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Instrumental learning and decision-making rely on two parallel systems: a goal-directed
and a habitual system. In the past decade, several paradigms have been developed
to study these systems in animals and humans by means of e.g., overtraining,
devaluation procedures and sequential decision-making. These different paradigms
are thought to measure the same constructs, but cross-validation has rarely been
investigated. In this study we compared two widely used paradigms that assess
aspects of goal-directed and habitual behavior. We correlated parameters from a
two-step sequential decision-making task that assesses model-based (MB) and
model-free (MF) learning with a slips-of-action paradigm that assesses the ability to
suppress cue-triggered, learnt responses when the outcome has been devalued and
is therefore no longer desirable. MB control during the two-step task showed a very
moderately positive correlation with goal-directed devaluation sensitivity, whereas MF
control did not show any associations. Interestingly, parameter estimates of MB and
goal-directed behavior in the two tasks were positively correlated with higher-order
cognitive measures (e.g., visual short-term memory). These cognitive measures
seemed to (at least partly) mediate the association between MB control during
sequential decision-making and goal-directed behavior after instructed devaluation.
This study provides moderate support for a common framework to describe the
propensity towards goal-directed behavior as measured with two frequently used
tasks. However, we have to caution that the amount of shared variance between
the goal-directed and MB system in both tasks was rather low, suggesting that each
task does also pick up distinct aspects of goal-directed behavior. Further investigation of

Abbreviations: ANOVA, Analysis of Variance; DSI, Devaluation Sensitivity Index; DSST, Digit Symbol Substitution
Test; EEG, Electro Encephalography; IQR, Interquartile Range; ITI, Inter-trial Interval; MB,Model-based;MF,Model-
free; ms, Milliseconds; O, Outcome; Q, Choice Values; R, Response; RL, Reinforcement Learning; S, Stimulus; SARSA,
State-Act-Reward-State-Act; SD, StandardDeviation; TD, Temporal Difference; TMT, TrailMaking Test; VPA, Visual
Paired Association Test; WMT, Wiener Matrizen Test.
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the commonalities and differences between the MF and habit systems as measured
with these, and other, tasks is needed. Also, a follow-up cross-validation on the
neural systems driving these constructs across different paradigms would promote
the definition and operationalization of measures of instrumental learning and decision-
making in humans.

Keywords: goal-directed, habit, model-based, model-free, cross-validation, sequential decision making, slips-of-
action, reinforcement learning

INTRODUCTION

Instrumental decision-making requires learning and executing
adequate behavior efficiently in relevant situations in order to
obtain desired outcomes. Based on an extensive body of animal
research, this ability is thought to rely on the functioning of
two parallel systems: a reflexive habitual system and a deliberate
goal-directed system (Dickinson, 1985; Balleine and Dickinson,
1998a). The habit system is believed to be an evolutionary basal
system, suggested to mainly rely on dorsolateral striatal areas
(Yin et al., 2004, 2006; Tricomi et al., 2009; Wunderlich et al.,
2012a). Habits are ‘‘stamped in’’ by past reinforcements until
they are performed in an automatic routine. The habit system
is inflexible and suboptimal in changing environments, but it
offers the advantage to free up cognitive resources, allowing the
allocation of attention to parallel tasks. In contrast, goal-directed
behavior has shown to largely involve prefrontal cortical and
dorsomedial striatal brain areas (Corbit and Balleine, 2003;
Killcross and Coutureau, 2003; Yin et al., 2005a; Valentin et al.,
2007; de Wit et al., 2009; but see Jonkman et al., 2009), and is
characterized by flexible behavior, which is more easily adaptable
in the face of changing contingencies. However, it is thought
to be computationally more demanding than the habit system,
and the ability to engage the goal-directed system effectively
seems to depend on trait factors such as healthy aging (Eppinger
et al., 2013; de Wit et al., 2014) and cognitive capacities (Otto
et al., 2013; Smittenaar et al., 2013; Schad et al., 2014) or
state conditions, including stress (Schwabe and Wolf, 2009;
Otto et al., 2013; Radenbach et al., 2015). There is growing
evidence that deficient instrumental decision-making based on
the dual-systems theory is implicated in multiple disorders
(e.g., Gillan et al., 2011; Sjoerds et al., 2013; Horstmann et al.,
2015; Voon et al., 2015b; McKim et al., 2016; Reiter et al.,
2016). Human behavior, however, might be influenced by a
wide variety of unrelated external or internal factors (i.e., social
conventions, cultural context or financial situations), rendering
it more noisy than e.g., rodent behavior despite the large overlap
between human and rodent instrumental systems (Balleine and
O’Doherty, 2010). This increases the complexity to measure
individual constructs in humans. Together with the need to apply
cognitive measurements in pathological samples, this advances
the prerequisite to optimize the assessment of these instrumental
behaviors.

To adequately assess the degree to which the two proposed
systems are used in instrumental choices, it is essential to ensure
suitable instruments that objectively assess covert sub-processes

contributing to the constructs and that are simultaneously
straightforward for intuitive analyses and application in patient
samples (Huys et al., 2016). Throughout the past decade, distinct
paradigms to study the two systems in humans have been
operationalized based on different methodological and historical
perspectives of habitual vs. goal-directed behavior (Doll et al.,
2012; Dolan and Dayan, 2013). They can be distinguished
by whether the paradigm captures the ongoing contingency
updating process or largely established behavioral schemata,
processes that are not necessarily independent of each other
(Gillan et al., 2015). Further variations lie in the focus on central
sub-processes underlying habitual and goal-directed choices. For
example, goal-directed behavior is complex and involvesmultiple
sub-processes including forward planning, outcome contingency
weighting, search processes and abstract inference (Hampton
et al., 2006; Abe and Lee, 2011; Daw et al., 2011; Doll et al.,
2012). Change in outcome value or contingencies (e.g., outcome
devaluation or changes in outcome probabilities) provides the
canonical assay of behavioral flexibility as related to the balance
between goal-directed vs. habitual control. Frequently used
tasks, such as a slips-of-action paradigm (de Wit et al., 2012b)
and sequential decision-making paradigm (Daw et al., 2011)
assess the ability to rapidly adjust behavior to changes in
outcome value.

Classically, the relative involvement of the goal-directed and
habitual systems in instrumental choices has been studied in
animals by (selective) outcome devaluation procedures (Adams
and Dickinson, 1981; Balleine and Dickinson, 1998b), a method
that has been adapted to human research (Valentin et al., 2007;
Tricomi et al., 2009; Horstmann et al., 2015). Devaluation of
an outcome (O) that has been associated with a stimulus (S)
will change response (R) behavior when under control of the
goal-directed system, as R-O contingencies are represented in
the goal-directed system. However, once S-R habitual responding
to a stimulus is established, the outcome is no longer taken
into account in the choice behavior; therefore, devaluation of
the outcome will not immediately influence habitual responding
to the stimulus but only after gradual update of the stimulus
value after repeated outcome feedback. Following the same
line of reasoning, a slips-of-action paradigm was developed
(de Wit et al., 2012b), in which participants learn stimulus-
reward contingencies. After training, an instructed devaluation
phase assesses whether participants can suppress previously
learned responses that yield no-longer-valuable outcomes, while
continuing to respond for still-valuable outcomes. A failure
to do so, as reflected in ‘‘slips of action’’ towards devalued
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outcomes, is interpreted as relative reliance on S-R habitual—as
opposed to goal-directed—control. Crucially, a devaluation
sensitivity index (DSI) is calculated based on the difference in
responding between these two trial types, providing a single
parameter that represents the relative involvement of the habit
vs. goal-directed system in action control. This task has been
used extensively to study goal-directed and habitual action
control in healthy participants (de Wit et al., 2009, 2012b)
following dopamine (de Wit et al., 2012a) and serotonin
level reductions (Worbe et al., 2015) and in patient samples,
including obsessive-compulsive disorder (Gillan et al., 2011),
alcohol dependence (Sjoerds et al., 2013), Gille de La Tourette
syndrome (Delorme et al., 2016), Parkinson’s Disease (de Wit
et al., 2011; O’Callaghan et al., 2013) and autism spectrum
disorders (Geurts and de Wit, 2014). It remains unclear,
however, how devaluation sensitivity, as assessed with this task,
relates to other paradigms assessing goal-directed and habitual
control, such as the model-based (MB) and model-free (MF)
reinforcement learning (RL) algorithms used during sequential
decision making.

RL theory aims to formalize decision-making processes such
as goal-directed and habitual learning by describing distinct
underlying computational mechanisms. To this end, in addition
to analyzing observable behavior such as accuracy, reaction times
and win-stay probabilities, generative models are implemented
to infer parameters that underlie the observed behavior. One of
the frequently used RL models follows the temporal difference
(TD) theory (Sutton and Barto, 1998), which is closely linked to
habitual learning. It provides a ‘‘MF’’ update rule to learn action
values based on past reinforcements. Goal-directed instrumental
learning has also been proposed to have a formal counterpart in
RL, in a family of algorithms known as ‘‘MB’’ RL (Daw et al.,
2005; Rangel et al., 2008; Redish et al., 2008). The MB system
uses a model of the environment for flexible forward planning.
Resembling the goal-directed system, it contains knowledge on
the causal relationship between actions and outcomes. In the
context of RL theory, one task to study goal-directed vs. habitual
responding with the MB and MF algortihms, respectively is the
two-step sequential decision making task (Daw et al., 2011) in
combination with computational modeling of decision making
using MB and MF algorithms. This two-step task has been
extensively used in the past years to study MB vs. MF learning
in healthy and diseased samples (Daw et al., 2011; Wunderlich
et al., 2012b; Eppinger et al., 2013; Otto et al., 2013; Deserno et al.,
2015a,b; Gillan et al., 2015; Radenbach et al., 2015; Voon et al.,
2015b; Morris et al., 2016; Reiter et al., 2016; Worbe et al., 2016).

The increasing availability of instruments measuring
goal-directed and habitual behavior increases the necessity for
cross-validation of different paradigms on the assessment of
the two central constructs. Recently, Friedel et al. (2014) have
performed a valuable cross-validation study on the goal-directed
and habit constructs assessed by a selective devaluation task
(Valentin et al., 2007) and the two-step sequential decision-
making task (Daw et al., 2011). They found specific cross-
correlation between MB choices during sequential decisions
and goal-directed behavior after devaluation. This suggests a
single framework underlying both task measures, speaking in

favor of construct validity of both measurement approaches.
However, further comparable research on cross-validation of
instrumental decision-making between other tasks is needed.
Another recent study directly manipulated MB learning with
habitual responding within one paradigm: they used an adjusted
two-step sequential decision-making task, including a later
phase that provided a DSI (Gillan et al., 2015). By using a
median split on this DSI, they defined groups of participants
using predominantly goal-directed or habitual responding.
They found that MB control during the first phase of the task
protected from established habitual responding during the last
phase measured by devaluation sensitivity. This further indicates
an overlap between MB learning and established goal-directed
behavior.

We would like to extend this line of research by cross-
validating MB control and goal-directed responding between
two different tasks that have been most commonly used in
the recent body of literature. We will correlate parameters
describing MB and MF control from the two-step sequential
decision-making task (Daw et al., 2011) with a DSI from the
slips-of-action paradigm (de Wit et al., 2012b; Worbe et al.,
2015), which measures the relative balance of goal-directed
and habitual choices on a gradual scale. We hypothesize a
positive association between the measure of MB behavior
and the DSI. In other words, participants who show more
MB behavior in the two-step task are expected to be better
able to respond selectively for still-valuable outcomes, while
suppressing slips of action towards no-longer valuable outcomes
in the slips-of-action paradigm. We additionally explore a
possible association between the tasks on the habit system,
expecting a negative correlation between MF behavior and the
DSI. We furthermore assess the role of higher-order cognitive
capacities, measured by widely used neuropsychological tests,
in the recruitment of the goal-directed/MB and habitual/MF
systems.

MATERIALS AND METHODS

Participants
A total of 28 healthy participants (12 females, mean age: 27,
see Table 1) performed both paradigms. Based on the previous
cross-validation study by Friedel et al. (2014), showing effects
sizes between 0.5 and 0.7, an a-priori power analysis (G∗Power
version 3.1.9.2) showed that for the current study a sufficient
sample size would lie between N = 13 and N = 34. Volunteers

TABLE 1 | Sample descriptives.

Descriptive Mean SD Range

Age 27.04 3.415 21–34
Gender (female): N, % N = 12 42.90%
Beck depression inventory (BDI) 3.68 3.422 0–14
Wiener matrizen test (WMT)

Score 18.96 3.854 11–24
IQ 120.38 12.249 95–136.5

Visual association test (VAT) 12.11 3.891 3–18
Digit symbol substitution test (DSST) 87.05 10.741 60–110
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were highly educated non-smokers without indication for major
depression as measured with the Beck’s Depression Inventory
(BDI), cut-off value 18 (Beck et al., 1996). Non-verbal intelligence
was assessed with the Wiener Matrizen Test (WMT, The
Viennese Matrices Test; Formann and Piswanger, 1979). Visual
short-term memory was tested with a Visual Association Test
(VAT), a computerized version of the Visual Paired Association
(VPA) Test, part of the Wechsler Memory Scale (Wechsler,
1987, 2006). In this test participants have to memorize the
combination of shape and color of six different stimulus pairs.
Cognitive speed was assessed with the digit-symbol-substitution
test (DSST; Wechsler, 1955). These cognitive measures were
included to examine their potential relation to performance on
each task.

Participants were recruited from the database at the Max
Planck Institute for Human Cognitive and Brain Sciences in
Leipzig, Germany. All participants were financially compensated
for participation with e7-per hour in addition to a monetary
reward acquired during the experimental tasks. The study was
approved by the Ethics Committee of the University of Leipzig,
Germany, and conducted in accordance with the Declaration
of Helsinki. Written informed consent was obtained from all
participants prior to the study.

Paradigms
Three-Phase Instrumental Learning Task
A simplified version of the slips-of-action paradigm, an
instrumental learning task developed by de Wit et al. (2012b)
was used, which has been successfully applied in previous
studies (e.g., Worbe et al., 2015; Delorme et al., 2016). In
the current study, pictures of animals instead of fruit pictures
were used. The task consists of three phases, a discrimination
training phase to learn S-R-O associations and an outcome
devaluation phase and slips-of-action phase to test for the
strength of learned S-R-O associations (see Figure 1). The slips-
of-action phase provides a DSI (for detailed explanation, see
below), which encompasses a ‘‘balance’’ measure of relative
goal-directed and habitual control. We do report results on
the other phases of the task, as is done in all previous studies
using the same task (e.g., de Wit et al., 2011, 2014; Geurts
and de Wit, 2014; Worbe et al., 2015; Delorme et al., 2016).
However, the current study solely aims to assess the parallels
between different tasks in measuring relative involvement of
goal-directed/MB and habitual/MF control. Therefore the DSI
of this task is of main interest for correlational analyses to the
current study.

Discrimination training phase
During the first phase, the discrimination training phase,
participants learned by trial-and-error to respond (R) with a left
or right button press to stimuli (S) in order to gain outcomes (O)
that are worth points representing monetary reward. Participants
were instructed to earn as many points as possible. A trial
started with a box displayed in the middle of the screen, with
a picture of an animal printed on the front side. Participants
were instructed that the box could be opened with either a left
or right button press, but that only one of the two buttons

is the correct one, rendering another animal plus a monetary
reward in the opened box. When pressing the incorrect button,
the box would open, but it would be left empty, without
a monetary reward (zero points won). Six different possible
stimuli, displayed in a randomized order over the trials, would
lead deterministically (i.e., with a 100% contingency) to six
different outcomes in the case of a correct response. For three
stimuli a right button press would lead to the outcome and a
monetary reward, whereas for the other three a left button press
would be the correct one to obtain an outcome plus monetary
reward. This phase comprised eight blocks and a total of 96 trials.
Dividing the task into blocks with randomized stimulus order
within each block aided in measuring a learning effect across
blocks, and ensured that participants learned all stimuli evenly
divided throughout the experiment, instead of randomly seeing
only a high amount of repetitions of one stimulus e.g., at
the end of the training. Each stimulus was displayed 16 times
in order for all participants to adequately learn the S-R-O
associations.

Outcome-devaluation test phase
Following the discrimination training phase, an outcome-
devaluation test phase assessed the strength of goal-directed R-O
associations learned during the training phase. Here, outcomes
(again, open boxes with animal icons) were displayed in pairs;
one that was previously associated with a left response and
one with a right response. In each trial, one of the outcomes
was devalued (i.e., it would no longer produce a monetary
reward), indicated by a red cross superimposed on the devalued
outcome. Now, participants had to use their knowledge of the
R-O relationships to (re)direct their choices towards the still-
valuable outcome, by pressing the button that had lead to this
outcome during the discrimination training phase. This phase
was comprised of 36 trials. Participants were not directly given
feedback on each trial, but instead were instructed that correct
button presses would still earn them points and that they would
be shown their total score at the end of the test phase.

During the discrimination training phase and the outcome-
devaluation test phase, we assessed the total percentage correct
responses (task accuracy). Due to non-normal distribution of all
outcome measures (including accuracy in the learning phase),
non-parametric testing was used. The Friedman test was applied
to test for performance differences across the eight equal blocks
of the training-phase, to check for instrumental learning effects
over time.

Slips-of-action phase
During the slips-of-action phase, the balance between
goal-directed and habitual learning systems was directly assessed
and hence, this phase is of main interest for cross-validation with
the sequential decision-making task (see below).

This phase was comprised of nine blocks, with a total of
108 trials. At the beginning of each block an instruction screen
with six possible outcomes (open boxes with animal icons inside)
was shown for 5 s, two of them superimposed with a cross.
The cross indicated devaluation of those outcomes, and that
responding to the stimulus associated with those outcomes
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FIGURE 1 | Experimental paradigm, three-phase instrumental learning task. (A) Discrimination training phase. In this example, a flamingo stimulus printed on
the front of a closed box indicates that pressing the right key will open the box and will be rewarded with a donkey and points inside of the box. Pressing the left key
will not be rewarded (empty open box is revealed). (B) Outcome-devaluation test. In this example, two open boxes are presented with a donkey and fish inside. The
cross superimposed on the fish signals this outcome is no longer worth any points. The accurate response in this example would be pressing the right key (which
yielded the still-valuable donkey outcome during the learning phase). (C) Slips-of-action test. (1) Participants are first presented with the six outcomes. In this
example, donkey and cow are superimposed with a cross, indicating that the response leading to these outcomes will now result in subtraction of points
(devaluation). The other animal outcomes are still valuable. (2) Afterwards, in rapid succession animal stimuli are presented on the outside of the boxes. Participants
are instructed to press the correct key if a stimulus indicates the availability of a still-valuable outcome inside the box (“Go”, example: polar bear stimulus signaling
fish outcome), but withhold responding if the outcome inside the box has been devalued (“No-Go”, example: flamingo stimulus signaling donkey outcome).

would consequentially no longer earn points. After this screen,
stimulus pictures were shown in rapid succession. Participants
had to respond as fast as possible with a correct button-press
to stimuli (closed boxes with an animal icon printed on the
front) associated with still-valuable outcomes, and withhold their
response for stimuli associated with devalued outcomes. Each
stimulus remained on the screen for a fixed 1000 ms, during
which the participant had to respond or withhold their response,
respectively. The next trial started after an inter-trial interval
(ITI) of 1000 ms. As in the outcome-devaluation phase, also
in this phase no direct feedback was given, in order to prevent
new learning. Instead, the total amount of points was shown at
the end of the phase. During each block, each of the six stimuli
was shown twice in semi-random order, with the exception that
stimuli were never directly repeated. Throughout the nine blocks,
each outcome was devalued three times, resulting in 36 trials
where the outcome was devalued, and 72 trials with still valuable
outcomes.

In this phase, response tendencies through direct S–R
associations (related to the habit system) should lead to
commission errors on trials showing stimuli associated with the
devalued outcomes. Contrarily, successful selective inhibition

on the basis of outcome value should be suggestive of
dominant goal-directed control through more complex S-R-O
associations, which is mediated by anticipation and evaluation
of the consequent outcome (see e.g., Gillan et al., 2011; de
Wit et al., 2012a,b). We calculated the DSI for the slips-of-
action phase by subtracting percentages of responses made
toward devalued outcomes from percentages of responses made
toward still valuable outcomes, according to the following
formula: ((N valued responses/N total responses)− (N devalued
responses/N total responses)). Following the explanation above,
this DSI during the slips-of-action phase is a ‘‘balance’’ measure
of relative goal-directed and habitual control, and hence of main
interest for the cross validation with the sequential decision-
making task.

Baseline test phase
As a control test for general inhibitory impairments, participants
also performed a baseline test of inhibitory control. This test
closely resembled the slips-of-action phase, except that the
decision to respond or withhold could be based directly on
stimulus identity as opposed to outcome anticipation. To this
end, at the beginning of each block a screen with the six possible
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stimuli (closed boxes with animal printed on the outside) was
shown, two of them superimposed with a cross. This time
participants simply had to withhold their responses for the
stimuli that had been superimposed with a cross (‘‘stimulus
devaluation’’). Again, no direct feedback was given, but they
were shown the total amount of earned points at the end of
the phase. Importantly, the baseline test controls for outcome-
based responding, as it is independent of the outcomes. However,
it does not control for S-R associated behavior, thus the test
might also be driven by strong S-R associations, which could be
indicative of habitual behavior. The order of slips-of-action and
baseline test phase was counterbalanced across participants.

Two-Step Sequential Decision-Making Task
A two-step Markov sequential decision-making task (Daw et al.,
2011; see Figure 2) was used to assess the degree of MB and MF
behavioral control. The applied version was identical to previous
work from our group (Friedel et al., 2014; Sebold et al., 2014;
Deserno et al., 2015a,b; Reiter et al., 2016). The task consisted
of 201 two-stage trials. Within each trial, participants made two
(stage 1, stage 2) sequential choices out of two stimuli to finally
receive a monetary reward after the second stage (Figure 2A).
At the first stage, participants selected within 2 s one of two
stimuli displayed in gray boxes. Responses slower than 2 s were
invalid. The chosen stimulus moved to the top middle of the

screen and remained displayed during the second stage, while
the non-chosen stimulus faded after the choice was made. At
the second stage, participants again chose between two stimuli in
differently colored pairs of boxes. The position of the stimuli on
the left or right side of the screen in both stages was randomized
and participants were explicitly instructed that the position of the
stimuli was not relevant. The second-stage choice could either
be rewarded with 20 eurocents (displaying a coin), or was not
rewarded (displaying a zero). Feedback (reward or no reward)
after the second choice was delivered in a probabilistic manner
following slowly changing Gaussian random walks (see Daw
et al., 2011). Participants trained for 55 trials before performing
the actual task and were explicitly introduced to the task-
structure, similar to Daw et al. (2011). They were informed that
they would get financial reimbursement after the task with an
amount depending on the total reward received during the task.

Stay probabilities
Crucial to this task is that presentation of second-stage pairs
depends probabilistically on first-stage choices: each of the first-
stage choices was predominantly associated with one of the
two second-stage stimulus pairs (70% → common state) and
less with the other (30% → rare state; see Figure 2B). These
state transition probabilities were fixed during the experiment.
A MF agent disregards these transition probabilities and stays

FIGURE 2 | Experimental paradigm, two-step sequential decision-making task. (A) Example of a trial-sequence with timing; (B) state-transition probabilities
indicating common and rare transitions; (C) hypothetical full model-free (MF) and full model-based (MB) choice strategies would result in these choice patterns.
Depicted here, stay probability plots for first step choices as a function of reward (reward vs. no reward) and state (common vs. rare). A main effect of reward guides
MF choice strategies, whereas MB choice strategies show a reward ∗ state interaction.
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with the first-stage actions that have led to a reward after a
second-stage choice. This indicates a main effect of reward on
stay probabilities at the first stage: the probability that the same
action will be repeated in the subsequent trial. Contrary, a MB
agent does take into account these transition probabilities and
accordingly, contains a ‘‘model’’ of the task. In other words,
the MB system increases the chance to switch at the first-
stage after a reward was delivered following a ‘‘rare’’ transition,
but increases stay behavior at the first-stage after receiving no
reward after a ‘‘rare’’ transition. This indicates a reward-by-
state interaction effect on stay probabilities. See Figure 2C for
a hypothetical representation of stay probabilities for a pure
MF and pure MB learner, respectively. For task descriptive
analyses, individual stay probabilities, as stay-switch behavior
was defined as a function of reward (reward vs. no reward) and
state (common vs. rare), are subjected to a repeated-measures
analysis of variance (ANOVA) with reward and state as within-
subjects factors.

Computational modeling
We used computational modeling in the analyses of choice
behavior, to deduce covert control strategies in solving the
task, based on the MF or MB system. In line with Daw et al.
(2011), we used RL models that learn choice values (Q) through
prediction errors. To this end we distinguish the three pairs of
stimuli in the two stages (first stage: SA, second stage: SB, SC),
which are followed by an action a. First, trial-by-trial MF (QMF)
stimulus values were calculated with a State-Act-Reward-State-
Act (SARSA) (λ) model as follows:

QMF(Si,t+1, ai,t+1) = QMF(Si,t, ai,t)+ αiδi,t (1)

Here i denotes the stage (first-stage: i = 1; second stage: i = 2),
and t denotes the trial. In equation 1, δ refers to the trial-by-
trial prediction error used to update the stimulus value, weighted
by learning rate α. The prediction error is computed as the
difference between expected value and obtained reward (r):

δi,t = ri,t + QMF(Si+1,t, ai+1,t)− QMF(Si,t, ai,t) (2)

Note that r1,t = 0 because no reward is delivered after a first-
stage choice, and QMF (S3,t, α3,t) = 0 because the task only has
two states. First-stage values are additionally updated by a stage-
skipping parameter λ, which connects the two stages and allows
the reward prediction error at the second stage to modulate first-
stage values:

QMF(S1,t+1, a1,t+1) = QMF(S1,t, a1,t)+ α1λδ2,t (3)

Next, the MB algorithm learns values by forward planning, and
computes first-stage values by merely multiplying the better
option at the second stage with the transition probabilities:

QMB(SA, aj) = P(SB|SA, aj)maxQMF(SB, a)
+P(SC|SA, aj)maxQMF(SC, a)

(4)

This simplified approach to MB control is justified because
participants are extensively trained on the transition probabilities

(also shown in Daw et al., 2011). Finally, these MF and MB
decision-values are connected in a hybrid algorithm:

Q(SA, aj) = ωQMB(SA, aj)+ (1− ω)QMF(SA, aj) (5)

In this equation ω is a free weighting parameter, which connects
the MB and MF values. Therefore, ω represents the relative
influence of the MB and MF system that is, other than
two separate parameters describing MB and MF choices (see
below), a parameter of interest in the correlation with the goal-
directed/habit parameters from the slips of action task.

Finally, to connect the calculated values to choices, we used
an observation model following the softmax choice rule. This
softmax observation model transforms the obtained values into
choice probabilities with three parameters: the free inverse
temperature parameter (βi) shows deterministic choices and
is allowed to differ between the two stages (β1 and β2) and
a repetition parameter (ρ) accounting for perseveration of
first-stage choices:

p
(
ai,t = a|Si,t

)
=

exp
(
βi
[
Q(Si,t, a)+ ρ ∗ rep(a)

])∑
a′ exp

(
βi
[
Q(Si,t, a′)+ ρ ∗ rep(a′)

]) (6)

To connect the choices to the values of the MB and MF system
individually, we calculated separate free inverse temperatures
for the two systems (βMB and βMF) that specify the degree
to which action choices follow from the MB and MF action
values respectively. To this end we multiplied the first-stage
stochasticity parameter β with ω: βMB = ω ∗ β and βMF =

(1− ω) ∗ β (see Otto et al., 2013). These two parameters facilitate
examination of individual differences in the influence of either
the MB or MF system and are therefore used in the correlation
analyses with the slips-of-action task.

Bounded parameters were fitted by transformation to a
logistic (α, λ, ω) or exponential (β) distribution in order to
obtain normally distributed parameter estimates. To infer the
maximum-a-posteriori estimate of each parameter for each
subject, we set the prior distribution to the maximum-likelihood
estimates given the data of all participants, and subsequently used
Expectation-Maximization (Huys et al., 2011, 2012).

Correlation Between the Two Paradigms
Wewere interested whetherMB andMF updating was associated
with goal-directed/habitual choices. Therefore, the βMB and βMF
parameters from the two-step task, describing MB and MF
choice behavior respectively, were correlated with the DSI of the
slips-of-action phase. The DSI parameter indicates the balance
of goal-directed and habitual behavior, and was computed by
calculating the difference between percentages of responses made
toward valuable outcomes minus percentages of responses made
toward devalued outcomes. We expected a positive association
between βMB and the DSI, and a negative association between
βMF and the DSI. If a strong association of both βMB and βMF
with DSI could be found, this could reflect a positive association
between the DSI and the balance score of the two-step task, the
weighting parameter ω, computed using the modeling approach
as described above. Therefore, we also performed a confirmatory
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correlation analysis between these ‘‘balance’’ parameters of the
two tasks.

In the slips-of-action task, aside from the balance parameter
DSI, no separate parameters describe the two individual
instrumental systems separately. However, the DSI is calculated
based on percentage responses to still valuable outcomes and
the percentage slips of actions (i.e., responses for devalued
outcomes). A higher amount of slips-of-actions to devalued
outcomes is thought to resemble higher S-R habit responding.
Therefore, we post hoc explored the direction of the association
between the two systems by taking the two individual variables
of the slips-of-action phase as a rough approximation of
goal-directed and habitual behavior, and the MB and MF
parameters of the two-step task.

As we had a priori hypotheses of a positive association
between goal-directed and MB measures from the two tasks
(Doll et al., 2012; Friedel et al., 2014; Gillan et al., 2015), we
report one-tailed p-values. Additionally, we explored a positive
association between habitual and MF behavior in the two
tasks. Due to the non-normal distribution of the slips-of-action
parameters and βMF, we applied themore conservative Spearman
correlation coefficient, in line with a previous cross-validation
study (Friedel et al., 2014).

RESULTS

For sample description and scores on the general cognitive tests,
see Table 1.

Three-Phase Instrumental Learning Task
As all variables of the instrumental learning task violated the
assumption of normality (Shapiro-Wilk test: p’s < 0.05), we
report median and interquartile range (IQR) in addition to
the average percentages and used non-parametric tests where
necessary.

Discrimination Training Phase
All participants showed the expected learning effect, confirmed
by a Friedman test that showed a significant increase
in percentage of correct responses over the eight blocks
(X2 = 103.922, p < 0.001; see Figure 3A). A non-parametric
binomial test shows that by the last block everyone had
learned the correct responses to the stimuli significantly above
chance level (P(Y > 50 | n = 28, p = 0.5) < 0.001), with an
average percentage correct responses of 97.6% (SD = 4.45;
median = 100%; IQR = 6.25) by block 8.

Outcome-Devaluation Test Phase
During the outcome test phase, participants showed an
average percentage correct responses of 88.4% (SD = 15.17;
median = 94.44; IQR = 10.42), which was also significantly above
chance level (P(Y > 50 | n = 28, p = 0.5)< 0.001; see Figure 3B).

Slips-of-Action Phase
The crucial test of this task is the slips of action phase,
where competition between outcome-based and stimulus-driven
control is tested. Participants responded on average 82.2%
(SD = 14.54; median = 85.42; IQR = 19.79) on stimuli that led
to still-valuable outcomes. Slips of actions, that is, responding
to stimuli that had a devalued outcome, occurred on average
in 15.8% (SD = 16.92; median = 9.72; IQR = 13.19) of the
devalued trials (see Figure 3C, left panel). The calculated DSI was
66.47 (SD = 29.60; median = 75.00; range: 26–95; IQR = 27.08),
on average. Three statistical outliers (z > 2) had a DSI of
around zero or below, mainly due to a low response rate
on the stimuli associated with a still valuable outcome. These
three participants also showed a deviating response pattern in
the other phases (including discrimination training, outcome
devaluation, baseline test) compared to the rest of the sample,
by z-scores of or above |2|. For instance, they showed a response
pattern of around chance level on the outcome devaluation

FIGURE 3 | Results of the Instrumental learning task. (A) Instrumental discrimination training phase, displayed as learning over eight blocks. By the eighth
block, all participants had learned the correct S-R-O contingencies significantly above chance level. (B) Average percentage correct responses on the (total)
discrimination training phase (left) and outcome devaluation phase (right). (C) Percentage responses to still valuable and devalued trials of the slips-of-action phase
(left) and the baseline test phase (right). Error bars: 95% confidence interval.
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phase and/or baseline test. As these three participants clearly did
not show task participation, per chance by lack of attention or
incomprehension of the instructions, we removed them from
further correlation analyses.

The DSI showed a moderately positive correlation with other
cognitive measures such as general intelligence, as assessed by the
WMT and visual short-term memory, as assessed by the VPA
(WMT: ρ(25) = 0.356, R2 = 0.180, p = 0.040; VPA: ρ(25) = 0.434,
R2 = 0.400, p = 0.015). Cognitive processing speed, as measured
with the DSST did not show a clear association with devaluation
sensitivity (ρ(25) = 0.274, R2 = 0.050, p = 0.108).

Baseline Test Phase
During the baseline test, participants responded on average to
87.8% of the still-valuable stimuli (SD = 12.81; median = 92.36;
IQR = 11.46) and on average to only 8.2% (SD = 5.63;
median = 6.94; IQR = 7.64) of the devalued stimuli (see
Figure 3C, right panel). The difference between %responses
to still valuable and devalued trials was 79.61 (SD = 14.11;
median = 83.33; IQR = 14.58), on average. This difference score
is significantly higher than the difference score (DSI) on the
slips-of-action phase (see above; Wilcoxon Signed Rank Test:
Z = −3.019, p = 0.002). This shows that participants had no
problems inhibiting their responses after stimulus devaluation.

Two-Step Sequential Decision-Making
Task
Stay probabilities showed a significant main effect of reward
(F(1,27) = 6.79, p = 0.015), as well as a reward by state
interaction (F(1,27) = 43.76, p < 0.001), but no main effect
of state (F(1,27) = 0.24, p = 0.628; see Figure 4). This result
replicates previous studies with the same task (Daw et al., 2011;
Wunderlich et al., 2012b; Smittenaar et al., 2013; Deserno et al.,
2015a; Gillan et al., 2015) and reflects an influence of both

FIGURE 4 | Stay probabilities in the two-step sequential
decision-making task. Stay probabilities in the two-step sequential
decision-making task show a reward by state interaction. Error bars: 95%
confidence interval.

TABLE 2 | Computational modeling parameter estimates.

Quantiles

Parameter Mean SD 25% 50% (median) 75%

ω 0.68 0.07 0.62 0.7 0.73
βMB 5.28 1.80 3.64 5.58 6.51
βMF 2.39 0.89 1.67 2.17 2.76
β2 4.18 1.59 2.86 3.98 5.3
α1 0.50 0.15 0.39 0.51 0.64
α2 0.52 0.25 0.33 0.58 0.70
λ 0.52 0.24 0.33 0.52 0.71
ρ 0.13 0.03 0.11 0.13 0.16
–LL 179.41 37.45 155.76 186.19 209.51

Legend. ω: relative influence of model-free (MF) and model-based (MB) values.

β: stochasticity of the choices for the first stage, under the MB system (βMB),

under the MF system (βMF) and the second stage (β2). α: learning rate for first

(α1) and second (α2) stage. λ: reinforcement eligibility parameter (estimated value

of the second stage should act as the same sort of MF reinforcer for the first stage

choice). ρ: first-stage choice perseveration. –LL: negative log likelihood, indicating

relative model-fit.

rewards and stay transitions on choice behavior. We further
quantified this with computational modeling using a hybrid RL
model that weights the relative influence of the MF and MB
strategies. Distribution of modeling parameters is displayed in
Table 2.

The parameters of interest of the two-step task also showed a
moderate association with other cognitive measures. The balance
parameter ω only showed a significantly positive correlation
with the VPA and a moderate but non-significant (trendwise)
association withWMT andDSST (VPA: ρ(25) = 0.422, R2 = 0.131,
p = 0.018; WMT: ρ(25) = 0.271, R2 = 0.058, p = 0.095; DSST:
ρ(25) = 0.301, R2 = 0.094, p = 0.087). The MB parameter βMB
was only significantly associated with the WMT but not (only
trendwise) with the VPA (WMT: ρ(25) = 0.388, R2 = 0.152,
p = 0.028; VPA: ρ(25) = 0.306, R2 = 0.086, p = 0.068; DSST:
ρ(25) = 0.070, R2 = 0.0036, p = 0.378), whereas the MF
parameter βMF was not correlated with any of the other cognitive
measures (WMT: ρ(25) = −0.010, R2 = 0.028, p = 0.482; VPA:
ρ(25) = −0.142, R2 = 024, p = 0.250; DSST: ρ(25) = −0.212,
R2 = 0.181, p = 0.172).

Construct Validity: Correlation Between
the Two Paradigms
We tested how the parameters of the two-step task describing the
individual influence of the two systems on choice behavior were
related to devaluation sensitivity. The slips-of-action phase DSI
correlated positively with βMB of the two-step task (ρ(25) = 0.431,
R2 = 0.055, p = 0.016), surviving Bonferroni correction for
the three correlations of interest that were performed, but not
with βMF (ρ(25) = 0.172, R2 = 0.003, p = 0.205; see Figure 5).
Next, we tested if a found association between the DSI and
individual system parameters of the two-step was reflected in
the balance parameter of the two-step task. We see a positive,
albeit non-significant, relation between the balance parameters
of the two tasks: ω of the two-step task and DSI of the slips-
of-action phase correlated positively however, this was non-
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FIGURE 5 | Scatterplots of MB and MF choice values of the two-step task and devaluation sensitivity of the slips-of-action paradigm. (A) A positive
correlation is seen between the MB parameter of the two-step task (βMB) and the devaluation sensitivity index (DSI) of the slips-of-action task: ρ(25) = 0.431,
R2 = 0.055, p = 0.016. (B) No significant association is seen between the MF parameter of the two-step task (βMF) and the DSI: ρ(25) = 0.172, R2 = 0.003,
p = 0.205. Dotted lines: 95% confidence interval.

significant, but showed only a trend (ρ(25) = 0.285, R2 = 0.035,
p = 0.083).

Following the significant association between devaluation
sensitivity and MB control we post hoc explored which of the
two variables in the slips-of-action phase that contribute to
the DSI score (% responses to valued and devalued trials),
drove this significant association between βMB and the DSI.
The % responses on still valuable trials was positively associated
with the MB variable (ρ(25) = 0.477, R2 = 0.091, p = 0.008),
whereas % responses to devalued trials (slips-of-action) was not
(ρ(25) =−0.123, R2 = 0.012, p = 0.279).

As goal-directed behavior in both tasks consistently correlated
with an independent measure of visual short-term memory
(VPA), we performed a post hoc mediation analysis (PROCESS
Macro; Hayes, 2013) with bias corrected bootstrap confidence
intervals to further elaborate a possible mediation factor in the
three-way association. We entered VPA score as a mediator (M)
in models with the DSI of the slips-of-action task as outcome
variable (Y), and the MB parameter (βMB) of the two-step
task as independent variable (X). This model was significant
(R2 = 0.373, F(1,23) = 6.556, p = 0.006), whereas the inverse
model with X = DSI and Y = βMB was not (p = 0.137).
Interestingly, this suggests a direction, where MB learning (βMB)
is a predictor for devaluation sensitivity, and not vice-versa.
The direct effect between X and Y seemed to decrease when
entering the mediators in the model (c’-path: p = 0.730). We
tested the change from c to c’ with the conservative Sobel’s
test, showing a moderate effect size, but no significance (c-c’:
k2 = 0.186, Z = 1.301, p = 0.193, 95% CI = [0.03–0.44]).
Note that although the Sobel test result is not significant per

the p-value, the confidence interval does not include zero,
which would lend support to the interpretation that there is a
moderate effect size. Therefore, this mediation analysis points
toward a partial mediation of visual short-term memory on the
association between devaluation sensitivity and the individual
MB parameter βMB.

DISCUSSION

The aim of the current study was to cross-validate instrumental
behavior from the goal-directed and habit systems assessed
by two frequently used tasks. To this end, we correlated
parameters assessing the involvement of the two systems from
an instrumental learning task with an instructed devaluation
slips-of-action phase (de Wit et al., 2007, 2012b) and a two-step
sequential decision-making task (Daw et al., 2011). Partly
conforming to our hypothesis, we see that MB control in
the two-step task is moderately associated with goal-directed
behavior in the slips-of-action paradigm, as βMB correlated
with the DSI. This effect of the DSI seemed mainly driven
by responding to still valuable trials, and not by responding
to devalued trials. An association between MB control and
devaluation sensitivity was also partly captured by a moderate,
albeit only trendwise significant, correlation between DSI and
the balance parameter of the two-step task (ω), which assesses
a relative involvement of the MB and MF systems in choice
behavior. MF control did not seem to be significantly associated
with devaluation sensitivity, which could have attenuated the
association between the two balance parameters including ω of
the two-step task. Ergo, we find a very moderate cross-validation
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between these tasks on the assessment of behavior within the
goal-directed system, whereas behavior within habit-like systems
did not seem overtly related between the tasks.

A moderate correlation between MB learning and
goal-directed devaluation sensitivity seems in agreement
with a common framework to describe goal-directed behavior, as
suggested by Dolan and Dayan (2013) and would indeed support
common definitions of (aspects of) goal-directed behavior
between the different task operationalizations. Comparably, in
a previous construct validity study, Friedel et al. (2014) also
found MB and goal-directed behavioral control to be positively
correlated between the two-step sequential decision-making
task (Daw et al., 2011) and a selective devaluation paradigm
(Valentin et al., 2007), respectively. Furthermore, MB learning
has been positively associated with goal-directed responding
within one paradigm (Gillan et al., 2015). This is in line with
the results in the current study, where we associated MB control
with devaluation sensitivity between two separate paradigms.
This suggests that computational accounts of MB control
mirror, at least partly, one of the many aspects of (established)
goal-directed behavior as measured with a selective devaluation
paradigm.

However, we do have to caution that the amount of shared
variance between both tasks was rather low. Moreover, it
seems that MB behavior predicts performance on valued trials
rather than responses towards devalued items, as it was mainly
responding to still valuable trials on the slips-of-action phase
that drove the association between devaluation sensitivity and
MB behavior. Together, this suggests that each task does pick
up distinct additional aspects of goal-directed behavior. It
could be conceivable that the DSI more captures sensitivity
to outcome value, whereas the two-step task (additionally)
seizes sensitivity to outcome contingency; both part of the
definition of goal-directed behavior. These distinct aspects of
goal-directed behavior may be differently processed in the
brain (however, for a study in primates, see Izquierdo et al.,
2004). Nonetheless, considering the association between MB
behavior and responses to still valuable items specifically, a
part of the variance that is shared between the two constructs
in this study might also be driven by performance more in
general.

Interestingly, and in this line, both goal-directed and MB
parameters were positively related to higher-order cognitive
measures including visual short-term memory. Goal-directed
behavioral control has been repeatedly shown to rely on higher-
order cognitive measures, an effect most pronounced with
working-memory capacity (Eppinger et al., 2013; Otto et al.,
2013; Schad et al., 2014; Culbreth et al., 2016). Working memory
capacity has even been shown to influence effects of detrimental
environmental factors, such as stress on MB control (Otto
et al., 2013). Although we did not directly measure working-
memory capacity, we did have information on neurocognitive
capacities in other cognitive domains. An exploratory mediation
analysis indicated that short-term memory partly mediated the
correlation between goal-directed and MB behavior in the two
tasks, indicating that the tendency to beMB/goal-directed in each
of the tasks depends on higher-order cognitive capacities, which

could be part of the explanation of a moderate overlap between
the two constructs.

Although negative results should be interpreted carefully, we
would like to comment on the complete absence of a significant
association between MF learning and habitual behavior in the
two tasks, even when including the three participants that were
regarded outliers on task behavior. We would like to discuss
three possible explanations: (1) the assessments of the habitual
system in the two tasks are unrelated; (2) habitual responding
is the predominant mode of control leading to little variability,
and thus correlation between paradigms; and (3) alternatively,
the explanation might not lie at the level of construct, but in the
(very goal-directed) sample tested.We discuss these explanations
more in detail below.

The first intuitive explanation is that the differently measured
aspects of habitual behavior are unrelated, either at the level
of the two used paradigms, or more general at the level
of construct definition. It is possible that the degree of MF
control is not directly related to the propensity to form habits,
but that the formation of action sequences might explain
habitual actions, as suggested before Dezfouli and Balleine
(2013). Contributing to this might be the distinction between
assessing ongoing updating processes during the two-step vs.
amount of slips of action as the expression of previously learned
S-R associations. This might specifically be crucial for the
assessment of the habit system. The acquisition vs. expression
of habitual control is thought to be represented in distinct
neural systems (Liljeholm et al., 2015; although integrative
views have also been proposed), advancing the belief that
behavioral acquisition vs. expression of habits is distinctively
assessed. The two-step task has changing reward contingencies
throughout the task and measures an ongoing (MF) TD learning
process without reaching an asymptote, forming MF habit-like
behavior by repeating previously rewarded choices without
considering the task structure. A habit is thought to represent
an automatized end-point of learning, while TD learning is,
although slowly, still sensitive to changes in the environment.
Conversely, the slips-of-action task evaluates the degree to which
habitual behavior is expressed during an extinction test probing
previously deterministically learned S-R associations. Therefore,
it is possible that expressed behavior during an ongoing (MF)
learning process differs from behavior observed during testing of
established S-R associations. In comparison, the study by Gillan
et al. (2015) associated MB and MF control within the same
task with an instructed devaluation test assessing goal-directed
and habitual behavior. In line with our findings they found that
the degree of MB learning was also associated with devaluation
sensitivity after the learning phase. MF learning however, was
not associated with devaluation sensitivity, comparable to our
results.

Second, an absent association between the tasks on the
assessment of the habitual system might also reflect the
robustness of the habitual/MF system, forming a predominant
default mode of response (Wood and Rünger, 2016). The
variability in the balance between the two decision-making
systems might be predominantly driven by variability in the
MB system, thus allowing cross-validation between paradigms in
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the goal-directed system specifically, but not the habit system.
The ubiquity of the goal-directed system (but not the habit
system) has been acknowledged previously (Doll et al., 2012).
However, it remains to be established how variability vs. stability
in both systems constitutes a balance between goal-directed
and habitual behavior (Lee et al., 2014). A default mode of
response from the habit system would explain why an imbalance
between the two systems in e.g., addiction seems to be driven
by decreased goal-directed behavior as opposed to increased
habitual responding (Sebold et al., 2014), although the opposite
has also been described (Gillan and Robbins, 2014). Devaluation
insensitivity after overtraining would then result from impaired
goal-directed control instead of heightened habit formation. Of
course, the strongest evidence for the notion that not either
one, but a balance between two systems determines outcome
devaluation sensitivity, comes from animal research, where
a double dissociations is described: animals with lesions to
dorsolateral striatum and infralimbic cortex are perpetually goal-
directed, even after extensive training, whereas animals with
dorsomedial striatal and prelimbic cortical lesions are habitual
even after only minimal training (Yin et al., 2004, 2005b, 2006).
It remains possible that the currently availably human tasks do
not offer an adequate translation from the animal paradigms,
and that the two tasks under scrutiny may not be optimally
tailored to assess the contribution of habits in instrumental
behavior. Importantly, neither of the paradigms compared in
this study assesses full ‘‘end-stage’’ habits, which are typically
manifest only after extensive overtraining (Colwill and Rescorla,
1988; Dickinson, 1994, 2015). Training in the current tasks
lasts ten to 20 min, specifically the training phase of the
instrumental learning task takes 16 encounters of every possible
S-R-O association, which is more than the minimally needed
amount to establish stable stimulus-based R-O associations,
but less than some other studies (e.g., Tricomi et al., 2009).
It therefore seems likely that these tasks fail to induce full
end-stage habits. This complicates the discussion of habits for
these tasks, and could further explain a lack of commonalities
between the MF/habit constructs of the tasks. This end-stage
phenomenon might not apply to the goal-directed system, as
it is by definition more flexible and updated continuously,
even after overtraining. The question further rises how these
tasks under scrutiny relate to other tasks used to measure
habit strength or related constructs, such as S-R instrumental
learning tasks employing overtraining, skill learning tasks, spatial
navigation tasks, the weather prediction task measuring implicit
habit-like learning, and many others (Knowlton et al., 1994;
Salmon and Butters, 1995; Gluck et al., 2002; Boettiger and
D’Esposito, 2005; Marchette et al., 2011; Wood and Rünger,
2016).

As a third possibility for the absent association, it should
be noted that the currently tested young and highly educated
sample shows relatively dominant goal-directed (MB) behavior,
which could (further) contribute to the fact that the current study
only captures correlations between the tasks on the goal-directed
systems. The average weighting parameter ω from the two-step
task lies around 0.70, which is high compared to previous studies
using the two-step task in healthy samples (Schad et al., 2014;

Deserno et al., 2015a,b; Voon et al., 2015a,b; Morris et al., 2016;
Worbe et al., 2016) and quantitatively indicates high involvement
of the MB system. A predominant involvement of the MB system
within this highly educated sample could lead to low variability
or even a bottom-effect in the habitual system, rendering it
harder to capture correlations between the MF/habit systems.
Indeed, we see lower variability in the MF system than in the MB
system, expressed by a lower variance of the βMF parameter (see
Table 2). Interestingly, and affirmatively, on the slips-of-action
phase we see a relatively low percentage of responses to devalued
trials (∼15% slips-of-actions), compared with existing literature,
where the percentage slips-of-actions in healthy samples on
averages lies around ∼30%–50% (Delorme et al., 2016; Ersche
et al., 2016), indicating that in the current sample the habitual
mode of control is relatively low in the slips-of-action phase. In
line with the study by Gillan et al. (2015), this could be directly
related to the relatively high involvement of the MB system
during learning, as they have shown that MB learning protects
against forming habits.

A limitation to this study is that due to the correlational
associations between the tasks, we cannot elaborate on possible
causal relationships betweenMB/MF learning and the expression
of goal-directed/habitual responding during a devaluation test.
The post hoc mediation analysis we performed did suggest
directionality between MB control in the two-step task and
devaluation sensitivity in the slips-of-action paradigm. This
matches the directional association between MB control and
devaluation sensitivity as reported by Gillan et al. (2015).
However, in the current study set-up we can only refrain from
further elucidations on this directionality.

In conclusion, the current study partly confirms a common
framework between assessments of goal-directed and MB
behavior, but we do not find such commonalities amongst the
MF and habit system. However, the evidence is not strong: it
should be acknowledged that the effects were only moderate,
and the found associations explained only a small part of the
shared variance, indicating there are still different aspects of
goal-directed/MB behavior being picked up by the two tasks.
Future studies should further elucidate these aspects, and the role
of MF learning in forming habits. Moreover, systematic cross-
validation on neural correlates of both instrumental decision-
making systems is needed to further promote definition and
adequate assessment of goal-directed and habitual behavior in
healthy and diseased samples.
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