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Abstract. Requirements engineering is often, especially in the con-
text of major open source software projects, performed with issue
tracking systems such as Jira or Bugzilla. Issues include require-
ments expressed as bug reports, feature requests, etc. Such systems
are at their best at managing individual requirements life-cycle. The
management of dependencies between issues and holistic analysis
of the whole product or a release plan is usually scantly supported.
Feature modeling is an established way to represent dependencies
between individual features, especially in the context of Software
Product Lines — well-researched feature model analysis and con-
figuration techniques exist. We developed a proof-of-concept depen-
dency engine for holistically managing requirements. It is based on
automatically mapping requirements and their dependencies into a
variant of feature models, enabling utilization of existing research.
The feature models are further mapped into a constraint satisfaction
problem. The user can experiment with different configurations of
requirements. The system maintains the consistency of dependencies
and resource constraints. To evaluate the feasibility of the system, we
measure the performance of the system both with some real and gen-
erated requirements. Despite some remaining performance issues, it
seems that the approach can scale into managing the requirements of
large software projects.

1 INTRODUCTION
There are various kinds of requirement management systems (RMS)
applied in requirements engineering [10]. In particular, different is-
sue tracker systems, in which requirements are captured as issues,
are becoming increasingly popular, especially in large-scale, glob-
ally distributed open source projects, such as in the cases of Bugzilla
for Linux Kernel, Github tracker for Homebrew, and Jira for Qt. An
issue tracker can contain tens of thousands requirements, bugs and
other items that are different ways interdependent from each other.

Issue tracker systems as RMSs provide primarily with support
for individual requirements throughout various requirements engi-
neering activities, such as requirements documentation, analysis, and
management as well as tracking the status of a requirement over its
life cycle. Even though individual dependencies, including more ad-
vanced constraints, can be expressed in the case of an individual re-
quirement, more advanced analysis over all requirements of a system
taking into account the dependencies and properties of the require-
ments is not well supported. For example, deciding a set of require-
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ments to be implemented simultaneously might need to follow all
dependencies transitively, which is not readily supported by the is-
sue trackers. The issue trackers are not either necessarily optimal for
the concerns of product or release management that need to deal with
different requirement options, alternatives and constraints, as well as
their dependency consequences when deciding what to do or not to
do. However, dependencies in general are found to be one of the key
concerns that need to be taken into account, e.g., in requirements pri-
oritization [1, 9, 18] and release planning [2, 17]. In fact, the above
concerns are not at the core of issue trackers’ support for the require-
ments engineering activity. Rather, issue trackers focus more on a
single issue, its properties, and its life cycle. The situation is not nec-
essarily specific only for issue trackers, but it exists also in other
kinds of RMS.

In the context of a Horizon 2020 project called OpenReq, we de-
veloped a proof-of-concept Dependency Engine for holistically man-
aging requirements as a single model. It is based on automatically
mapping requirements and their existing isolated dependencies into
the Kumbang [3] variant of feature models, enabling utilization ex-
isting research. A feature model is further mapped into a constraint
satisfaction problem. The user can experiment with different config-
urations of requirements. The system maintains the consistency of
dependencies and resource constraints.

This paper outlines the principle of the Dependency Engine and
addresses its feasibility in terms of performance. We measure the
performance of the system both with some real and generated re-
quirements. Responsive performance is important for interactive us-
age, e.g., what-if analysis of requirements to include in a release.
Furthermore, it is important that decisions are based on current in-
formation; either relatively fast model generation or a way to update
models ’on-the-fly’ are required.

The rest of the paper is organized as follows. Section 2 outlines
the concept of a feature model. Section 3 presents the research ques-
tions, general idea of the Dependency Engine, applied data and tests.
Section 4 presents the results, Section 5 provides analysis and dis-
cussion. Finally, Section 6 concludes.

2 BACKGROUND: FEATURE MODELING

The notion of a feature model, similarly as a requirement, is not un-
ambiguous. A feature of a feature model is defined, e.g., as a char-
acteristic of a system that is visible to the end user [12], or a system
property that is relevant to some stakeholder and is used to capture
commonalities or discriminate among product variants [8]. A feature



model is a model of features typically organized in a tree-structure.
One feature is the root feature and all other features are then the
subfeatures of the root or another feature. Additional relationships
are expressed by cross-branch constraints of different types, such as
requires or excludes. Feature model dialects are not always precise
about their semantics, such as whether the tree constitutes a part-of
or an is-a structure [19]. Despite this, feature models have also been
provided with various formalizations [8, 16] including a mapping to
constraint programming [5, 6].

Specifically, we apply the Kumbang feature model conceptualiza-
tion [3] as the basis. It has a textual feature modeling language and
it has been provided with formal semantics. Kumbang specifies sub-
features as part-of relations and allows defining separate is-a hier-
archies. Kumbang supports feature attributes and its constraint lan-
guage can be used to express cross-branch relationships.

A feature model is a variability model roughly meaning that there
are optional and alternative features to be selected, and attribute val-
ues to be set that are limited by predefined rules or constraints. When
variability is resolved, i.e., a product is derived or configured, the
result is a configuration. Variability is resolved by making configura-
tion selections such as an optional feature is selected to be included,
or one of alternatives is selected. A consistent configuration is a con-
figuration in which a set of selections have been made, and none of
the rules have been violated. A complete configuration is a consistent
configuration in which all necessary selections are made.

Feature modeling has become a well-researched method to man-
age variability and has been provided with several different analyses
to assist in system management [4].

3 METHODS AND DATA
We follow Design Science in the sense that the aim is to innovate
a novel intervention and bring it into a new environment so that the
results have value in the environment in practice [11]. Dependency
engine is the artifact of the intervention and this paper focuses on its
quality attributes. The specific research questions are:

• RQ1: Can the OpenReq Dependency Engine scale to real-world
projects?

• RQ2: How can the performance of the Dependency Engine be
improved?

3.1 Approach and architecture
To facilitate requirement management via a feature-based approach,
we make each requirement correspond to exactly one feature. The
properties of a requirement correspond to the attributes of a feature.
The dependencies of individual requirements are mapped to hierar-
chies and constraints of a feature model. We currently rely only on
the dependencies explicitly expressed in requirements although we
will aim to extract missing dependencies with NLP technologies. In
order to make such a mapping, we need a feature model dialect that
is conceptually relatively expressive supporting feature typing and
attributes. Kumbang was selected for this purpose.

The Dependency Engine currently consists of three stand-alone
software components with specific responsibilities: Milla, Mulperi
and SpringCaaS, see Figure 1. There are two different workflows:
creating a model from requirements data and making subsequently
queries against the model. These three components operate as REST-
type services and are implemented using the Java Spring framework3.

3 https://spring.io/

Figure 1. Workflows of the Dependency Engine

Milla is a front-end that is used to access requirement data via
volatile or case-dependent interfaces. For example, it extracts re-
quirements via the API of Jira. It outputs MulSON, a JSON based
intermediate transfer format understood by Mulperi.

Mulperi converts from a small number of stable requirement in-
put formats such as MulSON into the Kumbang feature modeling
language. It can generate a number of queries to SpringCaaS.

SpringCaaS takes as input Kumbang feature models and converts
them into a corresponding Constraint Satisfaction Problem (CSP).
Choco Open-Source Java library for Constraint Programming [15]
was selected because it is Java-based, popular, and has good per-
formance and a permissive license. The Kumbang model and corre-
sponding the data structures are saved for subsequent use.

3.2 Potential bottlenecks and related tests
Network and external system bottlenecks Jira integration

fetches requirements from the RMS one requirement at a time
over network, which can potentially create performance bottlenecks.
These bottlenecks are outside the scope of this paper4.

Requirement model generation Milla generates feature models
from requirements data fetched from Jira. Effectively, relevant data,
such as IDs, dependencies and the attributes that are needed in infer-
ence, are extracted and a MulSON presentation is generated.

Feature model generation A requirement model expressed in
MulSON is sent to Mulperi. Mulperi generates a feature model ex-
pressed in the Kumbang feature modeling language. Mulperi’s func-

4 Bottlenecks were identified and solved by adding parallel connections.



tionality is largely based on data structure manipulation - JSON input
and Kumbang output. The transformation is straightforward. Mulperi
also saves the results into an in-memory database. This model is then
sent to SpringCaaS in a single message.

Feature model to CSP A feature model expressed in Kumbang is
parsed. Kumbang syntax resembles many programming languages.
Therefore parsing is potentially heavy.

Based on the data structures representing the feature model, a cor-
responding Constraint Satisfaction Problem (CSP) is generated. Ba-
sically, a set of Boolean CSP variables represents instances of indi-
vidual feature types. Each of these is related to corresponding integer
CSP variables that represent attribute values of these individual fea-
tures. Enumerated strings are mapped to integers. Choco constraints
are created based on the dependencies; the constraints can access the
presence of a feature, and relationships between attribute values of
features. The current implementation supports only binary relation-
ships (requires, excludes).

In addition, it is possible to specify global resource (sum) con-
straints over specific attributes. For example, the sum of efforts of
included features can be constrained. To facilitate this, the imple-
mentation reserves attribute value 0 to attribute values of features
that are NOT in configuration.

CSP solving The prime suspect for performance bottlenecks is
solving the CSP representing a model of requirements. There are a
number of tasks to accomplish based on a constructed model.

• check a configuration of features for consistency
• complete a configuration of features
• determine the consequences of feature selections

The selection of search strategy often has significant effect on
solvability and quality of solutions [15].

3.3 Data
The performance evaluations are based both on real data from the Qt
company and synthetic data.

3.3.1 Real requirements

Qt is a software development kit that consists of a software frame-
work and its supporting tools that are targeted especially for cross-
platform mobile application, graphical user interface, and embedded
application development. All requirements and bugs of Qt are man-
aged in the Qt’s Jira5 that is publicly accessible. Jira6 is a widely used
issue tracker that can contain many issue types and has a lot of func-
tionality for the management of issues. Issues and bugs can be con-
sidered as requirements and they have dependencies and attributes
with constant values, such as priority and status. Thus, known re-
quirements and their dependencies have already been identified and
entered into Jira. Qt’s Jira contains 18 different projects and although
some of the projects are quite small and discontinued, QT-BUG as
the largest project contains currently (April 2018) 66,709 issues.

For empirical evaluation with real data, a set of issues was gath-
ered from Qt’s Jira and processed through the whole pipeline. Only
well-documented requirements having dependencies were selected
to the dataset JiraData that contains 282 requirements.

5 https://bugreports.qt.io
6 https://www.atlassian.com/software/jira

3.3.2 Synthetic data

The synthetic datasets were created and run using automated scripts.
SynData1 dataset contains a total of 450 models with permutations
of the amounts of requirements (from 100 to 2000), a ’requires’ de-
pendency (from 0 to 75% of the requirements), an optional subfea-
ture with one allowed feature (from 0 to 75% of the requirements)
and a number of attributes (from 0 to 5 per requirement); each at-
tribute has two possible values, e.g., 10 and 20.

A smaller dataset (60 test cases), SynData2, was used for opti-
mization tests with sum constraints, see Section 3.4.5. SynData2
contains models with permutations of the amounts of require-
ments (from 100 to 2000), a ’requires’ dependency (from 0 to
75% of the requirements), no further subfeatures and 1 or 2 at-
tributes with a fixed random value from 1 to 100. An example of
a SynData2requirement in MULSON format:

{
"requirementId": "R4",
"relationships": [
{
"targetId": "R25",
"type": "requires"
}
],
"attributes": [
{
"name": "attribute1",
"values": ["9"],
"defaultValue": "9"
},{
"name": "attribute2",
"values": ["22"],
"defaultValue": "22"
}
],
"name": "Synthetic requirement nro 4"
}

3.4 Empirical tests
3.4.1 Test setup

Measurements should be conducted when the software’s behaviour is
typical[13]. Since there is currently no production environment, the
tests are conducted on a development environment that closely re-
sembles the possible production environment. Furthermore, we aim
to perform tests that could correspond to real usage scenarios.

The test machine is an Intel Core i5-4300U 1.9GHz dual core lap-
top with 16GB of RAM and an SSD disk, running Ubuntu Linux
16.04 and a 64-bit version of Oracle Java 1.8.0. All software compo-
nents except for Jira are run on the same machine.

The examined software components log execution times to files
that are collected after each automated test run. A timeout was set to
limit the solving of Choco in SpringCaaS.

Although SpringCaaS is a single component, we often report the
execution time in two parts: Choco Solver and the rest of Spring-
CaaS. This is because often Choco’s solve operation takes the most
time, but the initial tests showed that the Kumbang parser becomes a
bottleneck in specific situations.

3.4.2 Initial trials and initial search strategy

Initial testing was performed with the goal to complete a configura-
tion of requirements with a minimal number of additional require-
ments. The pareto optimizer of Choco was applied to provide alter-
native solutions7. All features were included in the pareto front. By
default, Choco uses the domOverWDeg search strategy for interger
and Boolean variables [15]. Table 3 describes the search strategies

7 Pareto optimizer dynamically adds constraints: a solution must be strictly
better than all previous solutions w.r.t. at least one objective variable [15].



applied. In our domain and way of modeling, the strategy effectively
leads to selection of excessive number of features. This is contrary to
the initial goal. As results in the beginning of Section 4 will show, an
alternative search strategy was required to achieve satisfactory per-
formance. The Search Strategy was changed to minDomLBSearch; it
is used in the rest of the tests unless otherwise mentioned.

3.4.3 Requirement model generation

JiraData and SynData1 Datasets were applied to run the whole
pipeline from gathered requirements to a Kumbang textual model
and a serialized feature model. The process is illustrated at the left
hand side of Figure 1. The different steps were timed.

In the case of SynData1 dataset, Milla was bypassed because the
test cases were expressed directly in MULSON. Note that model gen-
eration includes finding a consistent configuration of features; this
search is performed as a form of a model sanity check.

3.4.4 Requirement configuration

Autocompletion of configurations was performed with the
JiraData dataset. A run was performed with a sum calcula-
tion constraint. Here, each requirement has a numerical priority
attribute. The query instructed SpringCaaS to give a configuration
where the sum of these priority attributes was greater than 100.

More substantially, requirement configuration was also performed
with the SynData1 dataset to analyse the performance under vary-
ing number of requirements and their properties (attributes, depen-
dencies), and user-specified requirements. This test applies optimiza-
tion to find a (close to) minimum configuration that includes pre-
selected features, if any. Effectively, the configuration of require-
ments is completed. This is presumably one of the computationally
most intensive operations. The configuration phase is tested in ten it-
erations: first selecting only one requirement and then increasing the
number of selected requirements by 10% so that the tenth iteration
has 1 + 90% requirements selected.

3.4.5 Optimised release configuration under resource
constraint

We performed a number of resource-constrained optimization tests.
Here, we applied global sum (resource) constraints specified in Ta-
ble 1 to constrain the allowed solutions. SynData2 Dataset contains
test cases with 1 or 2 attributes per requirement (see Section 3.3.2).
Effectively, the combination of number of attributes and the applied
constraint correspond to usage scenarios presented in Table 2. Fi-
nally, we applied the bestBound(minDomLBSearch()) search
strategy, after we had experimented with different alternatives, see
Section 3.4.6 and corresponding results.

We run the tests with 60s, 10s and 3s timeout values to see the
effect of allowed time on the solvability and to get an impression on
the quality of solutions. In addition, we developed and experimented
with a custom algorithm that (roughly) first ’filled’ effort bounds with
’big’ features and used ’small’ ones to meet the bound.

3.4.6 Determining search strategy

We tested a set of different search strategies for performance,
utilizing the 2000 requirement test cases of the SynData2
dataset. The experimented basic search strategies included
activityBasedSearch, Choco default domOverWDeg, and

minDomLBSearch, see Table 3. These were augmented with
bestBound, lastConflict or both; e.g., bestBound adds directs
search based on the objective function and a strict consistency check.

Table 1. Resource constraints for optimization tests

Constraint# Constraint
0

∑
attribute1 > 1000

1
∑

attribute1 = 1000

2
∑

attribute1 < 1000
3

∑
attribute1 > 1000 ∧

∑
attribute1 < 2000

4
∑

attribute1 > 1000 ∧
∑

attribute2 < 2000

Table 2. Constraints, number of attributes and usage scenarios

Constraint# #attributes Optimization goal
0, 1, 3 1 Simulate achieving desired utility with a

minimal number of requirements to imple-
ment. Minimizes the number of require-
ments.

2 1 Check the consistency of a given partial
configuration with respect to maximum ef-
fort and complete the configuration with
as few requirements as possible. Minimizes
the number of requirements. In the case of
SynData2, the test is redundant, only the
root feature will be included.

4 1 (Not relevant, 2 attributes in constraint, 1 in
model)

0, 1, 2, 3 2 Simulate maximisation of utility under
resource constraint: Maximize sum of
attribute2

4 2 Minimize the number of requirements to im-
plement under constraints of minimum util-
ity and maximum effort.

4 RESULTS
The results of the initial trials are in the two first rows of Table 4. The
timeout and solution limits were disabled. The processing time was
unacceptable, as reflected in the results.

4.1 Requirement model generation
The first two rows of Table 6 present the results of processing the
JiraData dataset through the whole pipeline. Table 5 shows the re-
sults of processing the SynData1 dataset. A save operation includes
finding a consistent non-optimized configuration of requirements.

Figure 2 presents cases with 1000 requirements. Each bar color
corresponds to a test case with a specific number of dependencies
(from 0 to 200) and subfeatures (from 200 to 1000). The elapsed
time in Mulperi, SpringCaaS and Choco are shown for 0, 2000 and
5000 attributes, that is, 0, 2 or 5 attributes per feature, each with two
possible values per requirement.

Figure 3 depicts a case with 1000 requirements and different num-
ber of subfeatures (a requirement can be a subfeature of many re-
quirements). Please note the logarithmic scale. With 5000 subfea-
tures it took over five hours to parse the model.

Starting from (some) models with 1000 requirements, the serial-
ization of the parsed Kumbang model failed due to a stack overflow
error. It was necessary to increase the Java Virtual Machines stack
size to one gigabyte to prevent out-of-memory errors.



Table 4. Effect of search strategy with Pareto optimizer, JiraData dataset

Strategy Optional features Mandatory features Attributes Solutions Time
default 14 0 0 60 130 to 300 ms
default 20 0 0 1046 11600 to 11900 ms (unacceptable)

minDomLBSearch 14 0 0 1 120 to 170 ms
minDomLBSearch 20 0 0 1 150 to 190 ms
minDomLBSearch 235 0 2 per feature 1 160 to 200 ms
minDomLBSearch 118 117 2 per feature 1 400 to 650 ms

Table 5. Minimum, maximum and median test cases of the save phase, SynData1 dataset

Requirements Dependencies Subfeatures Attributes Mulperi time (ms) SpringCaaS time (ms) Choco time (ms) Total time (ms)
500 375 200 0 85 158 98 341
500 50 500 1000 504 247 493 1244
500 250 500 2500 1971 439 2133 4543
750 563 150 0 159 220 401 780
750 375 0 1500 1040 371 2239 3650
750 563 1125 3750 4988 684 6359 12031

1000 750 400 0 309 347 670 1326
1000 750 0 2000 1895 584 4144 6623
1000 750 1500 5000 8859 1029 12772 22660
1500 1125 600 0 584 509 2009 3102
1500 0 1500 3000 4942 733 8756 14431
1500 750 2250 7500 21747 1738 30270 53755
2000 1000 800 0 661 566 4781 6008
2000 1500 0 4000 6958 1079 15816 23853
2000 1500 2000 10000 37692 2018 46433 86143

Table 3. Choco Search strategies

Search strategy Description
activityBasedSearch Search strategy for ”black-box” constraint solving.

” ... the idea of using the activity of variables during
propagation to guide the search. A variable activ-
ity is incremented every time the propagation step
filters its domain and is aged.”[14]. Used parame-
ters (GAMMA=0.999d, DELTA=0.2d, ALPHA=8,
RESTART=1.1d, FORCE SAMPLING=1) [15]

domOverWDeg Choco default. ”Intuitively, it avoids some trashing
by first instantiating variables involved in the con-
straints that have frequently participated in dead-
end situations” [7]. Slightly oversimplifying, the
strategy attempts to solve hard parts of a CSP
first, weighting constraints by their participation in
dead-ends.

minDomLBSearch ”Assigns the non-instantiated variable of smallest
domain size to its lower bound” [15]

bestBound Search heuristic combined with a constraint per-
forming strong consistency on the next decision
variable and branching on the value with the best
objective bound (for optimization) and branches on
the lower bound for SAT problems.[15]

lastConflict ”Use the last conflict heuristic as a plugin to im-
prove a former search heuristic Should be set after
specifying a search strategy.”[15]

Figure 2. Performance effect of attributes

Figure 3. Kumbang parser’s fatigue



Table 6. Measurements from the whole pipeline, JiraData dataset

Function Requirements Request Milla time Mulperi time SpringCaaS time
Save model 1 - 0,182 s 0,010 s 0,050 s
Save model 282 - 1,252 s 0,311 s 0,315 s
Configure 1 empty - 0,050 s 0,005 s
Configure 282 empty - 0,050 s 0,143 s
Configure 282 10 features - 0,040 s 0,172 s
Configure 282 25 features - 0,077 s 0,127 s
Configure 282 50 features - 0,116 s 0,099 s
Configure 282 10 features with dependencies - 0,040 s 0,093 s
Configure 282 sum calculation constraint - - 5,098 s (timeout)

Table 7. Minimum, maximum and median test cases of the configuration phase, SynData1 dataset

Requirements Dependencies Subfeatures Attributes Requirements in request Mulperi (ms) SpringCaaS (ms) Choco (ms) Total (ms)
100 10 0 0 1 9 10 4 23
100 10 20 200 91 10 21 8 39
100 0 0 500 1 27 54 14 95
500 0 100 0 451 34 79 19 132
500 100 200 0 101 33 61 71 165
500 0 0 2500 201 34 266 549 849
750 0 150 0 601 60 122 55 237
750 0 150 1500 376 63 156 344 563
750 375 0 3750 601 70 273 1614 1957

1000 750 1000 0 1 129 133 126 388
1000 500 0 2000 401 90 252 777 1119
1000 0 0 0 1 1344 414 1788 3546
1500 0 0 0 1351 186 363 179 728
1500 0 0 3000 751 185 364 2159 2708
1500 300 0 7500 1351 263 715 9087 10065
2000 0 0 0 1801 237 619 334 1190
2000 200 0 4000 801 297 515 4445 5257
2000 1000 0 10000 1801 573 1056 16464 18093

Figure 4. Performance effect of dependencies, 1500 requirements

4.2 Requirement configuration

The results of the configuration task with the JiraData dataset are
from row 3 onwards in Table 6. In case of the sum constraint (the last
row), SpringCaaS was able to find 107 to 120 solutions before the
timeout at 5s was reached.

Table 7 contains the minimum, maximum and median measure-
ments of total execution times for varying numbers of requirements,
dependencies, subfeatures, attributes and number of pre-selected re-
quirements in the request.

Figure 4 shows the effect of the number of dependencies in case
of 1500 requirements per test case, but with a varying number of
requires-dependencies.

Figure 5 shows the effect of the number of requirements and at-
tributes in case of 1500 and 2000 requirements per test case.

Figure 5. Performance effect of selected requirements and unselected
attributes

4.3 Optimized configuration under resource
constraint

Table 8 presents a summary of the results of test that minimize the
number of features. Note that constraint #4 is from test cases with 2
attributes, the others apply to test cases that have one attribute that
is constrained. Because all features are optional, tests with constraint
#1 trivially contain only the root feature of the model.

Table 9 represents the results of optimizing via Maximization of
the sum of attribute 2 (e.g. utility) under constraints on attribute1.

Test cases with 100, 500, 750, 1000, 1500 and 2000 requirements
and varying numbers of requirements are solvable with 60s timeout.
10s handles all cases except 2000 requirements. 3s timeout is only
applicable to cases with 100, 500 and 750 requirements.



Table 8. Minimization of the number of features. Results of 60 second timeout compared with 10 and 3 second timeouts and the custom algorithm. Lower
number of features in a solution is better. Test: the type of the testcases, #a: the number of attributes in the test cases. N : the average number of features in
the minimal solution found with the 60s timeout. N=10 : the number of test cases where 10s timeout search finds the same number of features than the 60s
version. N>10 : the number of test cases where 10s timeout search includes a larger number of features than the 60s version. ∆N10

: the average number of
additional features included in a solution found with 10s timeout when compared to the 60s search. ∆N10(%): the average percentage of additional included

features found by the 10s version. N=3 , N>3 , ∆N3
, ∆N3(%): 3 second timeout versions analogously as 10s. The corresponding figures of the custom

algorithm are presented similarly: N=c , N<c , N>c , ∆Nc (%). Note that N<c is the number of cases where the custom algorithm finds a better solution.
SynData2 dataset.

Test #a N N=10 N>10 ∆N10
∆N10(%) N=3 N>3 ∆N3

∆N3(%) N=c N<c N>c ∆Nc (%)
0 1 14.3 14 11 0.48 3.38% 7 8 0.60 4.92% 4 7 19 2573.33%
1 1 14.3 14 11 0.52 3.63% 7 8 0.67 4.92% 6 4 20 106.67%
2 1 1.0 25 0 0.00 0.00% 15 0 0.00 0.00% 30 0 0 0.00%
3 1 14.3 13 12 0.52 3.65% 7 8 0.73 4.92% 4 7 19 620.00%
4 2 14.4 17 8 0.32 2.26% 6 9 0.67 4.40% 0 0 30 1456.67%

A memory of 3 GB was required to complete the tests. The
bestBound search strategy became feasible by applying the opti-
mization to one variable or to the sums of attributes. A pareto front
with all feature variables caused excessive memory consumption.

4.4 Determining search strategy
Table 10 compares search strategies with 2000 require-
ment test cases and minimization tasks. defaultSearch and
activityBasedSearch fail in a number of cases with 60s timeout.8

minDomLBSearch can solve all these cases. Negative ∆N
indicates that the compared search strategy found better solutions
(e.g. Total number of features was 18 less in the 30 tests) .

Constraint #2 with 2 attributes is essentially uncon-
strained for big problems. Here, the optimal solution in-
cludes all features. Plain minDomLBSearch fails to
’notice’ that. Both bestBound(minDomLBSearch())
and lastConflict(bestBound(minDomLBSearch()))
help the solver to find the maximal solution. Of
these, in terms of maximized result on attribute2,
bestBound(minDomLBSearch()) is slightly better in 3
cases and lastConflict(bestBound(minDomLBSearch())) in
one. Due to limitations of space, further details are omitted.

Earlier tests with all features in the pareto front prevented the us-
age of bestBound strategy due to increased memory consumption.

Table 10. Comparison of search strategies with 2000 requirement cases
and Minimization tasks with 60s timeout

Search Strategy # no so-
lution

∆N

minDomLBSearch() 0 0
lastConflict(minDomLBSearch()) 0 -12
bestBound(minDomLBSearch()) 0 -18

lastConflict(bestBound(minDomLBSearch())) 0 -18
defaultSearch() 20

bestBound(defaultSearch()) 45
activityBasedSearch() 50

bestBound(activityBasedSearch()) 49
lastConflict(bestBound(activityBasedSearch())) 49

5 ANALYSIS AND DISCUSSION
Initial trials The results of Table 4 turned out to be too good:

it happens that the minimal requirement configurations of models in
JiraData are unique. That is, the solver can find a minimal solution
with MinDomLBSearch and even prove its optimality.

8 This test was performed with a different, weaker computer than the nor-
mally used one.

Requirement model generation The number of dependencies be-
tween the requirements seem to have no impact during the save
phase. To avoid out-of memory errors, Kumbang model read and
write methods could be overridden with an implementation that suits
better for the Kumbang data structure, or the serialization phase
could be omitted altogether. On the other hand, optimized solving
needs even more memory.

Increasing the number of attributes increases the processing time
of each component steadily, see Figure 2. Increasing the amount
of subfeatures increases the processing time of Mulperi and Choco
steadily as well, but when the amount of subfeatures is very large,
the Kumbang parser slows down drastically, see Figure 3.

Requirement configuration The results in Section 3.4.4 suggest
that a five second timeout would be sufficient for models with about
500 requirements or less. The configuration of all 1000 requirement
models and most of the 1500 requirement models can be performed
in less than five seconds.

The timeout value of the save phase could be set to be longer. Both
timeout values could be controlled with parameters, for example if
the user thinks that he/she can wait for a full minute for the process-
ing to complete. During the configuration phase, the dependencies
actually ease Choco’s inference burden. Figure 4 with 1500 require-
ments shows that when there are no dependencies, the preselected
requirements in the configuration request speed up Choco linearly.

The increase in configuration request size adds processing over-
head to SpringCaaS. Secondly, when the dependency rate gets
higher, more requirements are included in the configuration early on,
again helping Choco perform faster. The same is true for subfeatures:
selecting requirements with subfeatures decreases processing time.

With attributes, the situation is the opposite. The more there are
attributes and the more configuration request contains selected re-
quirements, the more time it takes to select attributes, see Figure 5.

The optimization task is computationally intensive. It is difficult
for the solver to determine if an optimal solution has been found.
Therefore solving practically always ends with a timeout.

Optimised release configuration under resource constraint
When a solution is found, the versions with a lower timeout value
remain almost as good as solutions obtained with 60s timeout. The
custom algorithm was expected to perform well in test case types 1
and 2. However, this seems not be the case. Out of 150 test cases, the
algorithm finds better solutions than the the ’normal’ minimizer in
18 cases. In the clear majority of cases, it performs worse.



Table 9. Maximization of sum of attribute 2 (e.g. utility). Results of 60 second timeout compared with 10 and 3 second timeouts. The custom algorithm is
excluded. Higher sum of attribute 2 (a2) is better. Test: the type of the testcases, #a: the number of attributes in the test cases. N60: the average number of
features in a solution found with the 60s timeout. a160, a260 :average value of attribute 1 / attribute 2 in solutions identified with 60s timeout, respectively.
N10,a2,< and N10,a2,=: the number of test cases where 10s timeout search finds a lower / same same sum of attribute 2 than the 60s version, respectively.

∆N10(%) : the average difference (percentage) between number of included features between 60s and 10s timeout versions. ∆a210(%): the average
difference (percentage) between sum of attribute 2 of included features between 60s and 10s timeout versions. 3 second timeouts are analogous, SynData2.

Test #a N60 a160 a260 N10,a2,< N10,a2,= ∆N10(%) ∆a210(%) N3,a2,< N3,a2,= ∆N3(%) ∆a23(%)
0 2 976 48979 49255 0 25 0.0% 0.0% 0 15 0.0% 0.0%
1 2 33.2 1000 1821 24 1 -2.1% -4.1% 15 0 -2.9% -5.9%
2 2 33.5 998 1831 21 4 -3.4% -4.6% 13 2 -5.7% -6.5%
3 2 53.6 1998 2860 23 2 -2.1% -3.2% 15 0 -3.6% -4.5%

Determining search strategy The best search strategy for our
purposes is bestBound(minDomLBSearch()) instead of plain
minDomLBSearch(), because it provides slighly better results in
minimization tests and maximizes significantly better.

6 CONCLUSIONS

Solutions without optimization are easy to find; solvers such as
Choco have an easy task with sparse dependencies. Still, at least for
optimization, the selection of a search strategy matching the prob-
lem at hand remains crucial. It was surprising that the ”black-box”
activityBasedSearch[14] and Choco default domOverWDeg[7] did
not perform in a satisfactory way.

The prototype engine easily scales to around 2000 requirements,
even when optimization is desired. Despite some remaining perfor-
mance issues, it seems that the approach can scale into managing the
requirements of large software projects, even for interactive use.

However, very large software projects, such as QT-BUG remain
challenging. A more close examination of the Qt Jira is required, be-
cause it seems that performance can be managed in various ways.
First, there are different types of issues such as bugs and require-
ments that do not need to be considered at the same time. Second, Qt
has used Jira over a decade and there is a lot of historical data. The
rate of new Jira issues seems to be up to 20 per a day. So, consider-
ing only issues created or modified within three years would signifi-
cantly decrease the amount of data. Third, the exact nature of Qt data
and practical applications need to be inspected in more detail; now
it seems that only about 10% of issues have dependencies, and the
compositional hierarchy such as epics decomposed to smaller items
needs a few levels at most.

The concept of Dependency Engine is novel and it seems to be
feasible for its intended use for providing holistic support for the
management of dependencies, also in the context of large software
projects.
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