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Abstract—Wearable thermal imaging is emerging as a powerful
and increasingly affordable sensing technology. Current thermal
imaging solutions are mostly based on uncooled forward looking
infrared (FLIR), which is susceptible to errors resulting from
warming of the camera and the device casing it. To mitigate
these errors, a blackbody calibration technique where a shutter
whose thermal parameters are known is periodically used to
calibrate the measurements. This technique, however, is only
accurate when the shutter’s temperature remains constant over
time, which rarely is the case. In this paper, we contribute by
developing a novel deep learning based calibration technique that
uses battery temperature measurements to learn a model that
allows adapting to changes in the internal thermal calibration
parameters. Our method is particularly effective in continuous
sensing where the device casing the camera is prone to heating.
We demonstrate the effectiveness of our technique through
controlled benchmark experiments which show significant im-
provements in thermal monitoring accuracy and robustness.

Index Terms—thermal sensing, thermal imaging, sensor cali-
bration, deep learning, mobile computing, sensing, IoT, pervasive
computing
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I. INTRODUCTION

Thermal Imaging is increasingly available thanks to afford-
able off-the-shelf thermal cameras. Indeed, attachable micro-
USB thermal cameras costing around $100 (e.g., FLIR ONE)
are already available on the market, and also some high-end
smartphones integrate thermal cameras (e.g., Caterpillar CAT
S60 and CAT S611). Thanks to this development, new types of
application areas and studies that utilize thermal sensing are
emerging. Examples of these application areas include energy
auditing of buildings [1], [2], diverse medical applications [3],
[4], [5], continuous monitoring of animals [6], [7], search and
rescue operations [8], psychological sensing applications such

1https://www.catphones.com/
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Fig. 1. Temperature measurements of a target in ambient room temperature
(see (a)) fluctuate over time as seen in (b).

as detection of cognitive load or affective states [9], [10], and
energy modeling of IoT devices [11].

Off-the-shelf thermal cameras predominantly rely on un-
cooled forward looking infrared (FLIR) which measures vari-
ations in radiation reflected at infrared wavelengths [12]. A
fundamental challenge with FLIR cameras is that measure-
ments are affected by temperature of the camera and the device
casing it [13]. This is particularly problematic in continuous
monitoring where camera and device temperature can fluctuate
significantly over time. To mitigate these effects, the ther-
mal sensor needs to be periodically recalibrated. A common
technique for recalibration is to cover the thermal sensor
with a shutter whose thermal properties are known (typically
measured in laboratory environments), and to estimate the
required calibration parameters from the difference between
current and known values of the shutter [13]. While this
method can mitigate errors, unfortunately it is effectively only
when the shutter’s temperature remains stable, which rarely
is the case. This is particularly the case for smartphones and
other wearables where CPU, internal temperature, and use of
the camera all influence the shutter’s temperature; see Sec. II.

To highlight and illustrate the severity of errors in con-
tinuous thermal monitoring, Fig. 1 shows temperature mea-
surements from a stable target (cardboard box in ambient
room temperature) obtained using the thermal camera of a
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Fig. 2. When the thermal camera calibrates, measurement values drop
suddenly, and take tens of seconds to rise back to normal levels.

Caterpillar CAT S60 smartphone. From the figure we can
clearly see how the temperature continues to increase even
though the camera is pointed at an object with constant
temperature. In Figure 2 we have highlighted points where the
device performs internal calibration to show how it is unable
to mitigate errors in the measurements. Indeed, from the plot
it would appear that calibration actually exacerbates the errors
instead of mitigating it. The reason for this is that operating the
camera, running CPU intensive applications, and other factors
result in heat seeping through to the shutter, and invalidating
the device internal thermal parameters.

In this paper, we contribute by developing a novel deep
learning based calibration technique for improving the quality
of thermal imaging, particularly for applications that require
continuous monitoring. In our approach, battery temperature
is used as a proxy for estimating the heating of the device,
and a calibration function that captures the offset between
thermal camera measurements and the actual temperature is
learned. By compensating values of the FLIR camera with
offset estimates, the performance of the thermal imaging is
significantly improved. We demonstrate the effectiveness of
our approach through benchmark experiments carried out in
carefully controlled hot and cold conditions. Results of our
experiments demonstrate significant improvements in both the
accuracy and robustness of thermal monitoring.

II. MOTIVATION AND BACKGROUND

The focus of our work is on improving the accuracy and
robustness of FLIR measurements. As shown in Fig. 1, current
off-the-shelf FLIR cameras are prone to measurement errors,
which limit the usefulness of measurements obtained from
them. In this section we investigate how different factors affect
the error. We first examine the effectiveness of the blackbody
calibration technique used by current off-the-shelf cameras and
demonstrate how even that is a source of error, due to incorrect
assumptions of the thermal characteristics of the shutter used
as blackbody. Secondly, we examine how CPU and camera
use result in heating of the device, and how this heat affects
the temperature of the shutter. Finally, we demonstrate that
these errors can be, to a large extent, identified from changes
in the battery temperature of the device casing the camera.

A. Effect of Calibration on Thermal Camera Error

Fig. 2 shows values of thermal camera measurements taken
over a 20 minute period by monitoring the surface of water

Fig. 3. Left to right: thermal images at 1, 2, 3, 5, and 10 min when running
a stress test. When the camera and CPU are both active (middle row), the
heat signature is very different from when only the thermal camera is active
(bottom row). When only CPU is active for a longer period, we get higher
heat saturation (top row). The small hot point indicated by the boxes in the
second column images is the thermal camera aperture on the device. The
larger hot area below it in the middle and bottom row of images is the flash
LED aperture.

inside a Smart Fridge (see Sec. IV). From the figure we
can observe that each calibration cycle results in a clearly
identifiable peak in temperature measurements. In the plot, the
first two calibration cycles have a high error, after which the
error starts to stabilize. During tests of the thermal camera
we have seen this to be a relatively common occurrence,
which suggests that the first 1 � 2 calibration cycles should
be omitted. Initially the calibration cycles are more frequent,
but the frequency converges to around 180 seconds, which
seems to be a device internal parameter on the Caterpillar CAT
S60 smartphones used in our experiments. Finally, while the
magnitude of changes resulting from the calibration algorithm
seems to converge, the error in temperature measurements in-
creases over time. As we demonstrate later in this section, this
increase in error mirrors changes in the internal temperature
of the device, which in this scenario cools down from around
30°C to around 24°C; see Fig. 4.

B. Effect of CPU and Device Casing

We next examine the extent of heat seeping through into
the shutter area. To estimate this, we carried out experiments
where we monitored the temperature of the back cover of
a CAT S60 smartphone while running a stress test that
maximized device CPU use. We repeated the experiment by
running the stress test while having the thermal camera active,
as well as having the thermal camera active without running
the CPU stress test. We did this to explore the effects of
heat conduction inside the device while the thermal camera
is in use. The temperature of the device was captured using a
FLIR TG167 hand-held thermal camera, which produced heat
images of the back cover. The results are shown in Fig. 3. From
the images we can observe clear thermal hotspots, i.e., areas
that warm up most. From running the stress test for 1; 2; 3; 5,
and 10 minutes with and without operating the thermal camera,
we observe distinguishable heat signatures, indicating that heat



resulting from system load is independent from heat resulting
from use of the thermal sensor; see Fig. 3.

In all experiment conditions we can clearly see that the area
around the thermal camera aperture and the shutter used in the
blackbody calibration heats up. The effect of this heating is
further exacerbated by the CAT S60 being dust and waterproof,
which means most of the heat is released through the opening
of the thermal camera. We can see that the hottest areas on the
right are the hinge of the SIM slot cover, a larger area under
the SIM slot door, and the opening of the thermal camera.
With the CPU active (middle and top rows), a large area
around the opening of the camera flash LEDs also heats up. In
summary, besides seeing a clear increase in thermal radiation
in the thermal camera during operating the camera, we can
see that also other operations of the device have an influence
on the temperature around the thermal camera.

C. Relationship between Battery Temperature and Thermal
Camera Measurements

We next investigate how the error in FLIR measurements
changes when the temperature of the device casing it changes.
We consider battery temperature, available through most smart
battery interfaces, as a proxy for change in device temperature.
We consider two experiment setups, measuring cold water
inside a smart fridge, and measuring a painted wall in ambient
temperature; see Sec. IV.

Fig. 4 shows how the measured mean temperature of the
water changes over time in the smart fridge scenario, and
Fig. 5 shows results for ambient temperature scenario. The
pattern of measurement error is similar in both cases. From
both images we can see an error caused by calibration, which
stabilizes after two calibration cycles. For monitoring a wall
in ambient temperature, the values are slightly higher than
the ground truth, with the values initially rising as battery
temperature increases. For the smart fridge case, the reverse
occurs, i.e., the thermal camera values decrease below ground
truth as the device cools down. In both experiments, the
thermal camera values drift to a state where they consistently
differ from the ground truth. Result of these experiments
highlight how changes in battery temperature mirror errors
in the thermal camera values, and thus serve as a proxy for
assessing effect of the device casing the camera.

III. ADAPTIVE THERMAL CALIBRATION

The previous section demonstrated that the temperature
measurements recorded on the CAT S60 thermal camera suffer
from several problems. Firstly, the data fluctuates as the
device self-calibrates, and this can occur at any time when
operating the camera. Secondly, the values before and after
these fluctuations are further away from the true temperature
of the object than desired, and seem to mirror changes in
the internal temperature of the device. To mitigate the effects
of these error sources, in this section we develop a novel
deep learning based calibration technique for improving the
accuracy and robustness of thermal camera measurements.

A. Overview and Implementation

An overview of our model is shown in Fig. 6. In the first
stage (Preprocessing and Normalization), we extract five ag-
gregate statistical features from the thermal image: difference
in temperature, minimum, maximum, average, and variance
of the target object (as given by the image shown in the
screen). Difference in temperature measures changes in target
object over time, while the other features characterize the
most recent thermal image. In our experiments, we assume the
input image has been cropped to match with the target object.
When this is not the case, image segmentation techniques can
be used to identify the appropriate target (see, e.g., [14]).
Parallel to this, we retrieve battery temperature and latest
CPU usage that are closely correlated with the heating/cooling
process from the smartphone operating the thermal camera.
Both sets of features, together with the internal calibration
label (In Progress or Tuned) returned by the device are then
synchronized into a single (8 dimensional) representation,
which is transformed to match input for an LSTM layer. In
the transformation process we first remove noise introduced
by the internal calibration by removing all data from the
calibration period. The internal calibration labels returned by
the CAT S60 smartphone seem to correspond to the end of
the calibration period and reflect the end of the period where
measurements have clearly identifiable drift. To remove all
noisy measurements, we apply a reverse peak detection using
the frame labeled as ”calibrating” as the end of the peak and
remove all preceding frames matching the same peak. On
average, this process removes 13 frames preceding the end
of the calibration period while preparing segmented training
data for our model.

Our current implementation uses the Keras2 deep learning
library with TensorFlow as backend. In our experiments we
run the model on a commodity laptop (HP EliteBook 820).
However, the model can be converted to TensorFlow Lite3

based implementation, which can be employed on Android
mobile devices such as the CAT S60. In total, measurements
of 315 minutes at 1 fps and 3 MB size after preprocessing
and feature extraction, are used for model training and testing,
in which the amount of data varies depending on different
evaluation settings (see Sec. IV). The training is fast, as only
8 numerical features and a relatively small step size (see Sec.
III-A) are employed in our LSTM based model. The model
is trained for 10 epochs and each epoch takes on average 10
seconds, depending on the evaluation scenario.

B. Deep Learning Model

Our deep learning model consists of two further stages,
stacked LSTM layers (Recurrent layers) with attention mecha-
nism [15] followed by 5 fully-connected layers. The Recurrent
Layers use 10s as the time step for LSTM to take temporal
dependencies into account. As heating or cooling of the device
is a gradual process whose impact changes over time, we

2https://keras.io/
3https://www.tensorflow.org/lite/




