The potential of global peatland rewetting for climate change mitigation

Paavo Ojanen & Kari Minkkinen
University of Helsinki, Department of Forest Sciences
paavo.ojanen@helsinki.fi
Peatlands, drainage and climate

• Peatlands have accumulated a huge carbon (C) storage as peat
 • ca. 500–600 Pg C (vs. 800 Pg C in the atmosphere)
• Peat C storage is vulnerable
 • high water table (WT) protects the C storage
 • land-use typically means lowering of WT by drainage (ditching)
 => gradual loss of peat C
• 1. Peat C storage needs to be actively protected
 • careless land-use can lead to a big increase in the atmospheric C content
 => long-term (centennial) climate goals require peatland protection
• 2. Greenhouse gas emissions need to be reduced
 • peatlands have been drained for agriculture and forestry
 • drainage causes CO₂ and N₂O emissions from soil to the atmosphere
 => short-term (decadal) climate goals require emissions reductions
Area estimate of drained peatlands

Equals to

• 2% of the Earths land area
• ca. 7% of the Earths peatland area

Rather conservative estimates based mainly on National Inventory Submissions 2017 for boreal (6 countries) and temperate (29 countries) climate zones.

Other sources: Renou-Wilson et al. 2018 & David Wilson (Ireland), Chris Evans & Rebekka Artz (Great Britain), Andis Lazdiņš (Latvia), Björn Hånell (Sweden), Lise Dalsgaard (Norway), Kristiina Regina (Finland), Yearbook Forest 2016 (Estonia)

For the tropical zone, Malaysia, Indonesia and China are included, sources: Miettinen et al. (2016), Jyrki Jauhiainen and Strack et al. (2008)
Emissions from soil in CO₂ equivalents (GWP₁₀₀)
(based on IPCC (2014) emission factors for CO₂, CH₄ and N₂O updated by Wilson et al. 2016 for rewetted soils)

At the current, drained state

If rewetted

Huge emissions (ca. 25% of LULUCF) that could be greatly reduced!
Time for action?

• Let’s rewet all the drained peatlands
• It’s not easy, but we can do it in maybe 20 years if we really try

• Let’s calculate the effect on climate!
 • instead of drained peatlands we have an increasing area of rewetted peatlands continuously exchanging greenhouse gases between soil and the atmosphere
Radiative forcing scenarios for rewetting soils

- \(\text{GWP}_{100} \) does not reveal the temporal dynamics of the effect on climate
- need to calculate radiative forcing time series
- different gases have different radiative efficacies and lifetimes (Myhre et al. 2013)
- increasing \(\text{CH}_4 \) emissions offset part of the decreasing \(\text{CO}_2 \) and \(\text{N}_2\text{O} \) emissions

<table>
<thead>
<tr>
<th>Gas</th>
<th>Total radiative efficacy (10^{-13} \text{ W m}^{-2} \text{ kg}^{-1})</th>
<th>Atmospheric lifetime</th>
<th>Half-life (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO2</td>
<td>0.0176</td>
<td>22% of CO2</td>
<td>(\infty)</td>
</tr>
<tr>
<td>CH4</td>
<td>2.11</td>
<td>22% of CO2</td>
<td>273</td>
</tr>
<tr>
<td>N2O</td>
<td>3.58</td>
<td>28% of CO2</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>27% of CO2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH4</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N2O</td>
<td>84</td>
</tr>
</tbody>
</table>
Rewetting of tropical peatlands

We can safely promise immediate climate cooling!

\[
\text{Warming offset, \%} = -\frac{\text{RF(CH4)}}{\text{RF(CO2+N2O)}} \times 100
\]
Boreal and temperate grassland and cropland

Mostly cooling or no effect in the beginning!

NP/NR = nutrient poor/rich, DD/SD = deep/shallow drainage, BOR/TEMP = boreal/temperate
Boreal and temperate forest

Mostly warming or no effect for the first decades!

NP/NR = nutrient poor/rich BOR/TEMP = boreal/temperate
Total effect

Tropical peatlands and cropland and grassland important goals for rewetting! Boreal and temperate forestry-drained peatlands have negligible effect.
But not everything is negligible in the forest!

Average tree growth/standing stock at Finnish (boreal) forestry-drained peatlands
(National Forest Inventory, biomass expansion factor 0.7 Mg dry weight /m³ stem volume (Lehtonen et al. 2004))

<table>
<thead>
<tr>
<th></th>
<th>stem volume</th>
<th>CO₂ sink/storage in(to) tree biomass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tree growth</td>
<td>2–7.5 m³/ha/year</td>
<td>=> 2.6–9.6 t/ha/year</td>
</tr>
<tr>
<td>Standing stock</td>
<td>70–240 m³/ha</td>
<td>=> 90–307 t/ha</td>
</tr>
</tbody>
</table>

On the total area of boreal and temperate forestry-drained peatlands (10.6 Mha):

<table>
<thead>
<tr>
<th></th>
<th>CO₂ sink/storage</th>
<th>vs. Emission reduction (GWP_{100}) by rewetting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tree growth</td>
<td>28–102 Mt CO₂/year</td>
<td>14 Mt CO₂/year (14–50% of tree growth)</td>
</tr>
<tr>
<td>Standing stock</td>
<td>740–2550 Mt CO₂</td>
<td>14 Mt CO₂/year (50–180 years)</td>
</tr>
</tbody>
</table>

Trees beat the peat in the decadal time scale!
Conclusions

• At tropical peatlands, successful rewetting both protects peat C and causes immediate climate cooling => go for it!

• At boreal and temperate grasslands and croplands, successful rewetting protects peat C and is mostly cooling or has no effect in the beginning => reasonable!

• At boreal and temperate forests, successful rewetting protects peat C but is mostly warming or has no effect in the beginning => questionable!
 • Just letting trees to grow could be better in the decadal time scale!
 • Sacrifice the topmost peat layer for the short-term emission reduction?
 • Can we rewet and still keep a well-growing tree stand?
Literature

