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We present a computational model of intermittent visual

sampling and locomotor control in a simple yet representative

task of a car driver following another vehicle. The model has a

number of features that take it beyond the current state of the

art in modelling natural tasks, and driving in particular. First,

unlike most control theoretical models in vision science and

engineering—where control is directly based on observable

(optical) variables—actions are based on a temporally enduring

internal representation. Second, unlike the more sophisticated

engineering driver models based on internal representations,

our model explicitly aims to be psychologically plausible, in

particular in modelling perceptual processes and their

limitations. Third, unlike most psychological models, it is

implemented as an actual simulation model capable of full

task performance (visual sampling and longitudinal control).

The model is developed and validated using a dataset from a

simplified car-following experiment (N ¼ 40, in both three-

dimensional virtual reality and a real instrumented vehicle).

The results replicate our previously reported connection

between time headway and visual attention. The model

reproduces this connection and predicts that it emerges

from control of action uncertainty. Implications for traffic

psychological models and future developments for

psychologically plausible yet computationally rigorous models

of full natural task performance are discussed.
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1. Background
Much of human behaviour takes place in complex, uncertain, time-critical environments where errors

carry undesirable, even potentially catastrophic, consequences. Everyday examples include cooking,

childcare and traffic. The same is true of many professional activities such as piloting an aircraft and

most forms of sport. The apparent ease with which skilled individuals function in such environments

belies the sophistication required from the underlying cognitive and perceptual systems. These

requirements become apparent when artificial intelligence and robotic solutions are to be designed.

Tasks that proficient humans would deem almost trivial turn out to present formidable computational

challenges—one prime example being autonomous vehicles in normal traffic.

It is thus timely and important for cognitive science to further our understanding of the

underpinnings of our rather remarkable everyday performance. This can be achieved by

experimentation and modelling of extended, natural tasks representative of the real world. Driving is

one such domain, and in many ways an excellent model domain to study. It is a ubiquitous task in

modern society, exemplifies many fundamental perceptual–motor and attentional processes, and

representative tasks can be presented at various levels of complexity (e.g. from lane keeping on a

straight road to negotiating busy traffic or a sequence of bends at speed). What is more, among real-

world tasks it stands out in terms of the state of maturity of modelling: real chunks of human

behaviour can be understood quantitatively, and computational models can be developed that can

actually perform the same (sub)tasks as experiment participants. This is not the case for most

experimentally studied real-world tasks (such as making tea or sandwiches).

Following another vehicle on a road with no intersections or junctions is perhaps the simplest, and

therefore most understandable, common routine subtask in driving. It is also one of the most in-depth

modelled forms of real-world human behaviour, having received decades of interest from traffic

psychologists and vehicle/road engineers alike. Car following (CF) models have undeniable practical

importance in engineering roads for more efficient traffic flow and safety. But additionally, for basic

researchers interested in rigorous modelling of everyday behaviour, it also happens to be one of the

most constrained and stereotypical tasks that major parts of the population regularly conduct. This

characteristic, combined with the rich literature, makes CF a useful model environment for studying

more general mechanisms behind driving and other locomotor behaviours. In this paper, we present a

computational model of intermittent visual sampling and locomotor control in this simple yet

representative natural task.

1.1. Car following models and human factors
A car driver following another vehicle has been a subject of mathematical and computational modelling

for over half a century and the resulting CF models have been successful in capturing and explaining

various driver and especially traffic level phenomena (for review, see [1]). These so-called

microsimulation models typically model the driver as a stimulus–response system, where the driver

reacts to an observed situation by adjusting their speed. The reactions are usually modelled as

accelerations which are integrated over time to produce a trajectory of the vehicle.

A common criticism of these models has been that they overlook many known ‘human factors’ of

driving behaviour [2–4]. Many of these factors—e.g. limited perception accuracy, significant and

varying reaction times, imperfect control, fluctuations in attention and changes in motivation—have

been addressed in various CF models, especially in relatively recent developments (for a review, see

[5]). Some especially relevant work for the current article includes optically plausible perception

models [6–10]; models including temporally enduring cognitive state, such as memory [11,12]; models

including attentional mechanisms [8,13,14]; and stochastic formulations [6,8,15–17].

One commonality in most of these models is that they model the human factors in a somewhat ‘ad

hoc’ manner, i.e. they generally alter some input or output subsystem be more in line with what is known

about human psychophysiology, but do not base the behaviour on more general cognitive and

psychological mechanisms. This is perfectly reasonable for traffic engineering, where the traffic-level

phenomena arising from multiple drivers interacting is seen as the emergent effect and object of

interest. But this is in contrast to much of traffic psychology, where the focus is on driver behaviour

arising from underlying psychological mechanisms.

A notable exception are the CF models based on stochastic utility maximization, which frame the

driving process as a deliberate balancing of benefits gained from progress of the journey versus

potential disutility due to a crash, and are able to show that known driver-level and traffic-level

http://rsos.royalsocietypublishing.org/
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phenomena can emerge from this process [15,16]. Utility maximization models are also of interest in

connection to conceptual traffic psychological models, as they explicitly use the subjective estimate of

risk, which has long been a contentious topic in traffic psychology.
royalsocietypublishing.org
R.Soc.open

sci.5:180194
1.2. Traffic psychological driver models
For the benefit of the development of integrative models, the traffic psychology literature offers a number

of conceptual driver models. While not defined in rigorous mathematical formulations or implemented

computationally, these can be valuable for inspiration and analysis of the driving (sub)tasks. The

literature is rich and diverse, and we will here consider only the models that have most directly

contributed to the development of the present work.

Zero Risk Theory (ZRT) of Näätänen & Summala [18,19] was one of the first well-developed

psychological driver models and has been updated in a number of iterations [20–23]. Its key posit is

that driving is most of the time an automatic, routine task of controlling vehicle speed and trajectory

so as to maintain safety margins (such as lane position or time to line crossing, or following distance

or time headway to leading vehicle). These are kept at a level which simultaneously satisfies a motive

for making progress and remain in a subjective ‘comfort zone’. Importantly, to keep a sense of

control, a driver maintains an awareness of the state of the driving situation, called expectancy

(defined as ‘vivid, perception-like predictions’ [19, p. 188]), which is the basis for choosing control

actions. As long as the expectancy is satisfied, there is no need to deviate from current routine action,

and the situation is not experienced to involve subjective risk—hence the name Zero Risk Theory.

Expectancy violations occur when safety margins cannot be maintained within the comfort zone—

they are said to cross a risk monitor activation threshold—which is experienced as subjective risk, and

calls for modifying ongoing behaviour (viz. choosing to maintain larger safety margins).

Another theoretical line of inquiry is the so-called ‘risk control models’ [24–26], which posit that the

driving process emerges from continuously keeping subjectively estimated risk at some suitable, non-

zero level. In these models, the driver is assumed to continuously compute an estimate of level of risk

of a situation and act to bring it closer to the target level, e.g. speeding up when the estimated risk is

too low or slowing down when it is too high. Much of the discussion has been directed to how

different aspects, such as policy changes and safety equipment, affect the subjective risk. In the core

however they do, more or less explicitly, assume that the cost of perceived risk is balanced against

some perceived benefit, such as progress of the journey, to maximize some utility, which relates them

to the previously discussed utility maximization CF models.

The task–capability interface (TCI) model sidesteps the issue of risk by formulating the driving

process using demands of driving tasks and driver capabilities of conducting them [27]. Drivers

operate to maintain a preferred level of task difficulty which is a difference between perceived task

demand and capability. TCI has recently been given a computational expression to model effects of

distraction in CF models [13,14,28]. Pekkanen et al. [28], further, used the occlusion method of Senders

[29] (see also [30–32]) to investigate intermittency in visual sampling. A driver cannot be assumed to

expend continuous attention to the driving task, but more likely only samples the visual scene ‘just in

time’ and on a ‘need to know’ basis. This intermittency of attention can be considered as a

(voluntary) reduction of driving capability to respond to a situation (such as a secondary task), which

is compensated by a reduction in the task demand by increasing safety margins, so as to maintain a

constant level of task difficulty. Mechanistically, and directly relevant to the present model, control

during the occlusion has been considered to be driven, and more to the point sampling itself is likely

to be driven by accumulation of uncertainty in an internal model maintained in short-term memory

across samples. This type of internal model is posited in many theories, and slightly different versions

are called expectancy [19], ‘image’ [29] or ‘visual buffer’ [33].

When driver behaviour is analysed (quantitatively) in the traffic psychology literature, this is

usually done in terms of individual ‘perceptually available’ variables (e.g. time-to-contact, time-to-

line-crossing), on which control is directly based. For example, empirical studies may seek threshold
values of such variables where some psychological effect occurs or an action is initiated [11,34–36],

desired values (safety margins) drivers habitually maintain [28,37–41] or reaction times to unexpected

critical events [42–44].

A fundamental and well-known limitation of the approach of reducing complex behaviour into an

aggregate parameter, and then investigating whether various independent variables (e.g. manipulated

stimulus information, driver distraction, various human factors such as age, inebriation or drowsiness)

http://rsos.royalsocietypublishing.org/
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have a statistical effect on this single dependent variable is that it fails to sufficiently constrain hypotheses

to allow the development of mechanistic models [45,46].

The vehicle control and traffic simulation literature in engineering, on the other hand, provides

computational process models (reviewed in [47–49]). But they incorporate little about the limitations

of human sensory physiology and attention, or conversely, the power of memory and internal models

[3,50]. Combining the approaches for mutual benefit therefore seems desirable.
 ypublishing.org
R.Soc.open

sci.5:180194
1.3. Aims of the paper
In what follows, we make use of the formalisms of CF models, combined with findings and insights

from the fields of traffic psychology, psychophysics and cognitive science to propose a quantitative

computational model of driver’s internal state during the task of routine CF. In contrast to most

existing engineering models, we aim for psychological plausibility of the mechanisms underlying

control. In contrast to most psychological models, we use a rigorous mathematical definition, and

implement the model as a computational simulation.

Most CF models are based on the simplifying modelling assumption that in a single-lane road,

the driver’s speed control can be usefully approximated with a function of three scene variables: the

driver’s own speed, and the distance and relative speed to the leading vehicle [1]. Importantly, when

the speed adjustments of such a function are integrated over time, the resulting dynamical system

provides a mechanistic description of a driver’s actions and can quantitatively simulate (very

idealized) real-life human behaviour. Traditionally, these models are used in traffic engineering to

study traffic-level phenomena emerging from interaction of such agents. In this work, we however use

the CF setting to quantitatively model the underlying cognitive mechanisms in this ubiquitous real-

life task. In addition to longitudinal control, we model a mechanism for intermittent visual attention

during CF. Specifically, we model the driver’s cognitive system as a stochastic internal model

maintaining estimates of the relevant state variables, and uncertainty-driven top-down attentional

processes that update these estimates through perceptual input modelled in a psychophysiologically

motivated way.

Our main interest lies in control principles that are robust and flexible enough to generalize to other

driving subtasks and beyond, but we use the simple task of CF as the test case for model development.

The situation is already formally quite well understood, and can be effectively described in terms of a

few key state variables, and parameter values to constrain model behaviour are available from the

psychophysics and driver modelling literature.

Where the current model goes beyond most existing driver models is that it combines the following

features into one model:

(i) Complete task performance—i.e. the entire perceptual-motor loop—is modelled: the model both

controls the vehicle and performs active visual sampling to pick up the information.

(ii) To deal with intermittency in available visual information—inherent in natural driving behaviour

[51–53]—control is based on a stochastic internal representation (of the key state variables), rather

than on directly observed environment.

(iii) The internal representation is updated by noisy perceptual inputs that are based on a psychologically

plausible perception model (rather than the environment’s state being ‘directly available’ to the

model).

(iv) Visual sampling is driven by uncertainty in the underlying internal representation (cf. [29,54]).

The perhaps most crucial novel aspect of our model is that attention is driven by action uncertainty—i.e.

the need to be confident on what action to take—not perceptual or environment state uncertainty themselves.

Technically, this is an elegant solution to the problem of relevance: if a control rule is available, it already

includes the information of what is relevant for conducting the task. Conceptually, it embodies the idea

that the task of perception is to pick up information that is relevant for action, not necessarily for inferring

a complete and veridical ‘world model’.

For development, parametrization and empirical evaluation of the model we use data from a driving

experiment where 40 participants drove simplified CF scenarios in both a real car (on a test track) and

immersive virtual reality (VR) simulation. Intermittent allocation of overt attention was indexed with

self-paced visual occlusion [28,29,32]. We earlier reported a relationship between time headway and

occlusion duration in this setting [28], which we now replicate in more ecologically valid immersive

three-dimensional VR and real driving tasks, and go further to provide a possible mechanistic

http://rsos.royalsocietypublishing.org/
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explanation in terms of a fully implemented computational model. Limitations and future developments

of the model to cover more varied driving scenarios and other forms of real-world behaviour

are discussed.
2. Model description
The central assumption in our model is that—from the cognitive perspective—actions and perceptions

are based on an internal state representation, which keeps a stochastic estimate of the relevant

environmental state for the given task. The state representation is governed by prior assumptions

about both the environment’s dynamics and percepts induced by the environment. For an overview,

the model’s main components and their interactions are illustrated in figure 1, and a concrete example

of evolution of the internal state is shown in figure 2. The following sections describe the model first

from a conceptual, psychological perspective and each section concludes with a formal mathematical

presentation. Mathematically, the state estimation model is a sequential Bayesian filter (e.g. [55]), and

its parametrization and computational implementation as a particle filter are presented in §3.3.

2.1. State estimate and prediction
In the task of CF, we follow the usual assumption that at a given time instant t1 the relevant information

about the environment is reasonably well captured by three state variables: the driver’s own speed v[t],

distance to the leading vehicle d[t] and speed relative to the leading vehicle r[t]. The driver’s

stochastic estimates of these variables form the state estimate, which is modelled as a random vector

Ŝ[t] W (v̂[t], d̂[t], r̂[t]).
1We describe the model as a discrete time system in order to stay close to the implementation.

http://rsos.royalsocietypublishing.org/
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We assume for simplicity that the driver can do various transformations of and between these

variables exactly. More transformations are described in further sections, but importantly for the state

prediction, the transformations between relative speed and leader speed, e.g. v̂L[t] ¼ v̂[t]þ r̂[t], are

assumed to be available.

The driver has also a stochastic model of some of the environment’s dynamics, namely predicted

leader acceleration âL and an ‘efference copy’ �a[t� Dt] of the own desired acceleration at the previous

time instant (see §2.3), which the driver considers a noisy version of the actuated acceleration. The

driver’s and leader’s accelerations are used to update the estimate of the driver’s and leader’s speeds.

The relative speed is integrated to update the distance estimate. For simplicity, the integration is

assumed to be done exactly. Importantly for modelling intermittent visual sampling, this produces

state estimates even without sensory information from the environment.

The leading vehicle’s acceleration is predicted to be normally distributed: âL � N (0,s2
aL

). Own

acceleration is predicted as the efference copy acceleration, but corrupted in the actuation process by

normally distributed noise with standard deviation related to the acceleration’s magnitude:2

â � N (�a,(la�a)2). These are used to form the predicted state Ŝ
0
[t] at time t:3

Ŝ
0
[t] W (v̂0[t], d̂

0
[t], r̂0[t]), ð2:1Þ

d̂
0
[t] ¼ d̂[t�Dt]þ r̂[t�Dt]Dt, ð2:2Þ

v̂0[t] ¼ v̂[t�Dt]þ â[t]Dt, â[t] � N (�a[t�Dt], (la�a[t�Dt])2), ð2:3Þ

v̂0L[t] ¼ v̂L[t�Dt]þ âL[t]Dt, âL[t] � N (0,s2
aL

) ð2:4Þ
2The magnitude-related noise is formalization of an assumption that the efference copy prediction follows similar magnitude-related

precision as most other perceptual processes. Intuitively, it is assumed that outcomes of smaller control adjustments are predicted more

accurately than of larger adjustments. See §5.4 for further discussion of magnitude-related precision.

3The predicted state distribution S0[t] corresponds to the predicted estimate p(s[t]jz[t 2 Dt], . . ., z[0]) in the usual Bayesian filtering

notation, where z are observations and s[t] are realizations of the random vector S[t].

http://rsos.royalsocietypublishing.org/
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and

r̂0[t] ¼ v̂0L[t]� v̂0[t]: ð2:5Þ

2.2. Perception
After the new state distribution is predicted based on the dynamics, the prediction is ‘evaluated’ against

percepts. The evaluation can be seen as giving more weight to the states that ‘predicted’ the observed

percept better, while taking account of the inaccuracies of the perceptual system and what is known

about how the environment should behave.

The percepts do not have to, and do not, correspond exactly to the state variables nor their

representation. Instead, the state variables are related to the perceptual variables via various

transformations (see equations (2.6)). Distance to the leading vehicle d is related to the leading

vehicle’s angular projection f. The distance and speed relative to the leading vehicle r determine the

angular expansion rate vf, or ‘looming’. Own movement in a textured environment produces a visual

movement pattern, or optic flow, whose magnitude F is related to the landspeed v [56].4

The percepts are assumed to be noisy, and estimates of the noises’ distributions are assumed to be

available. These transformations are used to predict what percept values should be observed by

a given environment state configuration and the assumed noise distributions are used to weigh

how much the state distribution should be adjusted based on accuracy of these predictions. This

adjustment is done by optimally balancing the knowledge of the environment’s behaviour (i.e. the

predicted state) with the observed percepts using the Bayes theorem.

All of the perceptual noise distributions are Gaussian and constant in the percept space (see

equations (2.7)). Importantly, this means that the noise from the state variable perspective is not

constant, but depends on the (estimated) environment state (figure 3). For example, because the optic

flow percept F is assumed to be logarithmic with regard to the driver’s speed, the estimate of

the driver’s own speed deteriorates in its precision as a function of its magnitude. Similarly, as the

distance estimate is derived from the noisy angular percept, its precision deteriorates as the distance

gets longer. Furthermore, this is compounded for the relative speed estimate, which is estimated from

both estimated distance and perceived angular expansion, which both deteriorate as a function of

distance.

It should be stressed that the precision of the estimate at a given time instant is not determined solely

by the percepts available and the model’s estimation error is generally lower than that of ‘single percepts’

illustrated in figure 3. As the state estimation mechanism embodies knowledge about the relations

between the state variables, it can produce ‘cognitive estimates’ even without direct perception: for
4In reality, perception of even such a relatively simple scene takes account of a vast amount of cues. We have chosen this set of percepts

for simplicity and relatively straightforward compatibility with the state estimate. See §5.4 for further discussion.
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example, an ‘additional’ relative speed estimate is produced just by observing changes in distance. In fact,

especially the relative speed estimate is dominated by these ‘indirect’ estimates except at very close

distances due to the quite rapid deterioration with increasing distance of ‘direct’ estimates from the

angular expansion.

Formally, the driver’s perception includes optic flow magnitude F, angular width of leading vehicle f

and rate of change of the angular width vf. Perceptual variables are related to the environment using

following transformations:

Fw(v) ¼ log (v) fw(d) ¼ 2 tan�1 u
2(dþ d0)

vw
f (d,r) ¼ � 4ur

4(dþ d0)2 þ u2
, ð2:6Þ

where u is leading vehicle width and d0 is the driver’s distance from their vehicle’s front bumper, which

are both assumed to be known exactly by the driver. The driver further assumes its percepts are

corrupted by Gaussian noise:

F̂ � N (F, s2
F) f̂ � N (f, s2

f) v̂f � N (vf, s2
vf ): ð2:7Þ

The transformations and noise distributions are used to derive a likelihood function for an

observation given the predicted state, which includes all the percepts when the view is not occluded

(O[t] ¼ 0, see the next section) and only the optic flow otherwise (O[t] ¼ 1):

f((F,f,vf) j (v,d,r),O[t]) ¼ fN (F; Fw(v), s2
F)1�O[t]

� fN (f; fw(d), s2
f)1�O[t]

� fN (vf; vw
f (d,r),s2

vf ): ð2:8Þ

The posterior density Ŝ[t] is formed from likelihood of the measured observation z0[t] ¼ (F0[t], f0[t],
vf0[t]) and the predicted state estimate Ŝ

0
[t] using the Bayes theorem:

f(Ŝ[t] ¼ s)/ f(z0[t] j s,O[t])f(Ŝ
0
[t] ¼ s): ð2:9Þ

The resulting density f(Ŝ[t] ¼ s[t]) does not have a closed-form solution and is approximated using a

particle approximation scheme described in §3.3.2.
2.3. Acceleration distribution, uncertainty and attention
As illustrated in figure 1, the state estimate is used to continuously choose the appropriate action. The

primary action in the CF task is the acceleration, and we model the acceleration choice using a

traditional deterministic CF model of the form a(t) ¼ f(v(t), d(t), r(t)), where f is the CF model that

outputs an acceleration value for a given state. As the state estimate is a distribution of states,

applying the model produces a distribution of accelerations. To get the required single acceleration value

to output to the environment, we use the expected value of the distribution, although other central

tendencies could be equally plausible. For the acceleration model, we use the Intelligent Driver Model

(IDM) [57], although any other model of the aforementioned form could be used.

In the model, attention allocation is simulated using the self-paced visual occlusion setting, where the

driver’s view of the leading vehicle is blocked by an occlusion, which can be removed for a short period

of time tG (300 ms in the model and experiments) with the press of a button. This is taken to indicate that

the driver requires additional perceptual information because of uncertainty cumulating over the

occluded period [28,29,32].

The uncertainty in the acceleration distribution is used to control the attention. In other words, we

propose that the requirement for visual samples is driven by action uncertainty, i.e. uncertainty in what

is the proper acceleration for the situation, not perceptual or state uncertainty per se. We operationally

define this as the standard deviation of the acceleration distribution. Visual sampling is modelled as

removing the occlusion if the uncertainty rises above a threshold value (the individual’s uncertainty
threshold). Again, other uncertainty measures could be used, and in reality the sampling process in

humans is likely stochastic itself, and dependent on the subtasks at hand, as was proposed by

Johnson et al. [54]. (Of course, a more natural form of visual sampling would be to model gaze

behaviour instead of the proxy of the occlusion—but this would require oculomotor control on the

motor side, and the quality and quantity of peripherally available visual information to be explicitly

modelled as well).

http://rsos.royalsocietypublishing.org/
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Formally, the acceleration distribution â[t] is formed by transforming the state estimate via the

acceleration rule:

â[t] ¼ fIDM(v̂[t], d̂[t], r̂), ð2:10Þ

and the acceleration output is the expected value of this distribution �a[t] ¼ E(â[t]) and the acceleration

uncertainty is the standard deviation sâ[t] ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E(â[t]2)� E(â[t])2

q
. If acceleration uncertainty is greater

than the uncertainty threshold sw
â and the view is occluded, the driver removes (‘lifts’, L[t] at time t)

the occlusion O, so that the view is unoccluded for the next tG seconds:

L[t] ¼ 1 if sâ[t] . sw
â ^ O[t] ¼ 1

0 otherwise

�
ð2:11Þ

and

O[t] ¼ 0 if 9t0s.t. t� t0 , tG ^ L[t0] ¼ 1 ^ t = t0

1 otherwise.

�
ð2:12Þ
5:180194
2.4. Empirical evaluation
Given a leading vehicle trajectory, the model, when parametrized, can produce a longitudinal trajectory

the driver’s vehicle takes along with time instances when the driver lifts the occluder. Thus, we are

able to simulate the very same quantities that can be measured from human drivers in the experiment

(see below).

A complicating factor for empirical testing is that, even with numerous simplifying assumptions, the

model requires 13 driver specific parameters, of which seven are to parametrize the classical CF model.

All of these parameters are internal to the driver and related to internal processes, and thus are not

(directly) observable. However, thanks to the rich literature of both CF modelling and psychophysics,

we were able to use reasonable fixed estimates for 10 of the parameters and model driver-specific

variation with only three experimentally calibrated parameters.
3. Methods
3.1. Experimental methods
Two experiments were run, where longitudinal control and visual sampling were measured in a simple

CF task. The same task was performed in a real instrumented vehicle, and in a simulation in immersive

VR. For experimental control, the real car experiment was conducted on a test track, with the participant

following a lead vehicle driven by an experimenter according to a pre-designed protocol. Visual

sampling was measured by using the self-paced visual occlusion technique [28,29,32].
3.1.1. Participants

A convenience sample of 40 subjects (22 M, 18 F; age mean 34 years, s.d. 10 years, range 22–59 years)

were recruited through University of Helsinki and Aalto University mailing lists and personal

contacts. The 40 subjects were selected from a pool of 64 interested individuals to approximately

stratify sex, age and driving experience. The participants had held a driving license for an average of

15 years (s.d. 10 years) and had average self-reported kilometrage of 120 000 km (s.d. 150 000 km). The

participants were required to have had a driving license for at least 5 years or have accumulated at

least 30 000 km of driving.

The same participants conducted both the real and the simulated driving experiments. All

participants conducted the real vehicle experiment successfully. Three participants did not complete

the VR experiment due to discomfort.

All participants reported normal vision, and none reported strabismus or neurological diseases or

medication that could affect their eye movement behaviour.

The participants were compensated for their time and effort by a reward of 100 euros (before taxes).

http://rsos.royalsocietypublishing.org/
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3.1.2. Driving simulator

The driving simulator software was developed in-house and is available under an open source licence

(https://github.com/samtuhka/webtrajsim/tree/vrsim). The experiment was run in a fixed base

simulator set-up, comprising an HTC Vive VR headset (model OPJT100), a desktop computer (Corsair

Anne Bonny with Windows 10 OS, Nvidia’s GTX 1080 GPU, Intel’s i7 7700k CPU and 32 GB of

RAM), a distance-adjustable gaming chair (Playseat Evolution Alcantara, Playseats BV, The

Netherlands), and a steering wheel and pedals game controller (Logitech G920 Driving Force,

Logitech, Fremont, CA).

The VR headset had an approximate field of view of 1008, resolution of 1080 � 1200 per eye and a

refresh rate of 90 Hz. The subjects’ eye movements were recorded with Pupil Labs HTC Vive

Binocular Add-on (Pupil Labs UG haftungsbeschränkt, Berlin, Germany).

The simulated vehicle dynamics parameters were decided by informal pilot testing to give a

comfortable compromise of good controllability but not overly nervous responses.

3.1.3. Instrumented vehicles

The participant-driven vehicle was a Toyota Corolla 1.6 compact sedan (MY 2007) with a manual

transmission. The car followed was an instrumented Toyota Land Cruiser (M1G, 2007). The

participant-driven car was instrumented for measuring driver behaviour and physiology and

equipped with a brake and clutch pedal in the passenger footwell, so that the experimenter with a

full view of the track at all times would be able to intervene if necessary.

The occluder used in the occluded CF task was custom-made IG Smart Glass that cleared when

electricity was run through it (Switchable Toughened Glass 6 mm, Frosted White/Clear, Pro Display,

Intelligent Glass UK). The occluder was connected to and controlled by a computer that registered the

press of a control button on the steering wheel in such a way that the glass would clear for about 300

ms when the press-button was pushed, remaining opaque for the rest of the time (see electronic

supplementary material, videos).

The driver’s perspective of the scene was recorded, along with eye movements, using the scene

camera of a Pupil Labs Binocular 120 Hz head-mounted eye tracker (Pupil Labs UG

haftungsbeschränkt, Berlin, Germany). A custom-built headband was used to secure the headset more

firmly.

GPS data were gathered via a mobile phone (Samsung Galaxy II GT-I9100 with Android version

4.0.4) placed at the centre of the control panel. CAN-bus data were collected for vehicle speed and

accelerometer information. A laser scanner (IBEO Lux) mounted at the vehicle’s front was used to

measure distance from targets ahead. A Web camera (Logitech HD Pro Webcam C920) on the

dashboard recorded the scene ahead of the driver. All data sources were collected to a laptop (Lenovo

Legion Y520-15IKBN with Debian Linux operating system) and the data streams timestamped with

unix timestamp, using the in-house developed Trusas data collection system available under an open

source licence (https://github.com/jampekka/trusas-corolla).

3.1.4. Location and track

Both experiments were conducted at the Helsinki-Malmi Airport (N60.25148, E25.05138), which has been

decommissioned for commercial flights. An unused runway was used for the real car experiment, and a

dedicated room inside the terminal building was set up as a pop-up laboratory for the driving simulator.

The available runway had a length of approximately 500 m which was continuously driven back and

forth, turning around at each end (figure 4). The turns and transitional phases on the straights before and

after them were omitted from the analysis in order to get similar behaviour that would occur on a long

straight road.

3.1.5. Procedure

Two participants always began the experiment at the same time, and the real vehicle and VR experiments

were conducted in parallel. Upon arrival, each participant was randomly assigned either a simulator first,

real car second or a real car first, simulator second protocol by tossing a coin.

Participants filled a background information and informed consent form, and then proceeded to the

driving tasks. After completion of the first one of the tasks, which took about 45 min, a short rest period

http://rsos.royalsocietypublishing.org/


Figure 4. Aerial image of the airport runway used for the real car experiment. The red line shows the route driven continuously.
The thickened parts indicate the parts of the route used for analysis. Aerial image copyright City of Helsinki, CC-BY-4.0.

Figure 5. Participant view in the real car (top) and VR simulator (bottom) CF experiments with the occluder off (left) and on (right).
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was provided before taking the next part of the experiment. Altogether, including the breaks, the

experiment took about 3 h.

In the occluded CF task, a visual occlusion completely masked the driver’s view of the leading vehicle

(see figure 5 and electronic supplementary material, videos). In the VR experiment, this was a light grey

rectangle displayed on the windshield; in the real car experiment the occlusion device described above

was used. The participant could remove the occlusion by pressing a paddle shift lever in the steering

wheel (VR) or a button on the steering wheel (track). This permitted a 300 ms ‘glance’, after which the

occlusion returned for an indeterminate occlusion duration until the participant would request

the next glance. The participants were instructed to ‘follow the car in front like you would in a

crowded highway, but taking as few glances as possible’. No speed limits were given and overtaking

and collisions were strictly prohibited.

In the real car experiment, participants first drove to the test site. After eye tracker calibration (data

not used in this article), instructions were given to the participants. They then made a short test run

to get used to the car and the track, and using the occluder with the push-button. After that, occluded

and unoccluded versions of the task were randomly driven in 5 min trials—both versions four times

(unoccluded version’s data not used in this article). The experimenter (J.P.) monitored the experiment

from the front passenger seat and was in position to intervene or stop the car in case the participant

was at risk of hitting the car in front. The experimenter did not need to intervene at any time during

the experiment.

http://rsos.royalsocietypublishing.org/
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In the VR experiment, the participants first had the eye tracker calibrated (eyetracking data not used

in this article). Instructions were presented in text within the VR environment. The participants

familiarized themselves with the controls via practice tasks involving approach to a stationary vehicle,

speed control and lane changing. The three experimental tasks were first each performed once in

order (CF, CF with occlusion and finally lane changing in traffic). After this, the participants

performed several trials of each of the three main tasks in randomized order. There were three 300 s

trials of the lane changing task and two trials of both the occluded and unoccluded CF tasks (each

trial taking on average 225 s). The lane changing and unoccluded CF tasks are not analysed in this article.

In both experiments, the leading vehicle drove with a randomized speed profile, where a target speed

was randomly chosen every 20–30 s from a set of three different speeds (20, 40 and 60 km h21). The real

car target was chosen randomly without any stratification and the experimenter attempted to accelerate/

decelerate to the target speed by approximately 2 m s22. The leading car dropped speed to take the turns

at the ends comfortably and waited for the participant driven car to catch up after each turn. Each real car

trial lasted for 300 s. For the VR simulator each target speed was driven three times during a single trial

and the leading vehicle accelerated or decelerated to this speed by approximately 2 m s22. The VR

trial ended when the leading vehicle had completed each speed segment (taking on average 225 s) or

if the subject collided with the leading vehicle.
180194
3.2. Data preprocessing and analysis
The data analysis was done using custom Python scripts which, along with the data, are available under

an open source licence at https://gitlab.com/mulsimco/follow17.

To estimate the distance to the leading vehicle in the real car experiment, the leading car was

semiautomatically detected from the LIDAR produced objects. Speed was recorded from the car’s

CAN-bus reported wheel speeds. The acceleration was estimated as the time difference of Gaussian

filtered (s.d. 1 s) wheel speed signal. Track position was estimated by projecting the GPS location to

the estimated track polyline. An approximate ‘steady-state’ speed area of the track (figure 4) was

defined based on timeseries of the drivers’ speeds and data outside this area were omitted from analysis.

The VR simulator’s physics model was logged at every frame, which gives an accurate position signal

for both cars. Speeds and accelerations were computed from these position signals by taking first and

second differences. Relative distance was computed as the difference of the vehicles’ positions with

the simulated vehicle’s length subtracted.

For both experiments, the occlusion duration was calculated as the interval between successive

button/lever presses, subtracting the unoccluded duration of 300 ms.
3.3. Modelling methods

3.3.1. Parameter estimation

Estimating driver-specific CF model parameters from measured trajectories is known to be a somewhat

challenging problem [58] which is exacerbated by challenges in optimizing stochastic systems. To avoid

these issues, especially local minima and overfitting to compensate for model error, we make use of the

controlled nature of the leading vehicle profile in our experiment. As the leading vehicle behaviour was

statistically the same for each trial, we can produce a ‘virtual dataset’ of differently parametrized drivers

and find a parametrization that on aggregate measurement level produces similar behaviour to

each subject.

To simplify the parameter space, we fix all but three parameters to reasonable values based on the

literature and our experimental set-up (table 1).

For the IDM [57], which we use as the acceleration function, the maximum acceleration amax and

desired time headway T are estimated for each driver from the data. Maximum desired deceleration

bmax is assumed to be systematically related to the maximum acceleration as bmax ¼ amax=0:6 (based on

the results of [59]) and target speed vmax is set to 80 km h21, which is the Finnish speed limit of the

type of road that was simulated. The rest of the parameters are set to the values presented in [57].

For the state estimation and attention model, the uncertainty threshold parameter sw
â was estimated

from data for each participant, all others were fixed. The perceptual noise parametrization, sF ¼ 0.3, sf ¼

0.3, svf
¼ 0.3, was selected to produce approximately similar accuracy for distance, speed and relative

speed as proposed in [60]. The expected leader acceleration standard deviation was set to the value of

https://gitlab.com/mulsimco/follow17
https://gitlab.com/mulsimco/follow17
http://rsos.royalsocietypublishing.org/


Table 1. Parameters of the model and values for fixed parameters. Parameter values marked with * are estimated from data.

parameter symbol value

acceleration uncertainty threshold sw
â *m s22

flow noise standard deviation sF 0.3

angular width noise standard deviation sf 0.38

angular expansion noise standard deviation svf 0.38 s21

acceleration efference copy noise coefficient la 0.1

expected leader acceleration standard deviation sâL
4 m s22

desired speed vmax 80 km h21

desired time headway T *s

maximum desired acceleration amax * m s22

maximum desired deceleration bmax amax=0:6

acceleration exponent d 4

jam distance s0 2 m

jam distance s1 0 m
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sâL
¼ 4:0 m s�2, which, on the timescale of few seconds, produces speed trajectories with statistically

similar speed variation to those used by the leading vehicle.

The remaining free parameters, desired time headway T, maximum acceleration amax and uncertainty

threshold sw
â , were estimated for each participant by finding parametrization that best matches the

aggregate level performance of the subject using k-nearest neighbour regression. This was done by

simulating 150 000 trials of the model performing the same driving task as the subjects did in the VR

experiment (see §3.1.5) with random T, amax, and sw
â sampled from U(0:1 s, 15 s), U(0:1 m s�2, 8:0 m s�2),

U(0:1 m s�2, 8:0 m s�2), respectively, where U is the uniform distribution. Median time headway,

median occlusion duration and 99th percentile of acceleration were computed for each of the

simulated trials. For each subject, five closest matching simulated trials based on these features were

selected and the average of the parameters generating these five trials were used as the estimated

parametrization of the subject.

3.3.2. Model implementation

The model is implemented as a ‘bootstrap filter’-type particle filter [61], meaning that we use the state

transition model (equations (2.1)–(2.5)) as the proposal distribution. Simulations are run with timestep

duration Dt ¼ 0.1 s, with N ¼ 512 particles and with systematic resampling for each step. The percepts

are corrupted with pseudorandom noise following the distributions assumed in the perception model

(equations (2.7))

For this article’s simulations, we use the following initial distribution: (v̂,d̂,̂r) � (v[1], U(5 m, 200 m),

U(20 km h�1, 60 km h�1)), where U is the uniform distribution and v0 is the true initial own speed.

The desired acceleration, which is also the actuated acceleration output to the environment, is the

weighted mean of the particle accelerations: �a[i] ¼
PN

k¼1 wk[i]âk[i], where the subscript k refers to kth of

the N particles. If the corresponding standard deviation is higher than the uncertainty threshold sw
â

the occluder is removed for the next 300 ms.

The model implementation in Cþþ with Python bindings is available at https://gitlab.com/

mulsimco/cfmodels.
4. Results and discussion
This section will first replicate the results of our earlier experiment [28] regarding relationship between

time headway and occlusion duration and compare the behaviour between the real car and VR simulator

experiments. These are then followed by an analysis of the proposed model’s behaviour and how it

relates to the experimental results.

https://gitlab.com/mulsimco/cfmodels
https://gitlab.com/mulsimco/cfmodels
https://gitlab.com/mulsimco/cfmodels
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4.1. Experimental results
Comparisons of per-subject aggregate measures in the VR and real car experiments are illustrated in

figure 6. Real car time headways and occlusion durations are predicted quite well by the VR

simulator data, indicating good external validity of the simulator with regard to these variables.

Between subject variation in acceleration behaviour on the other hand is not practically correlated at

all, and about twice the real car acceleration range is produced in the simulator experiment. This is

likely a combination of much more responsive dynamics of the simulated car and lack of

somatosensory acceleration and jerk information, exacerbated by relatively subdued leading vehicle

accelerations and speeds.

Our earlier result that between-subjects level time headway and occlusion duration have a strong

correspondence [28] is replicated by both the real car and simulator experiment (figure 7). There is a

statistically significant departure from the exact parametrization ô � T̂d � 1, although we still regard it

as a reasonable approximation.

We also find that the time headway and occlusion duration correlate at within-subject level. To

remove possible spurious correlation due to changes in the time headway tendency, robust linear

trends of both time headway and occlusion duration were removed from each trial as in our previous

study [28]. After the detrending, a positive Spearman correlation is observed for 28 of 40 participants

in the real car experiment (Binomial test p ¼ 0.02) and 31 of 37 in the VR simulator ( p ¼ 0.00004). The

correlations (real car grand median 0.15, VR grand median 0.19) are however considerably lower and

less consistent than in our previous simulator experiment, where all subjects had a positive correlation

with grand median of 0.57. This is likely at least partly due to the more subdued speeds and

accelerations of the leading vehicle (mandated by safety and practicalities of the real car experiment)

leading to less variation in the within-subject time headways. Owing to the low correlations, in

contrast to the previous study, we do not estimate slopes for the relationships.

4.2. Modelling and simulation results
On the general level, the model can successfully drive our CF scenarios with intermittent and noisy

input, and the parameter estimation procedure (see §3.3.1) captures aggregate level between-subjects

differences. Figure 8 shows time-series level comparison of human and model performance. The

overall level of speed, time headway and occlusion duration is replicated quite well by the model, but

this is to be expected as the parameter estimation procedure optimizes the model to match per-subject

aggregates (medians) of time headway and occlusion duration and 99th percentile of acceleration.

On the more detailed level, the human performance has a significant amount of short-timescale

variation in the speed, distance and visual sampling behaviour. This is somewhat oscillatory in nature

and likely has a considerable stochastic component, i.e. having the same participant drive the identical

scenario multiple times would result in somewhat different trajectories. The variation in the model

http://rsos.royalsocietypublishing.org/
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produced trajectories shows similar behaviour, although the model shows somewhat less short-timescale

variation than the human drivers. This is likely at least partly due to the model not including acceleration

noise, which is known to add such short-timescale variation like seen in the human trajectories [17].

Considering that the model is stochastic and particle-approximated with noisy and highly

intermittent sampling, it is surprising how rarely it collides with the leading vehicle. Based on 300

simulated trials for each subject’s estimated parameters, on average 1.1% of real car trials and 0.8% of

VR simulator trials should end in a crash. The observed rates were 0% (95% CI 0–2.4%) in the real car

and 3.3% (95% CI 0.9–8.4%) in the VR simulator.

http://rsos.royalsocietypublishing.org/
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On the between-subjects level a systematic relationship between median time headway and median

occlusion duration emerges from model-driven trials when holding all but the desired time headway

parameter constant (figure 9). The relationship is notably nonlinear, but it matches relatively well to

the experimentally observed values. Also the model gives a tentative explanation that the between-

subjects variation in the relationship may be largely due to different levels of accepted acceleration

uncertainty, with the relationship also modulated by the desired acceleration levels. The simulator has

significantly higher uncertainty thresholds, which is largely explained by higher desired accelerations.

The model also exhibits the shorter timescale within-subject relationship between detrended time

headways and occlusion durations that was found in the current data as well as in our previous

results [28]. With real car subject parametrizations the median Spearman correlation is 0.65 and VR

simulator parametrizations 0.45.

4.3. Discussion of the results
The results clearly indicate that proposed model can ‘drive’ successfully with noisy and intermittent

sampling of the environment. It can also capture aggregate level between-subjects variation time

headway and visual sampling behaviour with only three estimated parameters. The previously found,

and now replicated, correspondences between time headway and occlusion duration are found to

emerge from the model, even though they are not explicitly included.

However, the question of how ‘well’ the model matches the human behaviour is not trivial to answer.

The output of the model is stochastic, and thus straightforward ‘goodness-of-fit’ measures cannot be

given at least with the current model fitting procedure. Which aggregate level measures to compare is

somewhat arbitrary and for this reason we have restricted the analysis to the variables we used in

previous work. Also it is quite clear that there is still systematic human behaviour not replicated by

the model, especially the short-timescale variation is substantially smaller in the model produced

trajectories. A clearly missing major component causing lack of variation is the control model, which

should in the least include some sort of acceleration noise.

It is not clear how the experiment corresponds to real-world driving. Of note here are the quite long

time headways: medians of subject medians were 4.1 s for the real car and 3.4 s for the VR simulator

experiments, whereas the typical observed median time headway for the kind of road described in the

instructions is well under 3 s [62]. In traffic engineering such long time headways are often associated

with free flowing traffic, as opposed to CF where the leading vehicle limits the drivers speed choices

[63]. However, free flow driving is likely not the reason for the long headways observed in our

experiment: the leading vehicle speeds were as low as 20 km h21, which should be clearly below free

flow speed for even the most cautious driver, and high time headways were observed at all speeds.

Furthermore, as the time headways correlate well with the occlusion durations, much of the
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abnormally long time headways is likely due to the subjects opting for significantly higher (visual)

distraction levels than they would in normal traffic, which are compensated by higher time headways.

The crash-rate analysis should be taken mostly as an indication that the model is able to perform the

task at somewhat similar level to humans, and the model crash rates are somewhat deflated because it

can actuate decelerations that were not possible in the real car nor the VR experiment. The collision

rates are clearly higher than they would be in normal traffic, but they most likely are for the human

drivers also in this task, where the level of overt distraction is at least for some participants

considerably higher than they would tolerate in real world with no extra safety precautions and

experimental instruction, which is quite clear at least for the VR simulator based on the observed

collisions. Although the experimenter did not have to intervene at any point in the current

experiment, the experimenter’s (J.P.’s) educated guess is that given enough repetitions a significant

intervention rate, perhaps even around the model predicted 1%, would emerge.
Soc.open
sci.5:180194
5. General discussion
We have presented a CF model that, based on stochastic internal representation and a psychologically

plausible perception system, successfully simultaneously handles longitudinal control and intermittent

sampling with performance comparable to humans. The model can be calibrated to capture individual

differences and exhibits adaptation of attention similar to what is empirically observed in human

driving. With the internal representation, it can handle noisy input, drive extended periods based on

only predicted dynamics of the environment and ‘know’ when input is needed.

The need for input in our model is driven by action uncertainty. The general idea that attention is

driven by uncertainty is quite well established [29,64,65], and more recently computational attention

sharing models using estimate of state uncertainty have been developed [54]. However, this earlier

work has focused on uncertainty about the environment, which poses a crucial problem of state

variable relevance—even in the quite simple case of CF. Namely, which state variables have to be

known with what certainty in order to drive without perception? For example, it is quite clear that

accurate estimate of relative speed is not very crucial if the distance to the leading vehicle is very

high, or that accuracy demand for an overtaking car in a neighbouring lane depends greatly on

whether the driver herself is about to switch lanes or not. Using the action uncertainty sidesteps such

problems as the importance of different variables is implicitly included in the decision rule. On a

more general level, it can also be taken as a reflection of the idea that the primary purpose of

perception is to serve action, not necessarily to infer an accurate and veridical world model [66].

5.1. Implications for traffic psychology
The theoretical basis for studying the time headway–occlusion duration connection was based on the

task-difficulty homeostasis of Fuller [27] and how it should be modelled in CF [28]. Previously we

and others [13,14] have proposed that in the CF task the task demand is mostly determined by time

headway and that drop in capability due to, for example, distraction will cause the driver to increase

the time headway in order to keep the demand and capability in balance. Empirically, this seems to

be supported; time headway is well correlated with task demand, assuming that the capability is

connected to visual distraction and the homeostasis is in effect. However, in light of the current

model, a more appropriate measure for task demand may be the action uncertainty. This is not in

contradiction with the idea of time headway as an index of task demand, but our formulation

proposes that time headway’s correlation with the posited task demand emerges from the more

complex underlying control of action uncertainty. Action uncertainty has also the practical benefit

that it can be generalized to different and more complicated tasks than task specific measures like

time headway.

It should be noted that the proposed model only handles ‘one half’ of the balancing of task demands

and capability: increasing of capability by attending to the task in order to bring the demand caused by

action uncertainty to a satisfactory level. The other half—decreasing action uncertainty by, for example,

increasing the time headway in order to ‘free’ capability, e.g. to attend a secondary task—is not currently

included. This latter mechanism is the one studied in the aforementioned CF models incorporating the

task–capability homeostasis. These models could be quite straightforwardly integrated into our

model’s framework, as they are formulated as acceleration rules, but with an additional distraction

level parameter.
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As mentioned in the Introduction, the model incorporates many features of the ZRT [19]. Especially

prominent influence is the central role of expectancies, or prediction of the immediate future, which are a

prerequisite ‘for any success in driving performance’ [19, p. 188] according to the ZRT. In fact, our model

in a sense uses only expectancies, in that perception, when available, is only used to ‘evaluate’ predicted

environment states.5 The model is also ‘zero risk’ in that it does not compute or use any probabilities of

adverse events, as is done in the so-called ‘risk control models’ [24–26] and in CF models based on

expected utility [15,16].

On the other hand, the action selection process and uncertainty are not very prominent in the ZRT,

and attention and vigilance are mostly discussed in relation to environment. The action uncertainty

perspective could prove useful in developing the ZRT further, especially by producing a potential

mechanism for the ‘risk monitor’, which has previously been somewhat difficult to reconcile with the

theory’s lead motif that risk estimation does not enter the control loop in routine driving. It should be

noted that ZRT mainly discusses behaviour in somewhat higher level than the very short timescale

speed control of the CF task, and what the current model is doing could be interpreted as performing

the ‘routine driving’ which the higher level mechanisms, such as motives and behaviour adjustments

due to risk monitor activation, modulate usually on longer timescales. Further model development

should explicate such modulations in a computational form, and be combined with experimental

settings where the risk monitor mechanisms should come into play more prominently.

An interesting development could be to integrate ideas from the utility maximization of risk control

models into the higher level modulation. The ZRT is quite explicit in that subjective risk is a part of the

driving process, but that it is used to adjust behaviour in response to risk monitor activation. Within the

computational framework, this could be implemented so that whenever the risk monitor gets activated,

due to, for example, prolonged action uncertainty, a risk computation would be conducted and the

parameters of the control loop would be adjusted, e.g. desired (habituated) time headway could

be increased in response to an unpredictable leading vehicle. This would alter the risk control

mechanism so that risk is not continuously computed and reacted to, but rather risk would be

associated with using a given control mechanism or its parametrization in a given situation.
5.2. The predictive processing perspective
With regard to unifying psychological and computational process models, we would consider particularly

apposite the concepts deriving from the literature on prediction, sensory integration, stochastic internal

models and uncertainty in them [64,65,67,68]. Relevance of these ideas for understanding various

driving scenarios has been recently discussed by Engström et al. [69], and some of the ideas are

incorporated in the recent computational modelling framework of Markkula et al. [70].

Our model incorporates some components that are quite central in this so called ‘predictive

processing’ framework: it makes use of a predictive model, Bayesian sensory integration and models

attention using uncertainty. Especially, the way our model combines the top-down dynamics model

with bottom-up percepts by taking into account their respective estimation variances6 is essentially

identical to how evidence is accumulated in the predictive processing framework.

However, the framework also has number of central concepts not included in our model. One of them

is hierarchical predictive models, but this is mainly due to the present work being the first pass attempt.

We concede that a hierarchical structure is likely necessary in order to integrate more complicated

behaviour, such as lane changing, combined longitudinal and steering control in curve driving, and

especially the unified treatment of gaze and locomotor control (see [71] for detailed discussion).
5.3. Intermittency in action versus control
Another interesting parallelism in our model and some recent models based on prediction errors

[70,72,73] is the treatment of intermittency: our model uses intermittent perceptual sampling to drive

continuous motor control, whereas these ‘prediction error models’ use continuous perceptual

sampling to drive intermittent motor control. Specifically, the models propose that control is based on

intermittently applied ‘motor primitives’ which—compared to simple continuous adjustment as in the
5In fact, in the original schematic figure of the ZRT [19, fig. 21], perception affects action selection only through expectancy.

6The predictive processing literature usually discusses this in terms of precision, which is the inverse of variance.
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present model—are relatively complex manoeuvres, akin to ‘precognitive responses’ discussed in some

formulations [31,74].

These approaches need not be mutually contradictory, however, and the most realistic model might

turn out to be one based on intermittent sampling driving intermittent control responses. The choice of a

simple continuous control for the motor control was mainly driven by a desire to make the present model

directly applicable to traditional agent-based microsimulation models, and to pinpoint the effects on

traffic flow in the variation of attention. More complex motor control mechanisms are likely to be

needed if our model is to be generalized to more varied control tasks, which again immediately arise

when, for example, modelling vehicle dynamics, combined effects of speed control and steering or the

coordination of gaze and locomotion.

That said, we would like to point out some more substantial differences between the present

approach and the predictive intermittent control models that will need to be empirically or

theoretically resolved in the future.

We emphasize the cognitive state estimate—the mapping from percepts to motor actions is not

straightforwardly based on monitoring learned visual cues, but mediated by a state representation,

which we envision as a system capable of supporting learning and the coordinated control of multiple

simultaneous tasks. That is, we envision a much larger role for internal state representations in

models aiming for the scope of full longitudinal control as opposed to only braking or lane keeping.

More concretely, in our model, control is driven by the internal model of world state (‘expectancy’ in

ZRT terms). In the predictive intermittent models control is driven by errors in outcome prediction—

that is, differences between the state variable values predicted from the motor sequence efferent copy

and the observed variable values. That is, in the Markkula et al. framework [70], a change in control is

dependent on time-delayed feedback, it cannot be changed ‘mid-flight’ on the basis of internal

predictions as such. At the moment, it is not known whether this limitation applies to human motor

control.

However, overall at the conceptual level our model sits quite well in the framework of Markkula et al.
[70], which is based on prediction of sensory inputs, efference copies of own actions and accumulation of

evidence. Also the concept of attention allocation via action uncertainty should be quite straightforward

to extend to the motor primitives type control, given a mapping between (estimated) environment states

and appropriate motor primitives. Conversely, the kind of intermittent control envisioned in Markkula

et al. may have uncertainty reducing effects which could be modelled in the present framework.

Specifically, as motor primitives (synergies, motor programs, precognitive responses) produce

‘efference copies’ this should decrease uncertainty in the state estimates (increased task capability,

reduced attentional demand for visual sampling).

On a deeper level, the strict differentiation between the state estimation and motor control may be a

conceptual simplification that will need to be conceptually revised in the future. Again, the clear

separation between the acceleration model and state estimation in the current formulation is largely to

maintain direct comparability with the existing CF literature.
5.4. Limitations and future developments
Although we aim for psychological plausibility, we have had to make numerous idealizations to keep the

parametrization and scope manageable. Perhaps the clearest idealization is our lack of a physiologically

and physically plausible control model: the ‘simulated driver’ has a perfect and instantaneous control

over the vehicle and can produce accelerations that are not physically possible. This is not, however, a

limitation of the general approach; the model readily supports any acceleration model that is based

on the ‘usual’ scene operationalization of speed, distance and relative speed and more physically

plausible acceleration models (e.g. [72,73,75]) should be integrated in the future.

Using a ‘perfect’ control model does have the benefit that it is possible to pinpoint the deviation from

traditional deterministic models to the introduction of the perceptual and attention sharing model. For

example, the noise and intermittency of the perception lead to similar control effects to those that are

often attributed to imperfections and intermittency in the acceleration control [17,72,73]. This is not to

say that the models contradict each other; as discussed above, the current acceleration model lacks

realism, which could be remedied by these more plausible models. Furthermore, imperfections in the

acceleration lead to more variation in the true and estimated state, which increases attentional

demands. The computational formulation also makes it possible to directly estimate, or at least

quantitatively hypothesize, these effects.
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Also, the perception model’s relationships (see §2.2) are selected mostly for their compatibility

with the usual CF model state formulation and for producing functionally similar estimates that are

usually accepted in psychology. Specifically, when combined with the perceptual space noise, they

approximately follow the Weber–Fechner Law in that the precision of the estimates of distance and

speeds is strongly related to their magnitudes, which is a robust finding in psychophysics and

includes distance judgements and visual speed estimates [56,76–79]. The exact forms of these

relationships and mechanisms behind them are a contentious issue, and by no means our exact

choices in the transformations reflect any scientific consensus.

Especially, the question of how relative speed is judged is an important topic in study of locomotion:

the influential tau-theory shows that time to contact to an object can be estimated ‘directly’ by computing

angular expansion rate relative to the angular size, or t, and proposes this measure is used for guidance

of action [80], but it has been shown that t does not at least solely explain time-to-contact estimation

[81,82]. However, our selection of ‘distance-normalized angular expansion’ is primarily motivated by

it being more directly applicable to existing CF models. CF models operate on relative speed instead

of time-to-collision, and thus t-based perception model would have to include a time-to-collision to

relative speed transformation.

In general, our assumption that transformations can be done accurately is clearly an idealization, and

the decision of at which points of the transformation chain measurement noise is applied can affect the

state estimates significantly. This means that the aforementioned separate study of subsystems, while

likely necessary, is not sufficient for modelling full task performance.

The importance of active visual sampling [83–85], and its basis in reduction of (task-relevant)

uncertainty, are pervasive ideas in understanding naturalistic task performance [86]. But although we

boast about modelling a ‘naturalistic’ task, it has to be admitted that drivers rarely have their view

totally blocked by an opaque piece of glass, and the drivers have to steer in addition to controlling

speed, although based on previous experiments without steering [28], its effects on longitudinal

control in a straight road are likely quite small. We maintain that the current setting is relatively

representative of distracted driving on a long perfectly straight one-lane road, with perhaps the lack of

peripheral vision and sampling with actual eye movements being the most glaring omissions, but

acknowledge that generalizing the model beyond this very task needs additional work.

Peripheral vision could be modelled quite easily in the current formulation by changing the

perceptual noise levels as a function of the target’s visual eccentricity [87,88], and slightly less easily

but more realistically by explicitly modelling the type of perceptual input available through the visual

periphery according to current models [89]. However, generalization to tasks where the ‘gaze target’

is not a priori obvious, such as curve driving [90,91], causes complications for the action uncertainty

mechanism: in order to lower uncertainty of the action, the model would have to know not just when
but where in the scene to attend to get information about which action to take. This somewhat negates

the convenience aspect of using the action uncertainty, but provides an interesting computational

perspective on the inseparability of perception and control in natural behaviour. One possible

approach would be to base the choice of the location attended on a predictive forward model of how

different locations would affect (steering) control uncertainty.

Finally, although much of the background in our work comes out of traffic simulation, the current

article does not evaluate the model’s performance and effects in simulated traffic. This is partly a

deliberate omission to keep the scope of the article manageable, but it is also unclear how well the

results, even though driven with a real car, generalize to real traffic. The real car experiment was

conducted on an empty track in an instrumented vehicle with a distraction simulated using visual

occlusion, rather than in real traffic with natural secondary tasks. It may not accurately reflect the

participants’ true driving habits.

Also, in order to get variation in the data, the leader’s speed is much more volatile than what would

be representative of actual highway conditions. This may be partly behind the model’s crash rate which—

though remarkably low for such impoverished input and simplistic state representation—is likely

higher than participants’, and certainly much higher than in traffic. The fact that the model does

produce collisions and mostly due to the highly plausible reason of inattention [92] could be used in

the future to study safety effects of drivers’ attention allocation mechanisms in single driver and traffic

system level.

The ‘cognitive’ part of the model has only one subject-dependent variable, the uncertainty threshold.

Although we required normal vision and reasonable driving experience from the participants, there is

still clearly variation in, for example, perceptual accuracy, predicting ability and control skill that is

not captured, and/or is being included in the other parameters, thus hindering their interpretation. To
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get better parameter estimates and to validate assumptions of the subsystems, tasks where different

aspects, such as perception and control, are better separated could be studied.

6. Conclusion
Based on the concepts drawn from perceptual psychology, cognitive science, traffic engineering and

computer science, and an experiment conducted in both immersive VR and a real instrumented car,

we developed a computational model of driver visual attention and longitudinal control during a

routine CF task. The model provides a possible mechanistic basis for the correlation of median time

headway and occlusion durations across individuals, and also for the deviation from a simple linear

relation. The attention mechanism is based on control of a cognitive internal estimate of action
uncertainty, which is a conceptually novel proposal for attention allocation.

The model brings to bear probabilistic (Bayesian sensory integration) and predictive processing ideas

from cognitive modelling, to develop a cognitively plausible driver model for CF scenarios. It potentially

unifies a number of classical psychological hypotheses—such as driver sampling to maintain a

sufficiently accurate ‘image’ studied in classical visual occlusion experiments [29,32] (cf. also [33,93]),

the routine control of safety margins, and actions driven by an ‘expectancy’ of the future development

of the situation [19,21]. The work also has the potential for harmonizing the psychological literature

with the more rigorous but less psychologically plausible driver modelling in engineering.
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