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Abstract. Trophic interactions within food webs affect species distributions, coexistence, and provision
of ecosystem services but can be strongly impacted by climatic changes. Understanding these impacts is
therefore essential for managing ecosystems and sustaining human well-being. Here, we conducted a glo-
bal synthesis of terrestrial, marine, and freshwater studies to identify key gaps in our knowledge of climate
change impacts on food webs and determine whether the areas currently studied are those most likely to
be impacted by climate change. We found research suffers from a strong geographic bias, with only 3.5%
of studies occurring in the tropics. Importantly, the distribution of sites sampled under projected climate
changes was biased—areas with decreases or large increases in precipitation and areas with low magni-
tudes of temperature change were under-represented. Our results suggest that understanding of climate
change impacts on food webs could be broadened by considering more than two trophic levels, responses
in addition to species abundance and biomass, impacts of a wider suite of climatic variables, and tropical
ecosystems. Most importantly, to enable better forecasts of biodiversity responses to climate change, we
identify critically under-represented geographic regions and climatic conditions which should be priori-
tized in future research.

Key words: aquatic; climate change; data gaps; extreme events; food webs; freshwater; global; marine; precipitation;
species interactions; terrestrial; warming.

Received 11 December 2018; accepted 17 December 2018; final version received 13 February 2019. Corresponding Editor:
Debra P. C. Peters.
Copyright: © 2019 The Authors. This is an open access article under the terms of the Creative Commons Attribution
License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
10 Present address: Department of Environmental Science, Saint Mary’s University, Halifax, Nova Scotia, Canada.
� E-mail: erin.cameron@smu.ca

INTRODUCTION

Trophic interactions within food webs are
important regulators of biodiversity and ecosys-
tem function in marine, freshwater, and

terrestrial ecosystems. Across ecosystems, food
webs are structured by similar mechanisms that
are driven by the availability of resources (bot-
tom up) such as nutrients, energy, and water
and/or by consumers (top down) such as
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herbivores and top predators (White 1978,
McQueen et al. 1986). However, geographic vari-
ation in environmental conditions leads to
trophic interactions and food webs that can differ
fundamentally through space (Chamberlain
et al. 2014) and evolutionary constraints have
generated substantial differences in trophic inter-
actions among biomes. For instance, in contrast
to terrestrial habitats, in aquatic habitats the pat-
terns in allocation in autotrophs and the commu-
nity size structure lead to larger impacts of
consumption on primary producers and larger
indirect effects of predators (Shurin et al. 2006).
Trophic interactions can also vary geographically
(e.g., latitudinal gradients in the intensity of pre-
dation, Roslin et al. 2017). This variability in the
nature and complexity of interactions within
food webs, both among systems and through
space, makes understanding how environmental
changes such as climate change restructure com-
munities and ecosystems challenging.

Climate change is not occurring evenly across
the globe, and some regions such as the Arctic
are experiencing, or are projected to experience,
particularly large shifts in temperature and pre-
cipitation (IPCC 2014). Organisms also vary in
their vulnerability to climate change. Species that
have different ecological tolerances for abiotic
factors, such as temperatures or pH, may shift
their distributions or activities based on different
cues under climate change (Tylianakis et al.
2008, Walther 2010). In turn, these impacts can
affect food web structure. Trophic interactions
are sensitive to the phenology, behavior, and
physiology of multiple species, which will likely
each simultaneously be impacted directly (and
differentially) by climate change, in addition to
being impacted by indirect effects that cascade
through food webs. For example, lower trophic
levels show greater phenological sensitivity to
climate change (e.g., freshwater phytoplankton is
especially sensitive) than secondary consumers,
which may lead to mismatches between preda-
tors and prey (Thackeray et al. 2016). Climate
change is not resulting in similar environmental
changes across biomes, and communities that are
adapted to different environmental conditions
may respond differently even to the same climate
change driver; for example, experimental warm-
ing appears to strengthen top-down control in
food webs in colder regions, but weakens it in

warmer regions (Marino et al. 2018). Therefore, it
is essential that we understand how climate
change effects vary geographically due to varia-
tion in underlying environmental and historical
contexts (Chamberlain et al. 2014).
To improve predictions of community and

ecosystem structure in the future, there is an urgent
need for observations and experiments to be con-
ducted that examine trophic interactions under cli-
mate change (Alexander et al. 2016). A balanced
global picture of trophic interactions depends
upon a reasonably spatially representative sam-
pling of food webs across different regions, habi-
tats, and climatic conditions. However, little
information exists about the sampling representa-
tiveness of ecological studies in general, and stud-
ies on food webs in particular, across major
geographic/climatic zones, though the few avail-
able studies indicate that sampling is generally
extremely spatially patchy (Martin et al. 2012,
Sotomayor and Lortie 2015, Bellard and Jeschke
2016). Here, we review where experimental and
observational studies on climate change and food
webs have already been conducted to highlight
geographic regions and aspects that are most in
need of attention. Specifically, we conducted a glo-
bal synthesis of research on climate change effects
on food webs in terrestrial, freshwater, and marine
ecosystems to identify those which are under or
overrepresented in current studies. To place this
analysis in the context of ongoing climate change,
we further examined spatial biases in the distribu-
tion of studies in relation to key aspects of current
and projected future climate change.

METHODS

We synthesized the current research on climate
change and trophic interactions within food
webs by conducting a review using the key-
words “climate change AND food web�.” We
focused on the term “food web” in order to cap-
ture studies where the authors examined multi-
ple trophic levels of interactions in particular. We
searched ISI Web of Science for articles published
prior to 1 January 2017, which returned 2375
records. We filtered these articles to include only
those that met the following criteria: (1) exam-
ined at least two trophic levels, with one or more
taxonomic/functional groups at each level; (2)
investigated the effects of climate change on
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abundance, biomass, diversity, and/or food web
structure (e.g., number of links, connectance,
nestedness, modularity); (3) included empirical
data (reviews and modeling papers without data
were excluded); and (4) were in natural systems
(i.e., not highly managed agricultural ecosys-
tems). For example, these studies included inter-
actions such as predator–prey, plant–herbivore,
and plant–pollinator interactions. Because our
search captured very few host–parasite studies,
we excluded these studies from our review. Stud-
ies that either manipulated climate change stres-
sors to simulate potential future climate change
or examined climate changes that were already
occurring were included in our synthesis. In
addition to field research, laboratory studies that
involved samples collected from a specific loca-
tion or locations were included. If a single paper
described multiple studies that were conducted
at different locations or involved different
manipulations, each study within the paper was
included as a separate record. To identify addi-
tional suitable articles beyond our search, we
also searched the reference lists of all 339 review
papers published prior to 1 January 2017 that
were identified in our Web of Science search for
relevant papers.

From each study, we extracted: (1) the geo-
graphical location and ecosystem type of the
study (for laboratory studies, the location where
the samples were collected was recorded); (2)
whether it was conducted in the field or labora-
tory; (3) whether the study was experimental vs.
observational, and involved modeling; (4) the
trophic levels examined; (5) the climate change
variables tested; and (6) the response variable(s)
examined (abundance, biomass, diversity, food
web structure). We examined studies that looked
at effects of temperature, precipitation, [CO2],
ocean acidification, and extreme events (e.g.,
droughts, storms) as climate change stressors.

To explore the global distribution of food web
studies, study locations were mapped in relation
to terrestrial and freshwater major habitat type
data (Olson et al. 2001, TNC and WWF 2008). In
marine systems, study locations were mapped in
relation to ocean biomes created by grouping the
Longhurst biogeochemical provinces (Flanders
Marine Institute 2009). We examined current (av-
erage of 1970–2000) mean annual temperature
and precipitation at each terrestrial and

freshwater study site using data from Worldclim
v2 (Fick and Hijmans 2017) at a resolution of
5 min. As well, we examined current (average of
2000 to 2014) mean sea surface temperature at
each marine site using data from Bio-ORACLE
(Tyberghein et al. 2012, Assis et al. 2018) at a res-
olution of 5 min. We also created a graph to fur-
ther examine the distribution of sites by
extracting the mean of the mean annual tempera-
ture (from 1960 to 1990) and precipitation (from
1979 to 2013) of 1° 9 1° pixels for all terrestrial/
freshwater areas using data from the CLiMond
dataset (Kriticos et al. 2012) and the GPCC Glo-
bal Precipitation Climatology Centre (Schneider
et al. 2011). These points were color-coded based
on the climate boundaries of the major biomes of
the world proposed by Whittaker (1975). Finally,
to examine the distribution of sites with respect
to future projected climate change, we extracted
the projected change in temperature and precipi-
tation for the year 2090 under the RCP 6.0 sce-
nario (NCAR GIS Program 2012) for each study
location. This scenario was selected because it is
in the middle of the range of RCP scenarios; that
is, it is neither the most or least extreme. Under
this scenario, emissions peak around 2080 and
then decline.
To obtain a better understanding of which

biomes, as well as which current and future cli-
mate conditions, were under-sampled vs. over-
sampled, we performed chi-square tests that
compared the observed number of studies with
the number of studies expected if there was no
spatial bias. Thus, to test for uneven sampling of
biomes, we calculated the expected number of
studies for each biome based on the proportion
of the total area occupied by that biome. To
examine bias with respect to current climate in
terrestrial and freshwater systems, we calculated
the expected number of studies for incremental
categories of ~9°C and 400 mm by determining
the proportion of the land area in a given cate-
gory (e.g., �19° to �10°C). We chose these cut-
offs for categories because they produced 7–10
categories (i.e., were small enough that highly
different amounts were not in the same category)
and because they produced no categories with
zero expected studies (as this would not allow a
chi-square statistic to be calculated). For current
sea surface temperatures, which had a smaller
range, we calculated the expected number of
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studies for categories of ~4.5°C. To examine spa-
tial bias of sites in relation to future climate con-
ditions, we calculated the expected number of
studies for ~1°C and 100 mm incremental cate-
gories by determining the area projected to
change by a given amount (e.g., 1–2°C). We also
used Hellinger’s distance d to quantify the spatial
bias of the study sites in our review in relation to
the climate projection layers (Schmill et al. 2014,
Gonzalez et al. 2016; code available at https://d
oi.org/10.5281/zenodo.2553122). Hellinger’s dis-
tance compares similarities between the distribu-
tion of values captured by a set of points (e.g.,
the study sites in our review) with a uniform dis-
tribution. High values of d would indicate that
the distribution of sites is strongly spatially
biased. However, as the number of sites (N)
increases and covers every pixel in a map, d
becomes zero and the sample is no longer spa-
tially biased. Because N will never be so large
that it equals the total number of pixels, even a
random sample of points will have some spatial
bias and a non-zero value of d. To account for
this, we compared our values of d to expected
distributions that represent the amount of spatial
bias that would be expected for an unbiased
sample of the same number of studies as in our
review (N = 308), by randomly sampling each
climate projection map 1000 times. Analyses were
performed in R version 3.3.1 (R Core Team 2016).

RESULTS

We obtained 2375 papers from our literature
search and identified 264 studies that fit our cri-
teria from the initial pool of papers (Data S1). In
addition, 44 studies were added by examining
the reference lists of 339 review papers. Thus, a
total of 308 studies were included in our review.
We did not place limits on publication year in
our search, yet 55% of the studies were published
within the last 5 yr and none were published
before 1996. Most terrestrial, marine, and fresh-
water study sites were concentrated in the North-
ern Hemisphere, the United States and Europe
specifically. Across all the studies, marine biomes
were the most commonly examined (46%;
n = 141), followed by terrestrial (31%; n = 95)
and freshwater biomes (23%; n = 72). In terres-
trial ecosystems, food webs were more exten-
sively studied in temperate forests (59%; n = 56),

which only cover approximately 9% of the
Earth’s land surface (Fig. 1a). Freshwater studies
were concentrated in the temperate floodplain
rivers and wetlands biome (39%; n = 28), which
makes up 10% of the freshwater biomes (Fig. 1b).
Marine food web studies were concentrated in
the Atlantic Coastal biome (43%; n = 61), and in
contrast, there was very little information avail-
able on the effects of climate change in deep
water/fully pelagic biomes (Fig. 1c). Chi-squared
tests for all systems indicated that studies were
significantly unevenly distributed (Appendix S1:
Table S1; terrestrial: v2 = 343.93, df = 15,
P < 0.001; freshwater: v2 = 151.77, df = 12,
P < 0.001; v2 = 975.07, df = 13, P < 0.001). We
acknowledge that additional appropriate studies
have undoubtedly been published in languages
other than English but do not expect that they
would be numerous enough to eliminate this sub-
stantial geographic bias.
Study sites were unevenly distributed with

respect to current climate. Very cold, hot, and
dry climates were substantially under-repre-
sented, as most terrestrial and freshwater
research occurred in areas with mean annual
temperatures between �1° to 16°C and mean
annual precipitation of <2000 mm (Appendix S1:
Fig. S1, Table S1; temperature: v2 = 355.88,
df = 9, P < 0.001; precipitation: v2 = 121, df = 11,
P < 0.001). In marine habitats, most studies
(65%) occurred in areas with mean annual tem-
peratures of <12°C, leaving hot climates under-
represented (Appendix S1: Table S2; v2 = 101.38,
df = 6, P < 0.001). Study sites in all ecosystem
types were also unevenly distributed across the
full range of magnitude of projected changes in
climate (Fig. 2, 3; Appendix S1: Table S3; temper-
ature: v2 = 230.18, df = 6, P < 0.001; precipita-
tion: v2 = 143.18, df = 10, P < 0.001). Fewer
studies were conducted in the areas with the
least warming (<2°C). Areas projected to experi-
ence decreases in precipitation and areas with
larger projected increases in precipitation
(<113 mm) were also under-represented. Spatial
bias was greater for temperature than precipita-
tion (Hellinger’s distances of 0.30 for temperature
and 0.18 for precipitation).
In general, studies investigated from two

(n = 151) to five (n = 7) trophic levels, but the
majority of studies focused on only two levels
(49%). Most studies examined the effects of
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climate change on species abundance (68%) and
biomass (61%), while fewer measured climate
change effects on diversity (25%) and food web
structure (e.g., using genetic or stable isotope
methods; 17%). Further, studies typically
examined only one climate change mechanism
(68%). Temperature was the most frequently
investigated climate change variable (73%), fol-
lowed by precipitation (18%). In addition, 9% of

studies examined both extreme events and
[CO2], 3% studied acidification, and 1% (n = 2)
studied changes in snow or ice cover. Most stud-
ies were experimental (51%) or observational
(40%), while the remainder involved more than
one approach (a combination of experimental,
observational, and/or modeling). Field studies
were also more common (81%) than laboratory
studies.

Fig. 1. Global maps of studies (n = 308) conducted on climate change impacts on species interactions for (a)
terrestrial systems; (b) freshwater systems; and (c) marine systems in relation to terrestrial/freshwater major habi-
tat types (Olson et al. 2001, TNC and WWF 2008) and ocean biomes (Flanders Marine Institute 2009). Graphs
accompanying each map show the proportion of the total area (colored bars; y-axis on left) and the proportion of
study sites (black points; second y-axis on right) in relation to the major habitat types and biomes (x-axis).
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DISCUSSION

Our results highlight that research focusing on
climate change effects on food webs suffers from
a strong geographic bias, with most studies
occurring in the USA and Europe (Fig. 1). Criti-
cally, the number of studies conducted within
each biome is not proportional to the overall size
of the biome. For example, tropical regions

account for ~40% of the Earth’s surface and sup-
port the majority of the world’s species, yet only
3.5% of the studies were conducted in the tropics
(Fig. 1a). Desert and xeric shrublands make up
19% of the terrestrial biome, yet only 3% of the
studies were conducted in this biome. Similarly,
xeric fresh water and closed basin ecosystems
comprise 19% of the global freshwater biomes,
yet none of the studies we sampled were

Fig. 2. Study sites (in black) in relation to projected changes by 2090 in median annual (a) temperature and (b)
precipitation, under the RCP 6.0 scenario.
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conducted in this biome (Fig. 1b). In addition,
the Pacific Trade wind biome covers 23% of the
ocean surface, yet only 1% of studies identified
were conducted there (Fig. 1c). In contrast, tem-
perate broadleaf and mixed forests, temperate
coastal rivers, temperate floodplains, and the
Atlantic coastal region are substantially over-
sampled relative to their spatial extent.

If regions that are under-sampled are experi-
encing rates of climate change not represented
by the locations that have been sampled more
extensively, the uneven sampling of many of the
globe’s biomes may be especially problematic.
The distribution of study sites in our synthesis
was biased with respect to current climate condi-
tions (Appendix S1: Fig. S1, Tables S1, S2), but
importantly the distribution of sites sampled
under projected future changes in climate was
also biased (Figs. 2, 3; Appendix S1: Table S3).
Coverage was uneven across the range of pro-
jected climate conditions, and areas with low
projected temperature changes (<2°C change by
2090 in the RCP 6.0 scenario) were poorly

studied (Fig. 3). Similarly, regions with projected
decreases in precipitation (�522 to 0 mm
change by 2090) were understudied, as well as
regions with large projected increases (>113 mm
change). This lack of research in areas with high
predicted precipitation change is particularly
concerning, due to the current trajectory of cli-
mate change and the potential for large effects on
food webs in these regions. Future research
should focus on understudied regions, regions
where sites are poorly distributed (i.e., clustered),
as well as sampling across the full range of pro-
jected climatic changes (from small to large
changes).
Our findings are consistent with several arti-

cles examining geographical biases in other eco-
logical subfields, including species invasions
(Bellard and Jeschke 2016), range shifts (Lenoir
and Svenning 2015), and species distributional
data (Meyer et al. 2015) and likely reflect science
funding patterns, locations near Universities,
and papers that are published in English. In
addition, an analysis of reviews synthesizing

Fig. 3. Spatial bias of the study sites in relation to projected climate change layers. Climate change projection
maps for the RCP 6.0 scenario (temperature and precipitation) are shown on the left. Hellinger’s distance d, on
the x-axis, quantifies the amount of spatial bias in study sites relative to each global map. The black circles with
error bars (standard deviation) show the distribution of d values for 1000 random collections of samples where
the number of samples is equal to the number of studies in our review (n = 308). The red X symbols show the d
values of our studies for each of the two climate change projection maps.
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“global” climate change impacts found a severe
geographic bias and noted that generalizing
results from temperate areas to the globe is prob-
lematic because tropical species may be expected
to respond differently to climate change than
temperate species (Feeley et al. 2017). While
some biomes are proportionally well sampled,
even within those biomes, the study sites are
sometimes clustered around single locations,
calling into question how generalizable those
results are for an entire region, especially in
regions where the climate is changing rapidly
(Metcalfe et al. 2018).

Across terrestrial and aquatic ecosystems,
trophic interactions are important in determining
how ecosystems function, the services they pro-
vide (e.g., fish stocks, biomass production, com-
munity stability) as well as their resistance and
resilience to rapid climate change. Despite the
importance of multi-trophic interactions, our
data indicate that studies on multiple trophic
levels (>2 levels) are not well represented in cli-
mate change research on food webs. Almost half
of the studies in our review included only two
trophic levels; however, this varied depending
on the ecosystem studied. Studies in terrestrial
systems examined more than two trophic levels
(58%) slightly more often than studies in marine
(49%) or freshwater (45%) systems. This is likely
because assessing changes in biotic interactions
are more challenging than examining the
response of a single species or general biodiver-
sity changes (McCann 2007, Tylianakis et al.
2008).

Recent advances in molecular (next genera-
tion sequencing, stable isotope probing) and
analytical (e.g., network and latent variable
modeling; Warton et al. 2015) techniques are
improving our ability to examine these com-
plex interactions within food webs. For exam-
ple, one recent simulation study showed that
higher-order interactions (where an interaction
between two species is affected by a third spe-
cies) influence the relationship between diver-
sity and stability in ecosystems and impose a
lower bound on the number of species in a
community (Bairey et al. 2016). Yet in spite of
these advances, the number of studies explor-
ing multiple species and trophic levels remains
low which limits our ability to extrapolate
results using models.

Obtaining a synthetic understanding of the
effects of climate change on food webs will not
be possible without a greater understanding of
the global variation in impacts across different
ecosystems and climatic zones. Our review high-
lights a strong bias in the distribution of studies
on food web responses to climate change at the
global scale and identifies key areas where data
are lacking, such as in deserts and the Indian
Ocean as well as regions facing extreme shifts in
temperature and rainfall due to climate change.
Future work should be targeted to these under-
studied regions in order to improve our under-
standing of climate change impacts across a
range of biomes, current climate conditions, and
projected future climate conditions.
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