinting and we present a method to
calibrate these systems and control the print resolution accurately. Firstly, poloxamer hydrogels were
extruded using a desktop 3D printer modified to incorporate four microextrusion-based bioprinting
(MEBB) printheads. The printed hydrogels provided us the particular range of printing parameters
(mainly printing pressure, deposition speed, and nozzle z-offset) to assure the correct calibration of
the multi-material 3D bioprinter. Using the printheads, we demonstrated the excellent performance
of the calibrated system extruding different fluorescent bioinks. Representative multi-material
structures were printed in both poloxamer and cell-laden gelatin-alginate bioinks in a single session
corroborating the capabilities of our system and the calibration method. Cell viability was not
significantly affected by any of the changes proposed. We conclude that our proposal has enormous
potential to help with advancing in the creation of complex 3D constructs and vascular networks for
tissue engineering.

Keywords: additive manufacturing; synthetic polymer; bioprinting; multi-material microextrusion;
bioink

1. Introduction

The rise of three-dimensional (3D) printing in the last three decades has permitted the arrival of
a new manufacturing technology called 3D bioprinting for organ and tissue engineering (TE) [1–4].
This technology aims to deposit multiple biomaterials, growth factors, and living cells with precise
control over their compositions, spatial distribution and architecture [5]. Since the appearance of
the first bioprinting studies in 2003 introduced by Wilson and Boland [6], the field has experienced
a growing interest by the scientific community in the last decade. The rapid increase in the number of
related publications provides evidence of this tendency (Figure 1).

Today, allograft organ transplantation is still the only therapy effective against organ failures, but
relatively simple implantable tissue constructs have been printed and successfully transplanted into

Materials 2018, 11, 1402; doi:10.3390/ma11081402 www.mdpi.com/journal/materials

http://www.mdpi.com/journal/materials
http://www.mdpi.com
https://orcid.org/0000-0001-7126-9275
https://orcid.org/0000-0002-5642-0536
https://orcid.org/0000-0001-6227-075X
http://www.mdpi.com/1996-1944/11/8/1402?type=check_update&version=1
http://dx.doi.org/10.3390/ma11081402
http://www.mdpi.com/journal/materials


Materials 2018, 11, 1402 2 of 19

animal models [7]. These works bring great hope for those patients who are looking for alternatives
to the organ transplantation methods. Looking forward, the challenge remains of how to reproduce
the complex cellular organization and micro-environment of an entire solid organ. This is still well
beyond the capabilities of currently available bioprinting technologies [8].
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Three main bioprinting technologies have been developed: inkjet-, laser- and microextrusion-based
bioprinting (MEBB) systems. Each of them has been utilized in several biological applications,
offering different features in terms of cell viability, deposition speed, print resolution, scalability,
cost or materials compatibility [9]. MEBB is the most extended technology because of its versatility
and fast deposition of a wide range of bioinks, which enables the rapid generation of large-scale
constructs [10–12]. Although excessive printing pressures could reduce cell viability, it is an excellent
method for depositing high cell densities in several candidate bioinks [13]. The bioinks can be
defined as formulation of biomaterials, biological molecules and cells processed using bioprinting
technologies [14,15]. Most of the studies in 3D bioprinting have traditionally been limited to the use
of one or two bioinks at one time, which is perhaps an oversimplification that limits the structural,
material and biological potential of this technology [16].

Employing multiple building and sacrificial biomaterials and cells types in a single biofabrication
session seems to be the right way of addressing the complexity of organ engineering and producing
outstanding advances in the field [17–19]. Multi-material bioprinters have recently been developed
by several research groups [7,11,12,20–22]. These bioprinting systems normally incorporate up to
three or four printheads to perform multi-material extrusion like the open-source solution utilized by
the authors in this study. To the best of our knowledge, advances in multi-material bioprinting will
enable researchers to integrate intricate perfusable channels inside of complex shape constructs, and
create constructs with several different cell densities, among other advantages. A more detailed study
in multi-material bioprinting [8], using stem-cell-laden bioinks, alongside a network of reinforcing
poly(ε-caprolactone) (PCL), led to the biofabrication of so-called developmentally inspired templates
of bone tissue microfibers.

All of this cannot be accomplished without answering fundamental questions such as the ideal
properties of the bioinks and the relationships between the bioprinting process parameters and the
print resolution and fidelity [13]. In the case of MEBB, some previous research studies have correlated
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bioprinting parameters and printed outcomes. Wang et al. showed that optimized printing parameters
such as bioink concentration, nozzle speed and extrusion rate produced poly(lactic-co-glycolic acid)
(PLGA) scaffolds [23]. Mixtures of Gel-Alg were investigated by He and his coworkers to find the
optimal values of air pressure, feed rate, and layer height to assure proper printing quality [13].
Suntornnond et al. used poloxamers to develop a mathematical model to correlate print resolution
with process parameters [24]. Similarly, a prediction model was obtained by Trachtenberg et al. to
determine the suitability of poly-propylene fumarate for MEBB [25] while Ting et al. examined the
effect of PLGA composition and printing parameter on print resolution [26]. However, today, there
is no a definite method to calibrate multi-material 3D bioprinters as well as to determine their final
print resolution. Understanding how parameters such as printing speed and nozzle height affect the
print resolution is vital not only for the shape of the printed constructs but also for their mechanical
properties. When encapsulating cells, selecting the optimal printing parameters will reduce the adverse
effect of the viscoelastic stresses on the cell viability [27,28].

In this paper, we advance in the development of the multi-material 3D bioprinting by proposing
a method that analyzes the influence of the main printing parameters and accurately controls the print
resolution. We anticipate that a significant increase on printing speed and quality of the constructs
using the multi-material bioprinter is due to the use of an automatic calibration system. Poloxamer 407
(P407) hydrogels with different fluorescent inks were printed into different complex constructs for
finding the optimal printing parameters. This allowed us to emulate the bioprinting of four materials,
but, at the same time, also remove other secondary factors such as excessive swelling or temperature
dependence. The proposed method was also tested printing a mixture of gelatin-alginate (Gel-Alg),
a more cell-friendly bioink. Cell-laden Gel-Alg and P407-based bioinks were printed in a single session.
After printing, cell viability of stem cells embedded in the Gel-Alg was analyzed to verify the effects of
the calibration. The results demonstrated that our proposal has huge potential to help in creating large
multi-material 3D constructs and potential vascular networks for tissue engineering.

2. Materials and Methods

2.1. Bioprinting System Incorporating Four Printheads

The experiments were performed using a desktop open-source 3D printer Witbox 2 (BQ, Madrid,
Spain) modified for extruding hydrogels at 24 ◦C (Figure 2a). The mechanical resolution of the 3D
printer is up to 20 µm according to the manufacturer’s specifications. The Witbox 2 movements
follow a Cartesian dimensional coordinate system, in which the printheads are moving across the
xy horizontal plane while the printing platform only moves vertically (z-axis). The Witbox 2 was
modified by substituting the standard fused deposition modeling nozzle in the x-carriage for four
pneumatic-based MEBB printheads (Figure 2b,c). The four printheads’ movements are controlled using
open-source Rumba electronics (Reprap Universal Mega Board with Allegro driver; RepRapDiscount,
Hong Kong, China).

The printing pressure of the four printheads can be independently adjusted using individual air
pressure regulators (ARP20K-N01BG-1Z; SMC, Tokyo, Japan). Hydrogel deposition in each printhead
is controlled by opening and closing the solenoid valve (VT307-6DZ1-01F-Q; SMC, Tokyo, Japan)
connected to the metal-oxide-semiconductor field-effect transistor (MOSFET) terminals of the Rumba
controller board.
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2.2. G-Code Generation and Printing Software

The software employed to control the modified bioprinter and the bioprinting process was
comprised of several tools. First of all, a modification of Marlin firmware (v1.1) was loaded into the 3D
printer main board [29]. The modified firmware allowed us to manage and coordinate all the activities
of the 3D printer, including the movement of the four printheads and the deposition of the bioinks.

A computer-aided design (CAD) software (SolidWorks; Dassault Systems, v2016) was utilized to
create the 3D models for bioprinting and generate the final stereolithography (STL) files. The open-
source slicing software Slic3r (v1.2.9) [30] was utilized for G-code generation. Slic3r is mainly
utilized in FDM and therefore it is not designed to operate pneumatic printheads. For that reason,
custom post-processing Perl scripts were required to transform the original G-Code to the particular
characteristics of the multi-material 3D bioprinter used. The four printheads moved according to G-code
instructions, depositing biomaterials where they were initially programmed. Finally, the G-code was
sent to the bioprinter using Repetier-Host (v1.6.2) software [31], which was also in charge of monitoring
the bioprinting process.

2.3. Multi-Material Bioprinting Procedure and Calibration

Figure 3 describes the procedure to prepare a 3D model for the multi-material bioprinting process.
This procedure starts opening the STL files containing the original geometry with the slicing software.
In case a multi-material printing process is desired, several STL files should be generated, each of them
assigned to the particular printhead that will print that part of the geometry. The assigning operation
is performed in Slic3r using the “Settings” button. Each STL file will be displayed in a list on the
left-hand side of the window and assigned to a specific printhead (Figure 4a).

When several printheads are assigned, the 3D model visualization will appear with a different
color for each printhead (Figure 4). If only one printhead is utilized, a single STL will be required.
Once the printing settings are introduced (deposition speed, infill pattern, number of perimeters, etc.),
the G-code is generated and sent to the 3D printer through the Repetier-Host.

xy offsets of the 3D printer utilized were configured according to Figure 5a. When using multiple
printheads, the original offset coordinates of the first printhead (P1) are set to zero (x = 0, y = 0).
Then, the xy offset coordinates of every additional printhead must be determined with respect to
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the coordinates of P1. Every offset must be entered in the slicing software to compensate for the
misalignments between the printheads. Depending on the particular printer used and the configuration
of its printheads, the values of the offset coordinates can be very different.Materials 2018, 11, x FOR PEER REVIEW  5 of 19 
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z-offset between various printheads also represents a crucial point for multi-material calibration
(Figure 5b). A z-homing push button was installed in the 3D multi-material bioprinter to perform the
automatic calibration of the z-offsets. This configuration allows us to use nozzles of different types and
heights. In addition, this automatic system reduces drastically the time required to start the printing
process because there is no necessity to perform any manual adjustment and the whole calibration
process is done at once.

2.4. Hydrogel Preparation

Poloxamer 407 (P407, Pluronic® F127; Sigma-Aldrich, Madrid, Spain) was prepared at 40 wt % by
weighing the quantity of polymer required and mixing in cold Milli-Q water at 4 ◦C. P407 powder
was added gradually to MilliQ water to facilitate the dilution and stirred vigorously for 3 h using
a magnetic stirrer at 4 ◦C. Once the solution was homogenized, it was centrifuged and stored overnight
at 4 ◦C to remove air bubbles. P407 prepared solutions were always stored at 4 ◦C until further use.

Gelatin from porcine skin (G1890; Sigma-Aldrich) and sodium alginate from brown algae (A0682;
Sigma-Aldrich) were dissolved in phosphate buffered saline (PBS) without salts at 10 wt % and 4 wt %
respectively. A solution of 5%Gel-2%Alg was prepared by blending. The pH of the solution was
adjusted to 7.2–7.4. Solutions were mixed using vortex and centrifuged at 1000 rpm for 1 min to
remove air bubbles.

Four different fluorescent dyes (see clear differences in fluorescence under UV light at the
Figure 2d) were utilized to improve the visualization of P407 and Gel-Alg (except in the case of
using cells to avoid cytotoxicity) bioinks: orange (1:100; IFWB-33; Risk Reactor, Santa Ana, USA), clear
blue (1:500; IFWB-C0; Risk Reactor), yellow-green (1:1000; IFWB-C8; Risk Reactor) and red (1:1000;
IFWB-C7; Risk Reactor).

2.5. Cell Isolation and Culture

Human adipose derived mesenchymal stem cells (hASCs) were isolated from lipoaspirates of
young healthy donors undergoing aesthetic surgery (from 18 to 35 years-old), following written
informed consent and Research Ethical Board approval by Clinica Isabel Moreno and Hospital General
Foundation, Valencia, Spain. Donors were previously screened for Human Immunodeficiency Virus
(HIV), hepatitis C and other infectious diseases. hASCs were expanded following the protocol
described by Escobedo-Lucea et al. [32] and harvested with Tryple® (Invitrogen, Carlsbad, NM,
USA) at 85% confluence.

2.6. Bioprinting Cell-Laden Constructs Using Gel-Alg Blends

hASCs were mixed with the bioink (cell density of 106 cells/mL) by gentle pipetting to create
a homogeneous suspension that was transferred into a 5 mL Luer-lock syringe (Nordson EFD, Alfafar,
Spain) and closed with a piston (SmoothFlow; Nordson EFD). Extrusion was performed under
controlled air pressure. The cell-laden bioinks were deposited into class slides through a 25G tapered
nozzle (Nordson EFD) at a printing speed of 15 mm s−1. The 3D-printed constructs were finally
crosslinked in 3 wt % calcium chloride (CaCl2; Wako, Tokyo, Japan) for 6 min and then washed three
times with phosphate buffer (PBS) and replaced with growth medium, Dulbecco’s modified Eagle’s
medium (DMEM, Invitrogen) supplemented with 6% human serum.

2.7. Cell Viability Assay

Cell viability in the printed constructs was assessed by live/dead assay (R37601; Life Technologies,
Carlsbad, NM, USA) according to manufacturer’s instructions. Briefly, after printing, and crosslinking,
samples were washed three times with PBS, stained with live green (A) (Calcium-AM; 0.5 µL/mL)
and dead red (B) (ethidium homodimer; 2 µL/mL), and incubated for 15 min at RT. Fluorescence
images of printed samples were captured 1 h and 24 h after deposition under confocal microscope
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(Olympus FV1200, Olympus, Tokyo, Japan). Data are representative of the printed samples of four
layers stacked images.

2.8. Calibration Models for the Multi-Material Bioprinting Process

Two main calibration models were proposed to adjust the four printheads’ xy positions with
respect to each other and define the optimal printing pressure. These models aim to determine the
printability and final print resolution in multi-material bioprinting systems. The proposed calibration
3D models were designed using the CAD modeling software SolidWorks (Dassault Systems, v2016),
and exported as STL files. A detailed description and justification of the calibration models are given
in the following paragraphs:

• xy-offset pattern (calibration model 1): straight lines were printed in the x and y directions using
two different printheads (Figure 6a). xy offsets of the four printheads were calculated with regard
to the first printhead (P1). For that reason, half of the straight lines were printed using P1 and the
other half were printed using a different printhead (P2, P3 or P4).

• Zigzag path (calibration model 2): a continuous zigzag was printed using each printhead in other
to determine the correct printing pressure and speed (Figure 6b). An increasing distance of 20 µm
was separated between all of the lines (∆d) with a separation between lines ranging from 200 µm
to 500 µm. The optimal printing pressure was determined when all the printed lines did not
overlap and were printed forming continuous strands.
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Figure 6. Schematic illustration of the calibration models xy-offset pattern (a) and printing pressure
dependent zigzag path (b) where the distance d0 = 200 µm, and the variation ∆d = 20 µm.

Both calibration models were printed using 40 wt % P407 on 50 × 75 × 1 mm glass slides (Corning
Inc., New York, NY, USA). The P407 was loaded into 3 mL and 5 mL syringe barrels (Nordson EFD) at
4 ◦C and extruded at 24 ◦C. xy-offset calibration model was printed using tapered nozzles with three
different inner diameters: 200 µm (27G; Nordson EFD), 250 µm (25G; Nordson EFD) and 330 µm (23G;
Nordson EFD). The calibration model 2 was printed in a range of pressures from 12 psi to 20 psi and
speed from 5 mm s−1 to 25 mm s−1 using a 27G tapered nozzle.

2.9. Printing Performance Metrics

Printing accuracy was assessed utilizing the measurement of specific distances in printed
calibration models using ImageJ (NIH, Bethesda, MD, USA) [33]. Printed models were photographed
right after the printing process to prevent drying of the samples and potential deformations.

All of the micro-photographs of samples and additional videos of the printing process were taken
using a digital single-lens reflex (DSLR) camera (EOS 700D; Canon, Tokyo, Japan), placed on a firm
tripod and under controlled lighting conditions. Images of printed samples’ heights were taken using
a USB microscope camera (KKmoon 500×; Digital microscope, Shenzhen, China).
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3. Results and Discussion

3.1. Efficient Calibration for Multi-Material Bioprinting

Bioink P407 was used in the 3D bioprinter calibration, and the evaluation of the printing process.
This bioink was selected because of its stable nature, exceptional printability, adequate viscosity,
and low swelling [22,34]. Note that the P407 allows for evaluating the capabilities of any bioprinter
minimizing the influence of material properties and other secondary factors involved. All of the
properties mentioned facilitated the creation of complex architectures and their subsequent evaluation.

First, calibration model 1 was printed to perform a quick visual calibration of the xy offsets
in the four printheads utilized (Figure 7a–d). Calibration errors or deviations in both x and y axes
were measured simultaneously using the printed strand patterns of both axes (Figure 7c). After
printing, the patterns allowed the alignment of the printheads P2, P3, and P4 with respect to P1.
We considered either positive or negative misalignments in a range between 100 µm and 500 µm.
For instance, Figure 7b,d show clear x-axis misalignments of +200 µm and −500 µm, respectively. Once
the deviations are visually identified, the correction values can be introduced in the slicing software,
and the new G-code will correct the position of the printhead nozzles.
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Figure 7. Images of the printed xy-offset pattern calibration model between P1 and P2. (a) perfect
alignment between P1 and P2; (b) +200 µm x-offset of P2 respect P1; (c) overall picture of x and y
calibration models printed at the same time; (d) −500 µm x-offset of P2 respect P1; (e) alignment
accuracy in x and y axes measured for three different nozzle sizes (200 µm, 250 µm, and 330 µm); scale
bars: 2 mm.

The results of the xy alignment for three different nozzles are shown in Figure 7e. The increase of
the nozzle diameter produced a decrease in the alignment accuracies of both directions. These results
can be explained by the much thicker printed lines produced when using bigger nozzles. The same
observations, the smaller the nozzle diameter, the higher the line with resolution, were reported by
Suntornnond et al. evaluating pluronic F127 [24]. Therefore, it is preferable to perform the 3D printer
calibration with the smaller nozzle available. The light blue area indicates the limits for the 200 µm
nozzle in the x and y directions, which obtained the best results of the three nozzles. The maximum
alignment errors obtained for this nozzle were in a range from −23 µm to 18 µm in the x direction and
from −20 µm to 22 µm in the y direction. These values are sufficiently low and guarantee that the
alignment accuracy is at least of a similar order of magnitude to the mechanical resolution of the 3D
printer (20 µm).
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The layer-by-layer approach characteristic of additive manufacturing (AM) makes the thickness
of the printed layers became the primary factor defining the print resolution along the z-axis. When
the nozzle is too far from the platform, the printed layers will not adhere to the surface, creating
discontinuous strands, and the next layer will not be deposited adequately (Figure 8a). On the other
hand, if the tip is too close to the platform, it might lead to a clogging of the nozzle or a discontinuous
printing. In some research works, the 3D models are sliced into layers with a slicing height equal
to 70% or 80% of the inner needle diameter [26,35]. A lower layer height will result in fewer errors
between the layers, but longer printing times. Herein, we found that using a slicing height equal to the
nozzle diameter was beneficial when determining the effective deposition rate. Therefore, establishing
the right distance between the nozzle and the printing bed for the first layer is of vital importance for
avoiding further deposition problems.
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Figure 8. (a) scheme of the possible defects in the first layer calibration: nozzle too far from printing
platform and nozzle too close to printing platform; (b) images of the zigzag path calibration models printed
at a deposition speed of 15 mm s−1 for various printing pressures; scale bar: 1 mm; (c) quantification of
the number of filled spaces between strands in the calibration model 2 varying printing pressure and
deposition speed (green: good; orange: normal; red: bad; x: discontinuous printing).

The second calibration model or zigzag-path model was useful for determining the printing
pressure needed to produce strands of the desired diameter. The variation of the printing pressure in
Figure 8b for a fixed deposition speed of 15 mm s−1 produced strand widths of different dimensions.
As expected, an excessive printing pressure and a low deposition speed produced dramatically wider
strands that can eventually overlap (Figure 8c).

3.2. Print Resolution in Multi-Material Bioprinting

Extruded hydrogels usually result in spreading or diffusion from the initial shape as a consequence
of standing their weight and their slow gelation rates [13]. In addition, the printed strands are never
cylindrical, even if we use hollow cylinder-shaped nozzles. For these reasons, we decided to evaluate
the print resolution of printed P407 filaments by two dimensions: width and height. We measured
these two variables (Figure 9a,b) for different values of printing pressure and deposition speed to
identify the optimal printing setup.

We observe that pressure and speed are strongly correlated while working at intermediate
pressures (14–20 psi). However, the pressure is probably a more critical factor than deposition speed,
especially for the height of the filaments printed (Figure 9a). This is consistent with previous studies
on shear thinning hydrogels as the one performed by Trachtenberg et al. printing poly(propylene
fumarate) (PPF) [25]. They determined that fiber height and width decreased with increasing deposition
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speed and decreasing pressure. In addition, they also showed the higher effect of pressure with respect
to speed and that the interaction of both factors (pressure and speed) is of great importance.Materials 2018, 11, x FOR PEER REVIEW  10 of 19 
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Figure 9. Impact of the printing pressure and deposition speed when creating rectilinear filaments.
Quantification of the height (a) and width (b) of the printed filaments using 40 wt % P407 and a 27G
tapered nozzle. Data represents the mean and standard deviation of six different samples (n = 6);
(c–h) Representative photographs of different filaments printed at a constant pressure of 16 psi on
a cover glass while reducing the deposition speed from 30 mm s−1 to 5 mm s−1); scale bar: 500 µm.

When printing at very low pressures (12 psi), there was a limitation in the deposition speed
(around 8 mm s−1) for creating continuous filaments, much lower value than the 25 mm s−1 achieved
at the pressure of 16 psi. Discontinuous strands were usually generated when printing at higher
deposition speed (Figure 9c).

In general, strand width should be almost always greater than height when keeping constant
the value of the thickness layer (200 µm) because the nozzle tends to flatten the printed samples.
We hypothesized that optimal printing configuration would be that the filaments show similar height
and width values with a low swelling ratio. Figure 9a,b demonstrated that these conditions were
achieved for printing pressures of 16 psi and 18 psi, and deposition speeds of around 21 mm s−1 and
25 mm s−1, respectively. Using these parameters and 27G nozzles, the height and width of the strands
were very similar: (i) for 16psi was around 202 µm and 230 µm; and (ii) for 18 psi, the height–width
values were 219 µm and 238 µm, respectively. Finally, we would like to highlight that very high
pressure (20 psi) was a synonym of nonlinear response with too much bioink deposition and diffusion.
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3.3. Multi-Material Bioprinting of Complex Scaffolds and 3D Constructs

After the four printheads were calibrated in x, y, and z axes and the appropriate setup was found,
representative complex structures were printed to demonstrate the goodness of our proposed method.
Different bioinks were printed per each layer to study the accumulated misalignments that produce
heterogeneous patterns in the lattice scaffolds, and consequently the further reduction of the porosity.

Firstly, porous lattice structures composed of one bioink per layer were printed using two
printheads (two fluorescent bioinks). The lattice structures were printed using infill percentages
ranging from 10% to 35%. Low and medium infill percentages produced homogeneous patterns across
the xy plane (Figure 10a–d) because of the successful calibration method. Nevertheless, the higher the
infill percentage, the less homogeneous the pattern is. In that case (Figure 10e,f), there was a difference
between the theoretical pore area designed and the total pore area printed. The printed pore area was
smaller than the theoretical one, similar to what He et al. reported [13].

After printing the first layer, the second layer became a weight load to the first layer at the
intersection. In addition, and as explained by [13], the radial diffusion of the upper hydrogel layer on
the lower one at the intersections produced a radial narrowing of the pore. As a result, we obtained
more rectangular-shaped pores than squared ones. These observations were more evident when the
infill density was between 25% and 35% (Figure 10d–f). The limiting higher infill percentage seems to
be 30%, with only a few overlapping areas observed. Therefore, we demonstrated that conducting
an accurate calibration process is a guarantee of the integrity of the structures created layer-by-layer.

Materials 2018, 11, x FOR PEER REVIEW  11 of 19 

 

values were 219 μm and 238 μm, respectively. Finally, we would like to highlight that very high 
pressure (20 psi) was a synonym of nonlinear response with too much bioink deposition and 
diffusion. 

3.3. Multi-Material Bioprinting of Complex Scaffolds and 3D Constructs 

After the four printheads were calibrated in x, y, and z axes and the appropriate setup was found, 
representative complex structures were printed to demonstrate the goodness of our proposed 
method. Different bioinks were printed per each layer to study the accumulated misalignments that 
produce heterogeneous patterns in the lattice scaffolds, and consequently the further reduction of the 
porosity. 

Firstly, porous lattice structures composed of one bioink per layer were printed using two 
printheads (two fluorescent bioinks). The lattice structures were printed using infill percentages 
ranging from 10% to 35%. Low and medium infill percentages produced homogeneous patterns 
across the xy plane (Figure 10a–d) because of the successful calibration method. Nevertheless, the 
higher the infill percentage, the less homogeneous the pattern is. In that case (Figure 10e,f), there was 
a difference between the theoretical pore area designed and the total pore area printed. The printed 
pore area was smaller than the theoretical one, similar to what He et al. reported [13]. 

After printing the first layer, the second layer became a weight load to the first layer at the 
intersection. In addition, and as explained by [13], the radial diffusion of the upper hydrogel layer on 
the lower one at the intersections produced a radial narrowing of the pore. As a result, we obtained 
more rectangular-shaped pores than squared ones. These observations were more evident when the 
infill density was between 25% and 35% (Figure 10d–f). The limiting higher infill percentage seems 
to be 30%, with only a few overlapping areas observed. Therefore, we demonstrated that conducting 
an accurate calibration process is a guarantee of the integrity of the structures created layer-by-layer. 

 

Figure 10. General and detailed views of porous lattice structures printed with two bioinks and two 
printheads. Each bioink was used in a different layer. The G-code was generated using the slicing 
software with the infill percentages: 10% (a), 15% (b), 20% (c), 25% (d), 30% (e) and 35% (f). The 
printing pressure and speed utilized in all the cases were 16 psi and 15 mm s−1, respectively; scale 
bars: 2 mm (general views) and 500 μm (detailed views). 

  

Figure 10. General and detailed views of porous lattice structures printed with two bioinks and
two printheads. Each bioink was used in a different layer. The G-code was generated using the slicing
software with the infill percentages: 10% (a), 15% (b), 20% (c), 25% (d), 30% (e) and 35% (f). The printing
pressure and speed utilized in all the cases were 16 psi and 15 mm s−1, respectively; scale bars: 2 mm
(general views) and 500 µm (detailed views).

More complex lattice structures with fluorescent bioinks were printed using the four printheads
mounted in the bioprinter. Diagonal and rectilinear patterns (Figure 11a–d) were stacked successfully
into two different multi-material scaffolds (Figure 11g,k). The step by step stacking of the layers
is depicted in Figure 11e–g,i–k. As in the previous scaffolds, the fidelity at the central part of the
structures was better than that at the edges. The lack of accuracy near the edges was due to the
accumulation of material in the region where the lines change their angles, similar to the mistakes
reported by He et al. for single material extrusion [13]. Looking at the intersection point of the diagonal



Materials 2018, 11, 1402 12 of 19

structure (Figure 11h), we observed that the printheads in charge of dispensing blue and red hydrogels
were slightly deviated in the +x coordinate (according to Figure 7b). This effect was probably the
leading cause of the small dissimilarities in shape observed at the empty triangular areas. These
differences were consistent with the geometry tolerances of the structures due to the alignment errors
in the x-direction reported in the previous sections. In summary, both multi-material structures were
printed successfully due to the automatic calibration system used.
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Figure 11. Pictures of a complex porous structures printed using four printheads with parallel and
diagonal rectilinear patterns. Each fluorescent bioink was deposited in a different layer (a–d) with
a total of four layers stacked (e–g,i–k). Detailed view of the diagonal (h) and perpendicular lattice
structures (l); scale bars: 1 mm.

Regarding the rectilinear scaffold, the structure was created without overlapping areas (Figure 11i).
The diffusion of the upper layer toward the lower one was due to the gravity being more evident
than in the previous structure (Figure 11l). This effect is mainly related to the higher infill density
(or smaller pore area). Through the successful printing of these two complex scaffolds, the proposed
calibration methodology for multi-material bioprinting was verified. We believe that this approach
will allow precise control of the deposition of various hydrogels and cell types for the fabrication of
more biomimetic tissue structures.

Another CAD computer model (Figure 12a), which entails greater complexity compared to the
previous structures (Figures 10 and 11), and thereby more calibration requirements, was printed using
four fluorescent bioinks (Figure 12b). The model is a lattice structure formed by parallel rectilinear
strands, each one with its particular bioink color (Figure 12c). We checked the existence of overlaps or
empty spaces between the strands as a sign of an erroneous calibration across the xy axes. The overlaps
with excessive material accumulated tended to break the continuity of the strands of the next layer
(Figure 12e), whereas the errors in the calibration process produced distinct gaps between the parallel
strands (see the blue filament in Figure 12d). On the other hand, if the xy offsets of the four printheads
were correctly determined, the strands were printed without being merged as shown in Figure 12f.
Note that the slicing of the 3D models took into account the swelling ratio of the hydrogel P407
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(Figure 12a). This ratio was estimated at 100 µm per strand. Therefore, the initial diameter in the
computing model needed to be 200 µm to obtain printed strands of 300 µm without overlapping.
We conclude that the structures printed are an excellent example of correct calibration cases.
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Figure 12. Pictures of a complex porous structure printed using four printheads and rectilinear patterns.
The four printheads deposited dyed P407 in the same layer with a total of two layers stacked. General
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Kang et al. [7] proved the immense potential of these kinds of lattice constructs (Figure 12b)
to produce mandible bone and ear-shaped cartilage using cell-laden bioinks side-by-side with PCL
to ensure the mechanical strength of the printed constructs. In this paper, we followed a similar
approach regarding the MEBB system with four printheads but avoiding the proprietary nature of
their multi-material bioprinter. Similar geometries with several bioinks printed right next to the
other using parallel rectilinear strands (Figure 12c) but not in a lattice construct were fabricated
by Lui et al. [12]. However, their approach incorporates an array of bioink reservoirs routed to
a single printhead instead of our multiple and separate printheads. An advantage of the Lui et al.
system is that it can eject the bioinks in individually or simultaneously, but it is limited to the use of
a single nozzle, which restricts the ability to print hydrogels with very different viscosities. Other
multi-material bioprinters such as the 3D-Bioplotter (EnvisionTEC, Gladbeck, Germany) incorporates
a mechanism designed to exchange the printheads, which gives flexibility but increases the cost and
complexity. Multiple bioinks can be printed in the same 3D model, but increasing the total printing
time significantly. Although commercially available 3D bioprinters from EnvisionTEC and RegenHU
can assure mechanical resolutions up to 1 µm and 5 µm, respectively, we demonstrated that our system
with limited mechanical precision also produced complex structures with enough accuracy for tissue
engineering applications [16,25,26,35,36].

Another CAD model to show the potential of a well-calibrated multi-material 3D bioprinter for
generating complex structures is depicted in Figure 13. The model represents a human heart section
where each of the parts consisted of a single perimeter and a porous infill at 15% printed in two layers.
All of the printing trajectories, either for the perimeter or the porous infill (Figure 4b,c), were generated
automatically by the slicing software, which greatly facilitated the printing process. We proceed with
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the following printing sequence: orange (P1), blue (P2), green (P3) and red (P4), but this ordering can
be easily changed.
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Figure 13. Complex multi-material printing of model that represents a human heart section. The model
is composed of heterogeneous bioinks to demonstrate the multi-material capabilities of our system.
(a–d) printing of the main parts of the heart section separately; (e) combination of the multiple parts
using the four bioinks in a complex structure; scale bars: 5 mm.

The CAD model of the heart section has curvilinear geometries that create complex trajectories
than previous models (Figure 12) based on straight lines. These geometries increased the number of
print errors detected. For instance, blue (Figure 13c) and green (Figure 13d) bioinks overlaid the thin
middle sections of the heart printed of orange bioink (Figure 13b). Better calibration procedures might
avoid these defects by incorporating the effect of the bioink swelling during CAD models generation.
Liu et al. printed a very similar geometry of the human heart section using their multi-material platform
described before [12]. We obtained similar results with our constructs showing good demarcation
among adjacent materials.

Cell-laden Gel-Alg and P407 bioinks were printed in a single session creating multi-material
constructs (Figure 14). Gel-Alg represents a more challenging material regarding printability when
compared to P407. Consequently, the printed strands were not straight and the openings were irregular,
reducing the pore area (Figure 14a). Other authors also reported complications when printing Gel-Alg
mixes. Paxton et al. attributed the weak printability to the lower yield stress point of Gel-Alg
blends [35]. Despite this, we were capable of calibrating the bioprinter and obtaining the proper
printing parameters to create complex constructs from the CAD models in a single multi-material
session (Figure 14b–d). High cell viability in the bioprinted Gel-Alg constructs (Figure 15a) was
also ensured at 1 h and 24 h post-printing (Figure 15b,c). These observations demonstrated that our
calibration method using P407 was helpful in adjusting some printing parameters to specific values
that did not reduce cell viability after bioprinting cells with another hydrogel, Gel-Alg blends.
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networks [22]. It should be pointed out that the constructs presented in this section were printed 
using only 40wt % P407 hydrogels colored with different dyes. This does not diminish the 
widespread of the solution proposed for multi-material bioprinting. Pillars were printed moving the 
printhead on the z-axis and keeping constant the xy-coordinates. When printing one pillar, and prior 
to the printhead movement in the z-direction, the tip of the nozzle was placed at 200 μm from the 
glass slide and the solenoid valve was opened a waiting time of 500 ms. Within this time, the P407 
started to flow and permitted to deposit an excess of material in the base of the pillar, in order to give 
it more stability (Figure 16d). If no waiting time was utilized, a weaker pillar base was produced, 
decreasing the structure stability. Once the nozzle extruded the pillar moving to the desired height, 

Figure 14. Complex multi-material structures printed. Gel-Alg and P407 bioinks were printed using
25G and 27G tapered nozzles, respectively. (a) general view of a 2-layer porous lattice structures printed
with Gel-Alg (left, green for printhead 1 and blue for printhead 2) and P407 (right, green for printhead
3 and red for printhead 4) bioinks; (b) general view of circular lattice structure with the inner circle
printed in Gel-Alg (green for printhead 1 and blue for printhead 2), and the outer circle printed in P407
(green for printhead 3 and red for printhead 4); general (c) and side view (d) of an 8-layer porous lattice
with alternating layers of Gel-Alg and P407. Sequence of colors: Gel-Alg (orange), Gel-Alg (blue), P407
(green) and P407 (red); scale bars: 2 mm.
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Figure 15. (a) general view of 2-layer porous lattice structure printed with Gel-Alg bioinks and two
printheads. Each bioink was utilized for a different layer using a 25 G nozzle (scale bar: 2 mm).
(b,c) Representative confocal images of cell viability assay of printed hASCs using the same Gel-Alg
mixture and printing parameters than that of (a) but without fluorescence inks at 1 h (b) and 24 h
(c) post-printing (scale bars: 200 µm).

3.4. Multi-Material Printing of Complex 3D Vascular Networks

Several tests were performed to produce pillars (vertical strands) and hanging bridges between
them using P407, similar to the fugitive structures printed by Kolesky et al. that mimic vascular
networks [22]. It should be pointed out that the constructs presented in this section were printed
using only 40wt % P407 hydrogels colored with different dyes. This does not diminish the widespread
of the solution proposed for multi-material bioprinting. Pillars were printed moving the printhead
on the z-axis and keeping constant the xy-coordinates. When printing one pillar, and prior to the
printhead movement in the z-direction, the tip of the nozzle was placed at 200 µm from the glass slide
and the solenoid valve was opened a waiting time of 500 ms. Within this time, the P407 started to
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flow and permitted to deposit an excess of material in the base of the pillar, in order to give it more
stability (Figure 16d). If no waiting time was utilized, a weaker pillar base was produced, decreasing
the structure stability. Once the nozzle extruded the pillar moving to the desired height, an additional
waiting time of 1 s was considered to allow the column to stabilize. After that, the nozzle was raised at
a fast speed (25 mm s−1), a distance 2 mm higher than the pillar height to improve its verticality. There
was a limit in the column heights that could be achieved without losing verticality.
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Figure 16. (a,b) complex vascular 3D networks printed in P407; (c) evaluation of the stability of 3D
printed vertical pillars for a fixed height of 8 mm. Printing pressure ranging from 13 psi to 17 psi and
deposition speeds ranging from 0.5 mm s−1 to 4 mm s−1. The data inside the figure represents the mean
of pillars diameter (in µm) of six different samples (n = 6); (d) side view of 3D printed 4 mm height
pillars; (e) vascular structure printed at two different heights (2 mm and 5 mm) with interconnected
bridges; scale bars: 1 mm.

Different printing pressures (13 psi to 17 psi) and deposition speeds (0.5 mm s−1 to 4 mm s−1)
were tested, producing pillars with different diameters and stability (Figure 16c). A constant pillar
height of 8 mm was set for all the vertical pillars printed with a 27G nozzle. As expected, the lower the
speed and the higher the pressure, the larger the diameter of the pillars extruded. Regardless of the
pressure and the speed utilized, pillars with diameters above 814 µm always remained stable while
pillars with diameters between 678 µm and 762 µm tended to bend slightly losing their verticality.
Above these diameters, pillars collapsed utterly touching the glass slide.

Regarding the hanging bridges between the pillars, the deposition speed on the xy-plane and
the distance between pillars have a direct influence on the straightness of the bridge (Figure 16a).
To generate continuous straight strands (Figure 16b,e), pillars were spaced up to 4 mm while the
deposition speed was set at 7.5 mm s−1. When faster deposition speeds were utilized for the bridges,
the pillars tended to collapse by the impact of the deposited strands. In general, the samples printed
demonstrated excellent results for maximum heights of 8 mm to 10 mm.

If different materials or even the same material but in different concentrations are used to print
this type of vascular 3D networks, it would be first necessary to evaluate the stability of the vertical
pillars for different process parameters, as shown in this section (Figure 16c). Then, the next step
would be to find the optimal deposition speed for the hanging bridges. These types of constructs
were tested by Ribeiro et al. [36] printing poloxamer-poly(ethylene glycol) (PEG) blends at different
concentrations (poloxamer/PEG: 30%, 29/1%, 28/2%, 27/3%, 26/4% and 20%.). They found that
higher concentration of P047 led to a decrease in bridge sagging, which coincides with our observations
at higher concentrations of poloxamer.
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We agree with He et al. [13] that the ideal multi-material 3D bioprinter for tissue engineering
applications should be high throughput, ease of use, with excellent print resolution, and capability
of dispensing multiple bioinks with different viscosities. Even if some of the commercially available
bioprinters incorporate all these specifications, the authors would like to stand up for the open-source
bioprinters. This equipment can provide all discussed advantages plus avoiding the proprietary nature
of the commercial ones. Indeed, our open-source 3D printing platform was capable of achieving
high accuracy and cell viability in multi-material bioprinting with a relatively lower cost than other
commercial units.

3.5. Limitations of the Calibration Method in the Multi-Material Bioprinting Proposed

From a mechanical perspective, the calibration of the four printheads depends on the P1 printhead
stability, and errors on the P1 are propagated to the other printheads. Similarly, a proper leveling
of the printing platform is essential for a successful calibration of the z-offset, which becomes even
more significant when printing large 3D models. Another limitation of our calibration method is the
intrinsic xy-offset tolerance that depends on the predefined separation of the printed lines of the pattern
proposed called calibration model 1. We assume that our results could dramatically change when
printing with very different nozzle diameters or even depending on the material when swelling after
printing and the strands’ straightness are not the ideal ones. Moreover, different human errors could
cause incorrect choices in the visual identification of the best-aligned pair of strands. Potential users
must consider all the tolerances and mistakes mentioned when determining the final print accuracy
of their equipment. Concerning the structures printed, critical locations such as sharp corners still
need more effort to identify the proper changes in the printing pressure and deposition speed to avoid
an excessive accumulation of materials in those areas.

4. Conclusions

The use of multiple cell types and biomaterials is essential to recapitulate the architecture,
mechanical strength, and complexity of human tissues. In 3D bioprinting, maintaining the print
resolution along the layer-by-layer manufacturing process offers greater stability when creating thick
self-supporting tissue constructs. We presented a non-expensive and useful calibration method
applicable to multi-material 3D bioprinting. The particular multi-material 3D bioprinter herein used
was a desktop 3D printer modified to incorporate four independent MEBB printheads.

The base bioink employed for calibration due to its remarkable stability was P407 hydrogel mixed
with four fluorescent dyes. Our calibration procedure is exportable to any bioprinting system, but it is
strongly recommended to use an automatic z offset system to reduce the configuration time drastically.
Parameters such as the printing pressure, deposition speed, nozzle height, and nozzle diameter were
evaluated from the experimental results to obtain the optimal printing conditions.

Multi-material constructs were printed in different combinations of P407 and Gel-Alg bioinks. In
addition, complex multi-material 3D models and intricate vascular networks were created assessing the
final accuracy and printing precision of the bioprinting platform. Cell viability after printing cell-laden
Gel-Alg bioinks was also verified with successful results. Future works will explore the creation of
more complex tissue constructs with different biomaterials and cell types. Other technologies such
as drop-on-demand bioprinting could also benefit from the method proposed. Future works could
consider the use of different bioprinting technologies to demonstrate the potential and universality of
the proposed multi-material calibration method.
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