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Fragile X syndrome (FXS) is a neurodevelopmental disorder that represents a common
cause of intellectual disability and is a variant of autism spectrum disorder (ASD). Studies
that have searched for similarities in syndromic and non-syndromic forms of ASD
have paid special attention to alterations of maturation and function of glutamatergic
synapses. Copy number variations (CNVs) in the loci containing genes encoding alpha-
amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors (AMPARs) subunits are
associated with ASD in genetic studies. In FXS, dysregulated AMPAR subunit expression
and trafficking affect neural progenitor differentiation and synapse formation and neuronal
plasticity in the mature brain. Decreased expression of GluA2, the AMPAR subunit that
critically controls Ca2+-permeability, and a concomitant increase in Ca2+-permeable
AMPARs (CP-AMPARs) in human and mouse FXS neural progenitors parallels changes in
expression of GluA2-targeting microRNAs (miRNAs). Thus, posttranscriptional regulation
of GluA2 by miRNAs and subsequent alterations in calcium signaling may contribute to
abnormal synaptic function in FXS and, by implication, in some forms of ASD.
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INTRODUCTION

Autism spectrum disorder (ASD) is a heterogeneous group of neurodevelopmental disorders
that are characterized by defective social interaction, impairment in verbal and nonverbal
communication, repetitive and restricted behavior, and sensory abnormalities (American
Psychiatric Association, 2013). Many autistic individuals display a variety of additional
neuropsychiatric features (Simonoff et al., 2008), an abnormal intellectual profile (Fombonne,
2003; Rydzewska et al., 2018), and epilepsy (Besag, 2017), indicating a high rate of co-morbidity
among the neurodevelopmental defects (DiCicco-Bloom et al., 2006). ASD has a strong genetic
component and genetic studies have implicated hundreds of genes associated with increased
risk of ASD (Persico and Napolioni, 2013). Extreme locus heterogeneity in ASD suggests
that an interplay of common and rare genetic variations contribute to the ASD phenotype
(O’Roak et al., 2012). These findings have led to the identification of candidate pathways and
functional changes involved in the pathophysiology of ASD (Pinto et al., 2010). Many of the
ASD risk genes are particularly important during brain development (Pardo and Eberhart,
2007). Features of autism associate with distinct rare monogenic neurodevelopmental syndromes,
including fragile X syndrome (FXS), tuberosis sclerosis, and Rett syndrome (Lintas et al., 2012).
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Syndromic single-gene disorders provide an excellent possibility
to investigate the molecular and cellular mechanisms that
increase the risk of autism. In this context, maturation and
function of glutamatergic synapses have received attention
(Uzunova et al., 2014; Fung and Hardan, 2015).

Alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid
receptors (AMPARs) are the main mediators of excitatory
transmission and synaptic strength in neuronal plasticity.
A decreased density of AMPARs has been found in the
post-mortem cerebellum of individuals with autism (Purcell
et al., 2001). Furthermore, AMPAR modulation can normalize
abnormal excitatory transmission and social impairments in
animal models of ASD (Kim et al., 2019). AMPARs are formed
by four subunits, GluA1–4. The predominantly expressed edited
GluA2 subunit makes the receptor impermeable to divalent
cations, whereas the receptors lacking GluA2 are permeable to
Ca2+ and show strong inward rectification that is caused by
intracellular polyamine block (Donevan and Rogawski, 1995;
Bowie et al., 1998; Kumar et al., 2002). A genetic deletion that
includes the GRIA2 gene encoding GluA2 is associated with
autism (Ramanathan et al., 2004) and mutations of RAB39B
that cause intellectual disability comorbid with autism lead to
impaired transport of GluA2 to synapses and subsequent shift
of AMPAR to higher calcium permeability (Mignogna et al.,
2015).

FXS is the most common inherited intellectual disability
syndrome (Santoro et al., 2012) and is considered as the
most common single-gene condition associated with autism
(Hernandez et al., 2009). The FXS phenotype includes
hyperactivity, defects in sensory integration, communication
difficulties, poor motor coordination, social anxiety, and
restricted repetitive and stereotyped patterns of behavior
(Hagerman et al., 2010). Epilepsy in 13%–44% of FXS cases
shows an age-related appearance (Kluger et al., 1996; Berry-
Kravis, 2002; Louhivuori et al., 2009). FXS accounts for 5%–7%
of all ASD cases (Hagerman et al., 2010). Depending on the
diagnostic criteria used, 30%–54% of males and 16%–20%
of females with FXS fulfil the standardized criteria of autism
(Brown et al., 1986; Hernandez et al., 2009; Kaufmann et al.,
2017). Impaired glutamate receptor-mediated plasticity is
implicated in FXS and an imbalance of excitation and
inhibition at the neuronal circuit level has been found
in the mouse model of FXS [Fmr1 knockout (KO) mice;
Bear et al., 2004; Bassel and Warren, 2008; Gibson et al.,
2008; Harlow et al., 2010; Gonçalves et al., 2013; Zhang
et al., 2014]. This review summarizes AMPAR alterations
observed in FXS used as a model for studies of autism
symptomatology.

ALTERED SYNAPSE FUNCTION IN FXS

FXS is caused by the absence of the FMR1 protein (FMRP),
which results from promoter methylation and transcriptional
silencing of the FMR1 gene with CGG triplet repeat expansion
(>200 repeats) in the 5′ untranslated part of the gene (Verkerk
et al., 1991). FMRP is an RNA-binding protein that is involved in
the regulation of transport and translation of specific mRNAs.

It is estimated that roughly 4% of brain mRNAs interacts
with FMRP (Brown et al., 2001) and many of the FMRP
target mRNAs are associated with ASD (Darnell et al., 2011).
In addition to mRNA interactions, FMRP associates with
microRNAs (miRNAs) and components of the miRNA pathway,
including Dicer and Argonaute proteins (Siew et al., 2013).
In addition, direct protein-protein interactions between FMRP
and ion channels have been found (Brown et al., 2010; Ferron,
2016). Several presynaptic and postsynaptic proteins, including
proteins involved in the regulation of membrane excitability,
ionic homeostasis, and neurotransmitter release, are abnormally
regulated in the brain of Fmr1 KO mice, which recapitulate the
main human FXS phenotype (Jin and Warren, 2000).

Exaggerated type I metabotropic glutamate receptor
(mGluR)-mediated synaptic translation enhances long-term
synaptic depression (LTD) in the absence of FMRP (Huber et al.,
2002; Bear et al., 2004). Long-term potentiation (LTP) is also
affected in Fmr1 KOmice (Li et al., 2002; Zhao et al., 2005; Desai
et al., 2006; Lauterborn et al., 2007; Wang et al., 2010; Xu et al.,
2012). Differences in the threshold for the induction of LTP in
the absence of FMRP implicate altered neuronal and particularly
dendritic excitability to neuronal plasticity changes (Meredith
et al., 2007; Meredith and Mansvelder, 2010). Compromised
spike-timing-dependent LTP in the prefrontal cortex of Fmr1
KO mice can be restored by increasing neuronal activity and
rearing these mice in an enriched environment restores synaptic
plasticity (Meredith et al., 2007). There is evidence that the
absence of FMRP leads to dysregulation of several ion channels,
including L-type voltage-gated calcium channels (Meredith et al.,
2007; Castagnola et al., 2018; Danesi et al., 2018) and potassium
(K+) channels (Brown et al., 2010; Deng et al., 2013), which
may contribute to defects in cellular excitability and neuronal
plasticity in FXS.

DYSREGULATED LOCALIZATION OF
AMPAR IN FXS

Ionotropic glutamate receptors are expressed already before
synaptogenesis and have roles in neuronal development in
addition to their function as mediators of synaptic transmission
and plasticity in mature neurons (Schlett, 2006). Alterations of
AMPARs are consistent with defective functional maturation
and neuronal plasticity in the FXS mouse brain. In the neonatal
brain, a large fraction of synapses are functionally silent due to
the absence of AMPARs and tonic Mg2+ block of N-Methyl-D-
aspartate receptors (NMDARs; Malenka and Nicoll, 1997; Hanse
et al., 2013). Upon later development, insertion of AMPARs to
synaptic membranes unsilences most of the silent synapses (Wu
et al., 1996). Silent synapses are increased in the Fmr1 KOmouse
brain during the first postnatal weeks (Harlow et al., 2010). The
AMPA/NMDA amplitude ratio of evoked synaptic responses
appears to be the lowest before closure of the critical period,
reflecting delayed synapse stabilization which involves delayed
refinement of cortical excitatory circuits in the FXS mouse brain
(Harlow et al., 2010).

FMRP promotes neuronal maturation by membrane delivery
of GluA1 without affecting total GluA1 protein expression
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(Darnell et al., 2011; Guo et al., 2015). In contrast, the
autosomal paralog of FMRP, FXR2P, increases GluA1 expression
via direct interaction with GluA1 mRNA and affects mRNA
stability (Guo et al., 2015). In the Fmr1 KO mouse brain,
internalization of surface GluA1 is abnormal in the prefrontal
cortex and amygdala, which represent brain regions implicated
in the neuropathology of autism (Suvrathan et al., 2010; Wang
et al., 2010). Augmented LTD leads to increased AMPAR
internalization in the hippocampus and cerebellum of the Fmr1
KO mouse (Huber et al., 2002; Bear et al., 2004; Nakamoto
et al., 2007). Retinoic acid-dependent synaptic scaling via
dendritic translation of GluA1 subunit of AMPARs is also
disturbed (Soden and Chen, 2010). Expression of GluA1 and
GluA2 mRNAs is reduced in the prefrontal cortex of the Fmr1
KO mouse when compared to wild-type controls (Achuta et al.,
2018), but it is not known whether the changes of AMPAR
expression observed in the FXS mouse brain correlate with
changes in human brain.

ION CHANNEL FUNCTION OF AMPAR
IN FXS

Independent of their role in synaptic transmission,
Ca2+-permeable AMPARs (CP-AMPARs) have developmental
functions that emerged already early in evolution (Hirai
et al., 2017). Expression of GluA2 is low in the early
developmental stages, suggesting that Ca2+ influx through
CP-AMPARs contributes to the regulation of neuronal and
glial development (Kumar et al., 2002; Zonouzi et al., 2011;
Lalanne et al., 2016; Szczurowska et al., 2016). In normal
neuronal development, the CP-AMPARs expressed during early
development are subsequently replaced by GluA2-containing,
calcium-impermeable receptors, which dominate in the mature
nervous system (Kumar et al., 2002). Interestingly, in some
disorders of developmental origin, this subunit switch is
delayed leading to an increased GluA1/GluA2 ratio or calcium
permeability (Talos et al., 2006; Ruffolo et al., 2016), consistent
with recent findings in studies performed on human FXS neural
progenitors (Achuta et al., 2018). AMPARs are expressed in the
embryonic proliferative ventricular and subventricular zones,
where the neural progenitors reside (Lidow and Rakic, 1995;
LoTurco et al., 1995). Neural progenitors express both AMPA
and NMDA receptors in a progenitor type- and developmental
stage-dependent manner, and these receptors mediate important
regulatory signals during progenitor differentiation (LoTurco
et al., 1995; Brazel et al., 2005; Jansson et al., 2011, 2013; Achuta
et al., 2017). In the rat brain, GluA2-lacking AMPARs are
expressed during the first postnatal week initially in radial glia
(López et al., 1994) followed by an ‘‘inside-out’’ gradient in
pre-oligodendrocytes and subplate neurons and later in cortical
neurons (Talos et al., 2006). Oligodendrocyte progenitor cells
(OPCs) express AMPA/kainate (KA) receptors and specific
agonists of these receptors cause reversible G1 arrest of OPC
cell cycle via Ca2+-independent means (Gallo et al., 1996).
Ca2+ influx-mediated excitotoxic cell death is promoted
by activation of AMPA/KA receptors in postmitotic pre-
oligodendrocytes, whereas a similar sensitivity to excitotoxic

insults is not observed in proliferating OPCs or mature
myelinating oligodendrocytes.

When compared with normal controls at the early stage
of progenitor differentiation, functional analysis has revealed
enhanced intracellular Ca2+ responses to AMPAR activation
in neural progenitors differentiated from human induced
pluripotent stem (iPS) cells generated from somatic cells of
FXS males (Achuta et al., 2018). Augmented CP-AMPAR
responses associate with increased Ca2+ influx via L-type
voltage-gated calcium channels and hyperresponsiveness to
membrane depolarization and to NMDA and mGluR type
I receptor activation (Danesi et al., 2018). Whitney et al.
have shown that activation of CP-AMPARs induces neuronal
differentiation in human neural progenitors. Consistent
with these findings, differentiation of glutamate-responsive
progenitors is enhanced from FXS progenitors (Whitney et al.,
2008). Blocking CP-AMPARs also affects neurite outgrowth in
both FXS and wild-type neural progenitors (Whitney et al., 2008;
Achuta et al., 2018). The increase in CP-AMPARs correlates
with an increased inward rectification and a reduced number
of GluA2 subunit-expressing cells in mouse FXS progenitors.
CP-AMPARs provide an important route for Ca2+ entry into
progenitors, and changes of Ca2+ signaling can contribute
to altered fate determination, differentiation, and migration
of FXS neural progenitors (Castren et al., 2005; Tervonen
et al., 2009; Saffary and Xie, 2011; Sheridan et al., 2011; Liu
et al., 2012; Doers et al., 2014; Li and Zhao, 2014; Telias et al.,
2015). Increased Ca2+ influx through CP-AMPARs renders
FXS neural progenitors more susceptible to excitotoxicity.
Increased vulnerability may act as a selective factor during
cell differentiation and may interfere with establishment of
neocortical circuits leading to network hyperexcitability in the
Fmr1 KO mouse brain (Meredith et al., 2007, 2011). Since
CP-AMPARs also influence morphological plasticity and
migration of neurons, increased CP-AMPAR signaling may be
involved in the delayed positioning of glutamatergic neurons to
the cortical plate and abnormal morphological transformation
of migrating cells in the developing cortex of the FXS mouse (La
Fata et al., 2014).

The GluA2 subunit imparts Ca2+ -permeability to AMPARs
only when it contains an arginine residue in a critical position
(‘‘Q/R site’’) of the ion channel, which is introduced by RNA
editing of the GluA2 primary transcript by adenosine deaminase
ADAR2 (Sommer et al., 1991; Wong et al., 2001; Wright and
Vissel, 2012). The GluA2 transcripts are nearly entirely edited in
the adult brain (Wright and Vissel, 2012). During development,
including in neural progenitors, editing of GluA2 transcripts is
also very efficient, although ADAR2 expression levels are low
(Pachernegg et al., 2015). Unedited Ca2+-permeable AMPARs
are found under pathological conditions (Kwak and Kawahara,
2005; Peng et al., 2006). The Drosophila fragile X homolog
(dFMR1) modulates activity of the RNA editing enzyme dADAR
(Bhogal et al., 2011) and it was recently shown that FMRP
promotes RNA editing in the human brain (Tran et al., 2019).
FMRP regulation of RNA editing was identified as a common
mechanism causing hypoediting of GRIA2 and GRIA4 in the
human ASD and FXS brain (Tran et al., 2019).
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miRNA-DEPENDENT REGULATION OF
AMPAR
Numerous mammalian genes are targets of miRNAs (Lewis et al.,
2005). These small (19–24 nucleotides in length) noncoding
RNAs act as post-transcriptional regulators of mRNA translation
and stability (Lee et al., 1993; Bartel, 2004). In the nervous
system, miRNAs play important regulatory roles during synapse
formation and in synaptic plasticity and memory formation
(Fregeac et al., 2016). Several miRNAs are implicated in the
etiology and pathogenesis of neurodegenerative, neurological,
and neuropsychiatric disorders, including autism (Beveridge
et al., 2010; Ghahramani Seno et al., 2011). A number ofmiRNAs,
including miR-124 (Ho et al., 2014), miR-181 (Beveridge et al.,
2010), miR-223 (Harraza et al., 2012), and miR-409 and miR-495
(Capauto et al., 2018) have been found to target GluA2 AMPAR
subunit mRNA and therefore have the potential to regulate
subunit composition and calcium-permeability of AMPAR.

Reduced GluA2 protein expression correlates with increased
expression of the noncoding MIR-181A1 gene (the host gene
of mature miRNAs) and mature miR-181a in FXS neural
progenitors (Achuta et al., 2018; Figure 1). Increased expression
of miR-181a-5p and miR-181a-3p was found in both human

and mouse neural progenitors at days 1 and 7 of neurosphere
differentiation. Expression of miR-181b was not detectable at
these early differentiation timepoints, which is consistent with
the low expression ofmiR-181b in the embryonic brain compared
to that in the adult cortex (Hutchison et al., 2013). Neurospheres
consist of mixed populations of neural progenitors and these
studies did not elucidate miR-181a expression and its functional
consequences in a cell type-specific manner.

The association of miR-181 species to the FXS gene
family with neuropsychiatric phenotype/ASD (Stepniak et al.,
2015) and a microduplication of chromosome 1q32.1 in the
region comprising the MIR-181A1 gene in a patient case
with developmental delay and autistic features (Olson et al.,
2012) support a role for miR-181 in FXS/ASD. Furthermore,
expression of miR-181 is increased in lymphoblastoid cell lines
of individuals with ASD (Ghahramani Seno et al., 2011) and
in the superior temporal gyrus and the dorsolateral prefrontal
cortex of individuals with schizophrenia (Beveridge et al., 2010).
There is evidence that miR-181a is developmentally regulated
and involved in cell-fate determination in the central nervous
system (Hutchison et al., 2013). The target genes of the
miR-181 family are implicated in regulation of developmental
mechanisms (Saba et al., 2012), neurotrophin signaling, and

FIGURE 1 | Schematic presentation of increased differentiation of neural progenitors expressing Ca2+-permeable (CP; alpha-amino-3-hydroxy-5-methylisoxazole-
4-propionic acid receptor, AMPAR) from human Fragile X syndrome (FXS) induced pluripotent stem (iPS)-derived neurospheres compared with normal healthy
controls. The miR-181a-mediated regulation of Ca2+-permeability of the AMPAR is visualized in a FXS progenitor by showing the increased expression of the
MIR181A1 gene. This leads to an increase in the expression of mature miR-181a, which by interacting with the GRIA2 mRNA, can post-trascriptionally reduce the
translation of the GluA2 subunit. The edited GluA2 subunit is required for Ca2+-impermeability of the AMPAR.
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axon guidance (Yang et al., 2014), consistent with a role
of miR-181 in the neuropathology of neurodevelopmental
disorders. Since expression of miRNAs is spatiotemporally
regulated, the expression of the miR-181 family and other
miRNAs that regulate GluA2 remain to be studied in detail
in the mouse and human developing and mature FXS/ASD
brain.

CONCLUSIONS/SUMMARY

Functional changes of AMPARs and increased Ca2+ influx
through AMPARs play an important role in the neurobiology
of FXS. AMPAR-mediated alterations may serve as common
pathological mechanisms in FXS and ASD. This is supported by
studies showing RNA hypoediting of AMPAR subunits in the
human FXS and ASD brain (Tran et al., 2019) and alterations of
AMPAR subunit expression and trafficking by genetic mutations
that cause ASD (Mignogna et al., 2015). The contribution of
miRNA-mediated regulation of CP-AMPAR signaling remains
to be further explored.

CP-AMPARs are implicated as critical mediators of neuronal
death in epilepsy, ischemia, traumatic brain injury, and
neurodegenerative disorders (Pellegrini-Giampietro et al., 1992;
Spaethling et al., 2008; Szczurowska et al., 2016; Whitehead
et al., 2017). This emphasizes the importance of CP-AMPAR-
dependent mechanisms in pathological processes in the brain

and as a potential target for therapeutic intervention. Human
iPS cell-derived neuronal cells offer possibilities to perform
further studies in a cell type-dependent manner in the actual
disease model. Many rescue strategies that target excessive
protein synthesis show beneficial effects on synaptic function and
behavioral phenotype in the FXS mouse model (Richter et al.,
2015). However, appropriate pharmaceutical compounds have
not shown sufficient efficacy in clinical trials, thus indicating
need for new treatment strategies (Berry-Kravis et al., 2011;
Erickson et al., 2017). Improved understanding of alterations
of CP-AMPAR signaling and their relationship to the direct
pathophysiological and manifold compensatory changes in FXS
may provide new avenues for treatment and biomarker discovery
in FXS.
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