A model of calorimetric measurements in an open quantum system

Paolo Muratore-Ginanneschi

Department of Mathematics and Statistics University of Helsinki

In collaboration with

Brecht Donvil, Antti Kupiainen, Jukka Pekola, Kay Schwieger.

CNR Roma, October 29, 2018
Outline

1. Calorimetric measurement on a driven qubit
2. Mathematical modeling
3. Results
4. Outlook
Calorimetric principle

Idea: measure work statistics in an Open Quantum Systema

aPekola et al., “Calorimetric measurement of work in a quantum system”, 2013.

- protocols bringing the system back to the initial state at the end of the horizon.
- the work W done on the system under these conditions is equal to the heat Q dissipated to the environment
Calorimetric measurement on a driven qubit

Stylized experimental setup

- Qubit
- Drive
- Calorimeter
- Phonon bath

\[\hbar \omega_q \]
\[H_d(t) \]
\[H_I \]
\[H_{ep} \]
\[T_e \]
\[T_p \]
Integrated quantum circuit

Closed system description

\[H = H_q + H_e + H_{qe} + H_p + H_{ep} \]
Closed system description

\[H = H_q + H_e + H_{qe} + H_p + H_{ep} \]

Qubit driven by a monochromatic force

\[H_q(t) = \frac{\hbar \omega_q}{2} \sigma_z + \kappa V_d(t) \]
\[V_d(t) = \hbar \omega_q (e^{i \omega_L t} \sigma_+ + e^{-i \omega_L t} \sigma_-) \]

\[\kappa \hbar \omega_q = \text{drive amplitude} \quad \omega_L = \text{drive frequency} \]
Closed system description

\[H = H_q + H_e + H_{qe} + H_p + H_{ep} \]

Calorimeter: free fermion gas (effectively, more follows)

\[H_e = \sum_k \eta_k c_k^\dagger c_k \]
\[\eta_k = \frac{\hbar \| k \|^2}{2m} \]
Closed system description

\[H = H_q + H_e + H_{qe} + H_p + H_{ep} \]

Qubit calorimeter interaction

\[H_{qe} = g \frac{\sqrt{8 \pi} \epsilon_F}{3N} \sum_{k \neq l \in S} (\sigma_+ + \sigma_-) c_k^\dagger c_l, \]

\[N = O(10^9) \text{ fermions} \]

\[S = \text{energy shell around } \epsilon_F \]
Closed system description

\[H = H_q + H_e + H_{qe} + H_p + H_{ep} \]

Phonons

\[H_p = \sum_k \hbar \omega_k b_k^\dagger b_k \]

\[\omega_k = v_s k \]

\(v_s = \text{sound speed} \quad k = \|k\| \text{ phonon wavelength norm.} \)
Closed system description

\[H = H_q + H_e + H_{qe} + H_p + H_{ep} \]

(Herbert) Fröhlich’s Hamiltonian

\[H_{ep} = \lambda \sum_{k,q} \omega_q^{1/2} \left(c_k^\dagger c_{k-q} b_q + c_k^\dagger c_{k-q} b_q^\dagger \right) \]
Mathematical modeling

Timescales

- \(\tau_{ee} = O(10^0) \text{ns} \): Landau quasi-particle relaxation rate to Fermi–Dirac equilibrium in a metallic wire.
- \(\tau_{ep} = O(10^4) \text{ns} \): electron-phonon interactions.
- \(\tau_R = 2 - 5 \times O(10^5) \text{ns} \): transmon qubit relaxation times (Wang et al., *Applied Physics Letters*, (2015))
- \(\tau_{eq} \sim g^{-2} \)
 Fermi’s golden rule estimate of characteristic qubit-calorimeter time scale.

Open quantum system approach

\[\tau_{ee} \ll \tau_{eq} \ll \tau_{ep} \ll \tau_R \]
Phonon–fermion bath interaction

- Phonon bath temperature \(T_p = O(10^{-1}) \) K (cryostat)
- Fermion bath temperature \(T_e \)

\[
T_e \simeq T_p
\]

Mean energy current \(\propto T_p^5 - T_e^5 \) (leading order\(^a\))

Rms energy current fluctuations \(\propto O(T_p^3) \) at \(T_e = T_p \) (leading order\(^b\))

Idea of the model

Qubit: stochastic Schrödinger equation\(^a\)

\[d\psi = (\text{deterministic dissipative drift}) \, dt + \text{Poisson jumps} \]

Calorimeter: equilibrium Fermi–Dirac ensembles at evolving \(T_e^a\)

\[dT_e^2 = \frac{1}{N \gamma} dE \]

Sommerfeld expansion

\[dE = dE_{eq} + dE_{ep} = \text{Poisson jumps} + (T_p^5 - T_e^5) dt + O(T_p^3) dw_t \]
Stochastic Jump Process

Closed system: unitary evolution

\[\psi(t + dt) - \psi(t) = d\psi(t) = -iH\psi dt \]

Open quantum system: stochastic Schrödinger equation\(^{234}\)

- Fermi golden rule: **dissipative terms** are added to the Hamiltonian

\[H\psi(t)dt \rightarrow G(\psi(t))dt \]

- Fermi golden rule: transitions induce **stochastic jumps**

\[(|\pm\rangle - \psi(t))dN(\mp\omega), \quad dN(\mp\omega) = 0, 1, \]

\[E_\psi(dN(\mp\omega)) = \gamma(\mp\omega)||A(\mp\omega)\psi||^2dt \]

Weak-drive approach: add drive as a perturbation to the continuous evolution

\[G(\psi(t)) + \kappa H_d(t)\psi(t) \]

Temperature Process

Using the Sommerfeld expansion we find the dependence of the temperature on the change in internal energy E of the calorimeter

$$dT_e^2 = \frac{dE_{eq} + dE_{ep}}{\gamma}.$$

The qubit-electron interaction alone ($dE_{ep} = 0$) gives

$$dE_{eq} = \hbar \omega (dN(\omega) - dN(-\omega)),$$

$$d\psi(t) = -i[G(\psi(t)) + \kappa H_d(t)\psi(t)]dt$$

$$+ \left(|+\rangle - \psi(t) \right) dN(-\omega) + \left(|-\rangle - \psi(t) \right) dN(\omega)$$
Upshot of the modeling

"Strong drive": Floquet theory

- $\tau_{qe} \gg \tau_m = \text{inverse separation of peaks in the radiation spectrum (RWA)}.$
- Resonant drive: $\tau_m/\tau_{qe} \sim g^2/\kappa \ll 1$
- Temperature+population process: jump diffusion master equation

"Weak drive"

- $g^2/\kappa \geq 1$
- Temperature+state process: hybrid master equation

Short-time temperature behaviour

Initial temperature of the electron bath: $T_e = 0.1K$

Temperature distributions after 10 periods of resonant strong drive
Short-time temperature behaviour
Initial temperature of the electron bath: \(T_e = 0.1 K \)

(Left) Mean temperature of the calorimeter after 10 periods of driving vs driving frequency \(\omega_L \) for different values of the qubit calorimeter coupling \(g \). Stars= weak-drive. Lines: Floquet . (Right) Standard deviation.
Short-time temperature behaviour

Initial temperature of the electron bath: $T_e = 0.1K$

Comparison of temperature distributions after 10 periods.

P. Muratore-Ginanneschi (Helsinki Univ.)
model of calorimetric measurements
Helsinki 2018 13 / 20
Relaxation to a steady state

The qubit-calorimeter reaches a steady state.
Effective temperature process

Multiscale expansion: \(\varepsilon \propto \frac{1}{N} \) & \(s = \varepsilon t \geq O(1) \)

\[
dT_e^2 = \frac{1}{\gamma} \left(\Sigma V(T_p^5 - T_e^5) + J(T_e^2) \right) ds + \frac{1}{\gamma \sqrt{N}} \left(\sqrt{10\Sigma V k_B T_p^3} + \sqrt{S(T_e^2)} \right) dw_s
\]

Analytic estimates

\[
\langle T_e \rangle \approx \left(T_p^5 + g^2 \frac{O(\hbar \omega_L^2)}{\Sigma V} \right)^{1/5}
\]

mean steady state temperature

\[
\tau \approx \left(T_p^5 + g^2 \frac{O(\hbar \omega_L^2)}{\Sigma V} \right)^{-3/5}
\]

relaxation time to steady state
Numerics vs analytic theory (Floquet)

Steady state temperature PDF

$\sigma = 0.004 \, \text{K}$

$\xi = 0.001 \, \text{K}$

$g^2 = 0.005$

$\sigma = 0.005 \, \text{K}$

$\xi = 0.003 \, \text{K}$

$g^2 = 0.05$
Steady state av. temperature vs drive strength

\[T_s (K) \]

\[g^2 = 0.1 \]

\[g^2 = 0.01 \]

\[g^2 = 0.001 \]

Floquet

Weak drive
Outlook

- Predictions always involve weak coupling between qubit and calorimeter.
- Perturbative Markovian master equation techniques not reliable beyond the strictly weak subsystem-bath coupling limit (see e.g. Segal, *Physical Review B*, (2013)).
- Strong qubit-calorimeter coupling analysis desirable.
References

Based on

- B. Donvil, P. Muratore-Ginanneschi, J. P. Pekola *Hybrid master equation for calorimetric measurements* 2018

THANKS FOR YOUR ATTENTION
THANKS, Brecht, Antti, Jukka & Kay