
Walve et al. Algorithms Mol Biol (2019) 14:8
https://doi.org/10.1186/s13015-019-0143-x

RESEARCH

Kermit: linkage map guided long read
assembly
Riku Walve1* , Pasi Rastas2 and Leena Salmela1

Abstract

Background : With long reads getting even longer and cheaper, large scale sequencing projects can be accom-
plished without short reads at an affordable cost. Due to the high error rates and less mature tools, de novo assembly
of long reads is still challenging and often results in a large collection of contigs. Dense linkage maps are collections of
markers whose location on the genome is approximately known. Therefore they provide long range information that
has the potential to greatly aid in de novo assembly. Previously linkage maps have been used to detect misassemblies
and to manually order contigs. However, no fully automated tools exist to incorporate linkage maps in assembly but
instead large amounts of manual labour is needed to order the contigs into chromosomes.

Results : We formulate the genome assembly problem in the presence of linkage maps and present the first method
for guided genome assembly using linkage maps. Our method is based on an additional cleaning step added to the
assembly. We show that it can simplify the underlying assembly graph, resulting in more contiguous assemblies and
reducing the amount of misassemblies when compared to de novo assembly.

Conclusions : We present the first method to integrate linkage maps directly into genome assembly. With a modest
increase in runtime, our method improves contiguity and correctness of genome assembly.

Keywords: Genome assembly, Linkage maps, Coloured overlap graph

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creat iveco mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/
publi cdoma in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Introduction
High-throughput, second generation, sequencing tech-
nologies made large scale de novo assemblies possible
and commonplace. Their short read lengths however still
pose a major problem to this day. Third generation, long
read sequencing technologies, such as single-molecule
real-time sequencing (SMRT) and Oxford Nanopore
(ONT) are promising but their error rates have made
assemblies difficult in practice. Therefore most long read
assemblers include an error correction step to reduce the
error rate.

Recently introduced Minimap–Miniasm workflow [1]
has given new insight towards an error correction-free
pipeline for long read assemblies. Minimap finds useful
overlaps in long reads with high error rates and makes
long read-only assembly projects practical and highly

efficient. However finding the overlaps between reads
with high error rates becomes impractical in very large
data sets and splitting the reads into smaller sets is not
possible without additional information on the reads.

Compared to de novo assembly, where the only avail-
able information for the assembly are the reads, guided
genome assembly has additional data that gives informa-
tion on the positions of the reads. Normally this addi-
tional data is a reference genome of a closely related
species, see e.g. [2–4]. The reads can be aligned to the
reference genome, which results in a linear ordering of
the reads. This clearly makes it easier to then assemble
the reads.

Directly guiding the assembly this way makes it hard to
get an assembly that is higher quality than the reference.
This becomes an issue when no high quality reference
genome exists, or if the donor genome deviates too far
from the reference genome. In this paper, we guide the
assembly using linkage maps.

Linkage maps (also called genetic linkage maps or
genetic maps) [5] are a useful technique to orient and

Open Access

Algorithms for
Molecular Biology

*Correspondence: riku.walve@helsinki.fi
1 Department of Computer Science, Helsinki Institute for Information
Technology HIIT, University of Helsinki, Helsinki, Finland
Full list of author information is available at the end of the article

http://orcid.org/0000-0003-0397-003X
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-019-0143-x&domain=pdf

Page 2 of 10Walve et al. Algorithms Mol Biol (2019) 14:8

place contigs within a chromosome and to detect mis-
assembled contigs. The linkage maps themselves con-
sist of variable genetic markers, typically called relative
to some draft assembly. The markers are derived from
a set of variations, such as single-nucleotide variations
(SNVs), found from a sequenced cross, a population of
related individuals. SNVs that are close to each other
in the genome are more likely to be inherited together
than SNVs that are more distant from each other. Link-
age maps can therefore be constructed by genotyping the
individuals in the cross and examining the probabilities
of SNVs being inherited together.

Recently genotyping technologies have advanced so
that more variations on larger crosses can be detected
which allows for construction of much denser linkage
maps than before. This has spurred the development of
computational tools for linkage map construction for
such dense data sets [5]. Dense linkage maps have been
constructed for several recently sequenced genomes,
including e.g. M. cinxia [6], H. erato [7], B. pendula [8],
T. cacao [9], G. aculeatus [10] and T. urartu [11]. With a
dense enough linkage map, it is possible to find approxi-
mate genomic locations for long reads directly.

In this paper, we formulate the genome assembly prob-
lem in the presence of linkage maps. We propose the first
method to directly use linkage maps in genome assembly.
Our method disentangles the overlap graph by removing
spurious edges based on the linkage map. Our experi-
mental results show that the method is able to simplify
the overlap graph and we further show that our method
decreases the number of misassemblies and improves the
N50 statistic as compared to de novo assembly without
linkage maps.

This linkage map-guided genome assembly can be seen
as a generalisation of reference-guided genome assembly.
With a hypothetical linkage map of evenly spaced mark-
ers, the linkage map-guided assembly becomes essentially
reference-guided assembly as each read can be placed on
the genome unambiguously.

We have implemented our method in a tool called Ker-
mit which is freely available at https ://githu b.com/rikuu /
kermi t.

Related work
Despite the emergence of long read sequencing technolo-
gies like PacBio and ONT and the development of long
read assemblers [1, 12–14], auxiliary long range data is
still needed to organise the resulting scaffolds or contigs
to chromosomes for large eukaryotic genomes. Depend-
ing on the characteristics of the species of interest such
data may include optical mapping data, Hi-C data, or
linkage maps.

Linkage maps consist of a set of markers, typically
SNVs, on a genome. The location of the markers with
respect to each other is at least approximately known.
Typically a linkage map successfully divides the mark-
ers into chromosomes and a partial order of the mark-
ers within each chromosome is known. Markers can be
localised on contigs or scaffolds and the linkage map
can be used to correct the scaffolds and to order them
into chromosomes [6–8]. However, currently detecting
misassembled scaffolds and ordering of scaffolds based
on a linkage map is a mostly manual process as no fully
automated tools exist. Because de novo assemblies often
contain thousands of scaffolds, this becomes time-con-
suming and error prone [15]. Furthermore, all current
tools use linkage maps as a post processing step after
assembly, whereas our work integrates the linkage maps
already in the assembly phase.

Chromonomer [16] attempts to correct and orient scaf-
folds based on a linkage map. It first finds a non-con-
flicting set of markers in the linkage map. It then assigns
orientation to scaffolds containing more than one recom-
bination point and splits scaffolds if they conflict with the
linkage map. Finally, Chromonomer produces a visualisa-
tion of the linkage map and the scaffolds. Another tool
that facilitates the visualisation of linkage maps and cor-
responding genome assemblies is ArkMAP [17]. How-
ever, ArkMAP focuses on visual exploration including
cross species comparisons and as such does not support
automatic ordering of scaffolds into chromosomes. Both
of these methods require visual inspection and manual
work to order the scaffolds. Furthermore, if the genome
assembler has omitted connections between contigs from
the assembly because of conflicting information, these
connections are not available at the post processing step
anymore even if the linkage map could be used to resolve
the conflicts.

Similarly to linkage maps also optical mapping data
can be used for improving genome assemblies. Also for
optical mapping data the main focus has been to use
the optical map in a post processing step after genome
assembly. AGORA [18] is one of the few methods inte-
grating optical map data with genome assembly. It is a de
Bruijn graph based assembler that uses optical map data
to eliminate alternative paths that are not consistent with
the optical map. The method by Alipanahi et al. [19] for
disentangling the de Bruijn graph using optical map data
is more related to our work. They map the long reads to
the genome wide optical map and use this mapping to
produce a positional de Bruijn graph which resolves most
ambiguities in the de Bruijn graph. In our work we simi-
larly first get a preliminary ordering of long reads based
on a linkage map and then use this ordering to disentan-
gle the overlap graph.

https://github.com/rikuu/kermit
https://github.com/rikuu/kermit

Page 3 of 10Walve et al. Algorithms Mol Biol (2019) 14:8

Definitions
De novo assembly
De novo assembly, the problem of assembling a genome
given only a set of reads, has historically been given solu-
tions in two different categories. The de Bruijn graph-
based (DBG) assembly algorithms, such as SPAdes [20],
and Overlap-Layout-Consensus (OLC) algorithms, such
as Canu [12] and Miniasm [1].

OLC-assemblers attempt to first find pair-wise over-
laps between reads, i.e. find a pair of reads (u, v) , where a
suffix of u and a prefix of v are similar. From these over-
laps, a directed graph of the set of reads, called an overlap
graph, is laid out by assigning edges between reads if an
overlap is observed. Note that as the orientation of reads
is not known during this stage, we have two nodes in the
graph for every read to cover both possible orientations.

Here we use a broader definition of an overlap graph
than is traditional. Firstly, we allow the overlaps to be
approximate, as we are using error-dense long reads. Sec-
ondly, we only add edges between reads that have suffi-
ciently long overlaps and thus the graph is not complete.

Ideally the graph would be simple enough to unam-
biguously spell a genome assembly by following the edges
from one side of the graph to the other. This is rarely the
case but as long as we assume that there is an assembly
path contained in the graph, we can attempt to remove
edges based on different rules to hopefully be left with
a simple assembly path. This pruning process is also
referred to as the layout step.

DBG-assemblers attempt to simplify the entire process
by not looking for overlaps between the reads. Instead
they take all possible k − 1 length overlaps between sub-
strings of length k from the set of reads to construct a de
Bruijn graph. The methods for finding the genome from
the overlap graph in the OLC setup mostly apply here
too.

Though simpler than the OLC assembly algorithms, the
effectiveness of further splitting the reads diminishes the
usefulness of using long reads for genome assembly. For this
reason we will be looking at the OLC category of assembly
algorithms, more specifically, we are looking at Miniasm [1],
a highly efficient implementation of an OLC-assembler.

Unlike traditional OLC-assemblers, Miniasm only
implements the overlap and layout steps. This reduces
the base-level quality of the resulting assembly but does
not greatly affect the large scale structure. It also does
not use any overly sophisticated method for finding the
genome in the overlap graph.

To choose an assembly path, Miniasm finds unitigs
which are maximal non-branching paths in the overlap
graph. Such paths are simple to find and intuitively give
the maximal unambiguous and non-repetitive sequences
that the overlap graph can spell without changing the

graph. The problem of finding the unitigs from the over-
lap graph can be stated as follows:

Definition 1 Unitig assembly problem. Given a directed
graph G = (V ,E) , find all maximal paths P = v1v2 · · · vn
such that

where deg+ v and deg− v are the outdegree and indegree
of v respectively.

Unitigs can be efficiently found by first looking for a vertex
with either zero or more than one incoming edge and exactly
one outgoing edge. Following the outgoing edges until we find
a vertex with more than one incoming edge or zero or more
than one outgoing edge constructs a path spelling a unitig.

Guided assembly
Reference-guided genome assembly can be done by align-
ing the read set to a reference and partitioning the reads
based on the alignments into smaller, similar sets of reads
[2]. The small sets are then assembled into contigs and later
the set of contigs are assembled into super-contigs.

For linkage map-guided assembly, we partition the reads
based on the linkage map. A linkage map is a set of mark-
ers M which are assigned to a set of bins B . Each marker
m ∈ M belongs to a single bin b ∈ B . The bins are further
assigned to chromosomes and within each chromosome
the order of the bins is given.

We assume now that each read has been assigned a set
of bins based on the linkage map. Now this coarse-grained
ordering tells if a subset of reads clearly belong before or
after another subset of reads. We encode this ordering into
the overlap graph by assigning each vertex a set of colours
representing the bins, resulting in a coloured overlap graph.

A coloured overlap graph is thus a directed graph
G = (V ,E) accompanied by a colouring c : V → P(N) ,
where P(N) is the power set of natural numbers. In the col-
oured overlap graph we define the colour consistent inde-
gree deg−c of a vertex v to be the number of in-neighbours
of vi that have at least one colour that is the same as or adja-
cent to a colour of vi , i.e.

Similarily we define the colour consistent outdegree deg+c
as

∀vi ∈ {v1, . . . , vn−1}, deg
+ vi = deg− vi+1 = 1,

deg−c vi = |{vj|(vj , vi) ∈ E and ∃cj ∈ c(vj),

ci ∈ c(vi) s.t. |cj − ci| ≤ 1}|.

deg+c vi = |{vj|(vi, vj) ∈ E and ∃cj ∈ c(vj),

ci ∈ c(vi) s.t. |cj − ci| ≤ 1}|.

Page 4 of 10Walve et al. Algorithms Mol Biol (2019) 14:8

The problem of guided assembly can then be modelled as
finding a rainbow path in the coloured overlap graph. A
rainbow path is a path such that no two vertices have the
same colour [21]. We use a modified variant of rainbow
paths; we allow paths to reuse a colour in consecutive
vertices and we require the colours of a path to be con-
secutive and increasing. I.e. colour i must be followed by
colour i + 1 on the path. A more formal definition of this
assembly problem can be stated as:

Definition 2 Guided unitig assembly problem. Given a
directed graph G = (V ,E) , and a colouring c : V → N ,
find all maximal paths P = v1v2 · · · vn such that

and

We note that the above definition only recovers paths
in one direction in the coloured overlap graph. How-
ever, because we add each read both in the forward and
reverse orientation to the overlap graph, for each reverse
complementary path there also exists a corresponding
forward strand path in the graph.

Rather than modifying the layout step of the OLC-
assembly pipeline, we implement a graph cleaning step,
which removes edges that make unitigs non-rainbow
path unitigs.

Methods
Overview of our method
The input to our method is a draft assembly, a linkage
map, and long reads. The draft assembly can be gen-
erated from any read data from the same species. For

∀vi ∈ {v1, . . . , vn−1}, deg
+
c vi = deg−c vi+1 = 1,

∀c ∈ c(vi), c ≥ max (c(vi−1)).

example, it can be generated from the same long reads
given also as input to our method or from the sequencing
data used for calling the markers of the linkage map. The
draft assembly can be a low quality assembly with many
short contigs and even some assembly errors.

Constructing a linkage map involves localising the
markers, which are typically single nucleotide varia-
tions, on the draft assembly. The markers are then fur-
ther placed into bins based on the hereditary patterns
seen in a cross-bred population of individuals. The bins
are assigned to chromosomes and the order of the bins
within each chromosome is known. Thus the mark-
ers give a partial order of the genome. The linkage map
should be dense. It should contain sufficiently many
markers so that most reads contain at least one marker
location. Such dense linkage maps can be constructed
for example by Lep-MAP3 [5]. We note that whereas the
draft assembly contains only short range information
spanning a single contig, the linkage map gives a global
view of the genome spanning whole chromosomes. Thus
the linkage map is superior to the draft assembly as a ref-
erence for guiding the assembly in our method.

Figure 1 shows an overview of our method. We first use
Minimap2 [22] to map the long reads on the draft assem-
bly to assign colours (i.e. bin numbers) to the long reads.
Miniasm [1] is then used to build the overlap graph of
the long reads and missing colours are propagated in the
overlap graph. The overlap graph is then cleaned based
on the colour assignments of the reads. Finally the unitigs
are read from the cleaned overlap graph. The colouring,
propagation, and cleaning steps are discussed in more
details in the following subsections.

Colouring
To colour the underlying overlap graph, we map all the
reads against the draft assembly using Minimap2 [22] and

Mapping and colouring

a
b c

d e f
hg

i
j

Coloured overlap graph

a b c d e f g h i j

After colour propagation

a b c d e f g h i j

After cleaning

a b c d e f g h i j

Fig. 1 Overview of our method. First the reads are mapped to the draft assembly and assigned colours (top left). Each colour represents one bin
in the linkage map. In this example we have three bins (brown, green and red) and the ordering of the bins is brown < green < red. All bins belong
to the same chromosome. Miniasm is then used to construct the overlap graph which is augmented with the colours. Next vertex f is coloured
through the colour propagation process. Finally we remove the edges (a, i) and (h, b) because they have inconsistent colourings

Page 5 of 10Walve et al. Algorithms Mol Biol (2019) 14:8

store the longest mappings for each read. We extend each
of the longest mappings into naive linear “alignments” by
stretching the start and end positions to cover the entire
read. As the insertion errors are the dominant error type
[23], we limit the number of characters by which we
extend the mappings (by default we use a limit of 250 bp).

All the extended mappings are then stored in a simple
query structure, where each chromosome in the refer-
ence genome is split into equal length blocks. For each
marker in the linkage map, we query the index for reads
that overlap with the marker and assign every over-
lapping read the colour the marker in the linkage map
belongs to.

As there can still be reads with no mapping to the refer-
ence, we attempt to colour them using the overlap graph.
For each uncoloured vertex u we find the set of coloured
vertices Vc(u) that are reachable from u by paths that
traverse only uncoloured vertices. The uncoloured vertex
u is then given all the colours that the vertices in Vc(u)
have, i.e. c(u) =

⋃
v∈Vc(u)

c(v) . The set Vc(u) can be found
by a breadth first search on the graph starting at vertex u.

If a coloured vertex is too far from the uncoloured ver-
tex, we get an over-approximation of the colour for the
vertex. To reduce this effect, we apply a limit to the depth
of the search (by default 10). We can also get conflicting
colours from the propagation. If there are missing col-
ours between the propagated colours, we are skipping
some part of the genome entirely. As we cannot use the
colouring to usefully clean the graph, we simply remove
the read from the graph entirely.

Graph cleaning
To make sure any unitig path is a valid rainbow path, we
remove any edges between vertices with inconsistent
colourings from the overlap graph. If the vertices share
a colour, the colourings are always consistent as they can
be merged without affecting the connectivity of the col-
ours in the graph.

Edges between vertices with different colours are incon-
sistent if there are no adjacent colours between the verti-
ces. Such an edge could never be part of a rainbow path
because the path would not have consecutive colours.

Edges with colourings further apart may still be consid-
ered correct, as the linkage maps may have noisy marker
positions. Therefore we define an edge (vi, vj) to be incon-
sistently coloured if there are no colours ci ∈ c(vi) and
cj ∈ c(vj) such that the colours ci and cj would be within
some distance d , i.e. | ci − cj |≤ d . Our graph cleaning
step removes all inconsistently coloured edges from the
overlap graph.

The set of edges in the overlap graph can be divided
into two disjoint subsets: the genomic edges which con-
nect reads that are derived from overlapping positions in

the genome and the additional spurious edges caused by
reads that overlap although they are derived from distinct
positions in the genome.

Theorem 1 If all reads are correctly coloured and the
overlap graph contains at least one genomic incoming and
outgoing edge for each node that is not the endpoint of a
chromosome, then removing all inconsistently coloured
edges results in all unitigs being rainbow unitigs.

Proof When all inconsistently coloured edges have been
removed from the set of spurious edges, the only remain-
ing spurious edges are those that are not inconsist-
ently coloured. These edges represent spurious overlaps
between reads that have consistent colours.

Let (u, v) be a spurious edge that is not inconsistently col-
oured and thus it may falsely connect two rainbow paths
in the overlap graph. First we note that if both u and v are
endpoints of chromosomes, then the edge (u, v) must be
inconsistently coloured because we assumed all reads are
correctly coloured. Thus either u or v must not be an end-
point of a chromosome.

Without loss of generality let us assume that u is not an
endpoint of a chromosome. Because all nodes have an
outgoing genomic edges in the overlap graph, there must
be another edge (u, v′) in the graph. Thus u is a branching
node and a unitig cannot contain edge (u, v) . Therefore a
unitig cannot contain any spurious edges. Because unit-
igs now consist of only genomic edges and all reads are
correctly coloured, all unitigs must be rainbow unitigs. �

Results
We implemented our method in a tool called Kermit.
Kermit uses Miniasm [1] to find the overlaps between
the reads and to perform the layout step to find unitigs.
In between these two steps Kermit colours the vertices
of the overlap graph and cleans the graph by removing
inconsistently coloured edges as explained in the previ-
ous section.

We compared Kermit to Miniasm [1] and Canu [12]
which ranked the best in the average rankings of all
assemblies in a recent survey on long read assembly by
Jayakumar and Sakakibara [24]. For Kermit and Miniasm,
both the overlap and the mapping steps were done using
Minimap2 v2.12 [22], an improved implementation of
Minimap. All results are given using default settings for
the tools. We tried varying the minimum overlap param-
eter and the minimal coverage of overlaps in Miniasm but
found that the default settings gave the best performance.

Page 6 of 10Walve et al. Algorithms Mol Biol (2019) 14:8

All experiments were run on 32 GB RAM machines
equipped with 8 cores.

Data
We performed experiments both on simulated and real
data. All data used in the experiments is summarised in
Tables 1 and 2.

First, we performed experiments using both simulated
reads and a simulated linkage map for S. cerevisiae and
C. elegans. We simulated reads using SimLoRD [23] to a
coverage of 40x, sampling read lengths from a real PacBio
data set with shortest (< 10,000 bp) reads filtered out.

To generate a simulated linkage map, markers were
randomly placed on the reference and binned such that
the bins are separated by at least 200 bp. The number of
markers was chosen to give a marker density similar to
real linkage maps. The size of bins was chosen such that
the resulting densities of bins are similar to the real link-
age maps as shown in Table 2. These experiments on sim-
ulated read and linkage map data allow us to evaluate the
colouring and cleaning steps because the origin of each
read is known.

To understand how our method performs on real
data, we first ran experiments using real PacBio reads
for S. cerevisiae and C. elegans but still using the simu-
lated linkage map as we are not aware of dense enough
real linkage maps for these species. Good reference
genomes are available for these genomes so we could
evaluate also the correctness of the resulting assemblies
on these data sets.

Finally, to show that our method works on real link-
age maps, we ran experiments on real PacBio reads
and real linkage maps for H. erato and B. pendula.
The genomes for these species are in draft stage so we
could not reliably measure the correctness of these
assemblies.

Colouring
We first evaluated the results of the colouring and
propagation steps on the simulated reads and linkage
maps. Because the reads are simulated, we know for
each read the position where it derives from. There-
fore we can also deduce the correct colours for each
read as follows. For every read there are two markers
in the linkage map that form the upper and lower limit
of acceptable colours the read can get. All the colours
should be between the colour of last marker before the
read and the first marker after the read.

We are mostly interested in the set of reads that are
fully within the correct range, i.e. no colour given to the
read is incorrect, and the set of reads that are fully out-
side the correct range.

As can be expected, Table 3 shows that a vast major-
ity of the reads are completely inside their colour
ranges. The small amount of reads outside the range are
reads that have been mapped to an entirely wrong posi-
tion of the draft assembly.

Table 1 Summary of read data used in the experiments

a https ://githu b.com/Pacif cBio scien ces/DevNe t/wiki/Sacch aromy ces-cerev isiae -W303-Assem bly-Conti gs
b https ://githu b.com/Pacif cBio scien ces/DevNe t/wiki/C.-elega ns-data-set

Data set Reads Total bases Coverage Accession

S. cerevisiae (simulated) 36,639 486,048,334 39.98 Simulated

C. elegans (simulated) 296,230 3,930,689,562 39.99 Simulated

S. cerevisiae 52,208 690,899,144 56.83 PacBio DevNeta

C. elegans 740,776 8,118,404,281 82.59 PacBio DevNetb

H. erato 10,818,653 27,094,241,328 60.89 SRR3476970 SRR4039325

B. pendula 1,898,360 19,032,363,776 49.71 ERR2003767 ERR2003768

Table 2 Summary of linkage maps used in the experiments

Data set Markers Marker density Bins Bin density References

S. cerevisiae (simulated) 100,009 0.008 19,283 0.002 Simulated

C. elegans (simulated) 750,004 0.008 162,601 0.002 Simulated

H. erato 2,781,314 0.007 145,863 0.002 Van Belleghem et al. [7]
Generated by LepMap3
[5]

B. pendula 2,979,993 0.007 925,123 0.002 Salojärvi et al. [8]

https://github.com/PacificBiosciences/DevNet/wiki/Saccharomyces-cerevisiae-W303-Assembly-Contigs
https://github.com/PacificBiosciences/DevNet/wiki/C.-elegans-data-set

Page 7 of 10Walve et al. Algorithms Mol Biol (2019) 14:8

Cleaning
To evaluate the effectiveness of removing colour cross-
ing edges, we find the simulated positions of the two
reads corresponding to each edge in the graph and check
whether they overlap in the reference genome. We con-
sider those overlapping reads to be genomic in the sense
that using that single edge in a contig would spell the cor-
rect sequence.

Miniasm already implements a number of cleaning
methods which are solely based on the topology of the
overlap graph. We counted the number of genomic and
spurious edges both with and without these cleaning
steps to understand how each cleaning step affects the
overlap graph.

Table 4 shows how Kermit is able to improve the per-
centages of genomic edges by removing spurious edges
in the graph. Though the amounts of spurious edges
removed is relatively small, any single wrong edge used in
the assembly can cause a misassembly or break a unitig.

Assembly
Lastly, we compare the actual assemblies produced by
our tool to those produced by Miniasm and Canu. To
get a better picture of the assemblies, we also applied a
consensus tool, Racon v1.3.1 [25], on the S. cerevisiae and
C. elegans assemblies produced by our tool and Mini-
asm. On the H. erato and B. pendula assemblies Racon
was very slow so we did not run it on those assemblies.

The assembly statistics were generated with QUAST v5.0
[26].

Table 5 shows how the assembly statistics are improved
using Kermit on the simulated S. cerevisiae and C. ele-
gans reads and simulated linkage maps. The number of
contigs is reduced and the NGA50 statistic is increased
indicating a more contiguous assembly. Also the number
of misassemblies is either reduced or stays the same.

Next, we evaluated Kermit on the real read data and
simulated linkage map of S. cerevisiae and C. elegans.
Table 6 shows that when compared to Miniasm the
number of contigs and the number of misassemblies is
reduced, whereas the NGA50 statistic is increased on the
S. cerevisiae data. On the C. elegans data Kermit is more
conservative. It reduces the number of misassemblies but
the NGA50 statistic is slightly decreased and the number
of contigs is slightly increased. Canu produces assemblies
with comparable NGA50 values but it produces more
misassemblies than Miniasm or Kermit.

Finally, we ran experiments on real read data and
real linkage maps (H. erato and B. pendula). For these
species only draft assemblies are available and thus we
could not validate the produced assemblies and com-
pute the number of misassemblies or the NGA50 sta-
tistics. Table 7 shows that for both data sets Kermit
reduces the number of contigs and increases N50 as
compared to Miniasm. Both of these measures indicate
a more contiguous assembly. Canu produces more frag-
mented assemblies than Miniasm or Kermit on both of
these data sets.

For the B. pendula set, our machine would run out of
memory when constructing the graph with Miniasm and
Kermit. This was alleviated by using the option to remove
clearly contained reads.

We also note that all of the assemblers struggle on the
H. erato data. We believe this is largely due to the fact
that we needed to pool PacBio reads from two experi-
ments using two different individuals to have enough
reads for assembly. This introduces heterogeneity to the
data and makes assembly challenging.

Table 3 Number of reads fully inside and outside their
acceptable colour ranges

Reads inside Reads outside

S. cerevisiae 36,562 (99.79%) 31 (0.08%)

C. elegans 296,134 (99.97%) 3 (0.001%)

Table 4 Number of edges supported by the positions
the reads were simulated from

Graphs marked cleaned are also using the graph cleaning steps that are already
implemented in Miniasm

Graph Genomic edges Spurious edges

S. cerevisiae Miniasm 76,538 (99.39%) 466 (0.60%)

Kermit 76,518 (99.93%) 52 (0.07%)

Miniasm cleaned 7146 (99.92%) 6 (0.08%)

Kermit cleaned 7114 (100.0%) 0 (0.0%)

C. elegans Miniasm 668,012 (99.80%) 1306 (0.19%)

Kermit 667,970 (99.99%) 58 (0.003%)

Miniasm cleaned 60,416 (99.95%) 28 (0.05%)

Kermit cleaned 60,356 (99.997%) 2 (0.003%)

Table 5 Assembly statistics for simulated S. cerevisiae
and C. elegans reads and simulated linkage maps

Assembly S. cerevisiae C. elegans

Miniasm Kermit Miniasm Kermit

of contigs 26 22 291 261

Total length 11,831,837
(97.32%)

11,728,421
(96.47%)

102,040,817
(103.81%)

101,632,493
(103.40%)

N50 605,399 640,779 2,337,914 2,293,633

NGA50 565,122 585,849 2,070,983 2,337,914

Misassemblies 2 1 7 7

Page 8 of 10Walve et al. Algorithms Mol Biol (2019) 14:8

We also investigated the effect of the distance param-
eter for determining colouring inconsistency using
the real B. pendula dataset. In a real linkage map, the
boundaries of colours can be noisy and thus markers with
nearby colours could be in the wrong order. We looked
at assemblies using four different values for the distance
(d = 0, 1, 2, 3) and a setting where all chromosomes are
given a single colour and d = 0 . This latter represents the
largest distance we could possible allow, as only edges
that connect non-contiguous regions of the genome are
removed. The results are summarised in Table 8.

We see that the distance parameter does not have a
large effect on the assembly contiguity which indicates
that our method is robust with respect to the mixing
of nearby colours in real linkage maps. Furthermore,
when using a single colour for each chromosome the
N50 value is only slightly decreased as compared to
the more fine grained schemes. As misassemblies con-
nect random parts of the genome, most of them will
span two chromosomes. Therefore it is not surprising

that using a single colour for each chromosome results
in almost equally good contiguity as more fine grained
schemes.

Running time
We recorded the wall clock time for all experiments.
Table 9 shows that Kermit needs at most 5% more time
than Miniasm on all data sets except H. erato on which
it needs 13% more time. In some cases the total run-
ning time is even reduced.

Compared to Canu, both Miniasm and Kermit are
significantly faster. This is likely due to Canu having
a read error correction step. However, we did not run
Racon on the H. erato and B. pendula assemblies of
Miniasm and Kermit, whereas Canu pipeline includes
error correction and consensus steps which contribute
to its higher running time. Additionally, we see that the
consensus step using Racon easily dominates the Mini-
asm and Kermit pipelines in terms of time to complete.

Table 6 Assembly statistics for real S. cerevisiae and C. elegans reads and simulated linkage maps

Assembly S. cerevisiae C. elegans

Miniasm Kermit Canu Miniasm Kermit Canu

of contigs 31 29 34 177 188 159

Total length 12,118,143
(99.68%)

11,997,376
(98.69%)

12,426,814
(102.22%)

109,318,925
(111.22%)

104,545,368
(106.36%)

108,154,535
(110.03%)

N50 732,688 763,111 739,529 2,270,602 1,928,805 3,202,659

NGA50 345,801 376,210 375,952 272,995 271,763 271,783

Misassemblies 65 60 82 1837 1651 2019

Table 7 Assembly statistics for real H. erato and B. pendula reads and real linkage maps

Assembly H. erato B. pendula

Miniasm Kermit Canu Miniasm Kermit Canu

of contigs 7444 6091 100,615 2201 1587 14,189

Total length 327,725,353
(86.24%)

280,881,758
(73.92%)

691,789,561
(180.69%)

473,300,369
(107.57%)

425,356,395
(96.67%)

387,624,902
(87.11%)

N50 58,892 60,356 12,592 435,830 539,400 45,255

Table 8 Assembly statistics for B. pendula dataset with different colour distance parameters

The unicoloured column shows results for colouring each chromosome with a single colour

Assembly Unicoloured d = 0 d = 1 d = 2 d = 3

of contigs 1583 1594 1587 1585 1583

Total length 426,546,974 425,333,715 425,356,395 425,531,261 425,708,460

N50 537,429 539,400 539,400 538,989 538,770

Page 9 of 10Walve et al. Algorithms Mol Biol (2019) 14:8

Conclusions
We defined guided assembly with linkage maps by
extending the unitig assembly model. Our method,
Kermit, is implemented as a graph cleaning step and
the contigs are generated with a simple unitig algo-
rithm. As such the graph cleaning step could be used
as a preprocessing step of a more complicated traversal
algorithm for retrieving the contigs. Colouring the
reads also leads naturally into non-overlapping bins of
reads, that can be assembled independently. This allows
massive parallelism in the assembly and could make
more sophisticated assembly algorithms practical.

When defined as an independent graph cleaning step,
our method guiding the assembly could be applied not
only to other OLC-assemblers, but also to DBG-assem-
blers. In this case, the colours would be assigned to
reads and the k-mers would get all colours present in
reads where they derive from.

The colouring can also be used for ordering the
assembled unitigs. While the current implementation
only reports the colours for each unitig, these unitig
colourings could be used to also connect the unitigs
into more complete contigs.

Our experiments show that Kermit successfully
removes spurious edges from the overlap graph. Fur-
thermore we showed that with only a modest increase
in runtime Kermit improves the contiguity and correct-
ness of assembly as compared to current de novo long
read assemblers.

Authors’ contributions
RW participated in the design of the study, implemented the method,
performed the experiments and drafted the manuscript. PR participated in
the design of the study and produced the linkage maps for H. erato and B.
pendula. LS participated in the design of the study and helped to draft the
manuscript. All authors read and approved the final manuscript.

Author details
1 Department of Computer Science, Helsinki Institute for Information Technol-
ogy HIIT, University of Helsinki, Helsinki, Finland. 2 Institute of Biotechnology,
University of Helsinki, Helsinki, Finland.

Acknowledgements
A preliminary version of this article appeared in the proceedings of WABI 2018.

Competing interests
The authors declare that they have no competing interests.

Funding
This work has been supported by Academy of Finland (grants 308030 and
314170) and Jane and Aatos Erkko Foundation.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

Received: 25 October 2018 Accepted: 13 March 2019

References
 1. Li H. Minimap and miniasm: fast mapping and de novo assembly for

noisy long sequences. Bioinformatics. 2016;32(14):2103–10.
 2. Schneeberger K, Ossowski S, Ott F, et al. Reference-guided assembly of

four diverse Arabidopsis thaliana genomes. PNAS. 2011;108(25):10249–54.
 3. Lischer HEL, Shimizu KK. Reference-guided de novo assembly approach

improves genome reconstruction for related species. BMC Bioinform.
2017;18:474.

Table 9 Wall clock times for all steps taken by the tools

The consensus phase was very slow on the big genomes of H. erato and B. pendula so it was not run on those data sets

Tool Overlap Map Colour Layout Consensus Total

S. cerevisiae (simulated) Miniasm 52 s – – 6 s 4 min 52 s 5 min 50 s

Kermit 52 s 6 s 0 s 6 s 3 min 29 s 4 min 38 s

C. elegans (simulated) Miniasm 9 min 55 s – – 1 min 58 s 28 min 19 s 40 min 17 s

Kermit 9 min 55 s 2 min 17 s 5 s 55 s 28 min 57 s 42 min 9 s

S. cerevisiae Miniasm 1 min 9 – – 8 s 2 min 45 s 4 min 2 s

Kermit 1 min 09 s 10 s 1 s 8 s 2 min 44 s 4 min 12 s

Canu – – – – – 2 h 12 min

C. elegans Miniasm 16 min 54 s – – 4 min 53 min 28 s 1 h 14 min

Kermit 16 min 54 s 4 min 8 s 11 s 2 min 29 s 50 min 29 s 1 h 14 min

Canu – – – – – 12 h 31 min

H. erato Miniasm 8 h 40 min – – 1 h 30 min – 10 h 10 min

Kermit 8 h 40 min 9 min 2 min 2 h 42 min – 11 h 32 min

Canu – – – – – 7 days

B. pendula Miniasm 3 h 24 min – – 1 h 32 min – 4 h 57 min

Kermit 3 h 24 min 9 min 17 s 1 h 37 min – 5 h 11 min

Canu – – – – – 6 days

Page 10 of 10Walve et al. Algorithms Mol Biol (2019) 14:8

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your research ? Choose BMC and benefit from:

 4. Bao E, Jiang R, Girke T. AlignGraph: algorithm for secondary de novo
genome assembly guided by closely related references. Bioinformatics.
2014;30(12):319–28.

 5. Rastas P. Lep-MAP3: robust linkage mapping even for low-coverage
whole genome sequencing data. Bioinformatics. 2017;33(23):3726–32.

 6. Ahola V, Lehtonen R, Somervuo P, et al. The Glanville fritillary genome
retains an ancient karyotype and reveals selective chromosomal fusions
in Lepidoptera. Nat Commun. 2014;5:4737.

 7. Belleghem SMV, Rastas P, Papanicolalaou A, et al. Complex modular
architecture around a simple toolkit of wing pattern genes. Nat Ecol Evol.
2017;1:0052.

 8. Salojärvi J, Smolander OP, Nieminen K, et al. Genome sequencing and
population genomic analyses provide insights into the adaptive land-
scape of silver birch. Nat Genet. 2017;49:904–12.

 9. Motamayor JC, Mockaitis K, Schmutz J, et al. The genome sequence of
the most widely cultivated cacao type and its use to identify candidate
genes regulating pod color. Genome Biol. 2013;14(6):53.

 10. Jones FC, Grabherr MG, Chan YF, et al. The genomic bases of adaptive
evolution in threespine sticklebacks. Nature. 2012;484:55–61.

 11. Ling H-Q, Ma B, Shi X, et al. Genome sequence of the progenitor of wheat
A subgenome Triticum urartu. Nature. 2018;557:424–8.

 12. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. Canu:
scalable and accurate long-read assembly via adaptive k-mer weighting
and repeat separation. Genome Res. 2017;27:722–36.

 13. Chin C-S, Peluso P, Sedlazeck FJ, et al. Phased diploid genome
assembly with single-molecule real-time sequencing. Nat Methods.
2016;13:1050–4.

 14. Kolmogorov M, Yuan J, Lin Y, Pevzner P. Assembly of long error-prone
reads using repeat graphs. Proc RECOMB. 2018;2018:261–3.

 15. Fierst JL. Using linkage maps to correct and scaffold de novo genome
assemblies: methods, challenges, and computational tools. Front Genet.
2015;6:220.

 16. Catchen J. Chromonomer; 2015. http://catch enlab .life.illin ois.edu/chrom
onome r/. Accessed 27 Apr 2018.

 17. Paterson T, Law A. ArkMAP: integrating genomic maps across species and
data sources. BMC Bioinform. 2013;14:246.

 18. Lin HC, Goldstein S, Mendelowitz L, Zhou S, Wetzel J, Schwartz DC, Pop
M. AGORA: assembly guided by optical restriction alignment. BMC Bioin-
form. 2012;13:189.

 19. Alipanahi B, Salmela L, Puglisi SJ, Muggli M, Boucher C. Disentangled
long-read de Bruijn graphs via optical maps. In: Schwartz R, Reinert K,
editors. WABI 2017, vol. 88, LIPIcs. Dagstuhl, Germany; 2017. p. 1–1114.

 20. Bankevich A, Nurk S, Antipov D, et al. SPAdes: a new genome assembly
algorithm and its applications to single-cell sequencing. J Comput Biol.
2012;19(5):455–77.

 21. Chartrand G, Johns G, McKeon K, Zhang P. Rainbow connection in
graphs. Math Bohemica. 2008;133(1):85–98.

 22. Li H. Minimap2: fast pairwise alignment for long nucleotide sequences;
2017. arXiv :1708.01492 .

 23. Stöcker BK, Köster J, Rahmann S. SimLoRD: simulation of long read data.
Bioinformatics. 2016;32(17):2704–6.

 24. Jayakumar V, Sakakibara Y. Comprehensive evaluation of non-hybrid
genome assembly tools for third-generation pacbio long-read sequence
data. Brief Bioinform. 2017;https ://doi.org/10.1093/bib/bbx14 7. (To
appear).

 25. Vaser I, Sovic I, Nagarajan N, Sikic M. Fast and accurate de novo genome
assembly from long uncorrected reads. Genome Res. 2017;27:737–46.

 26. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool
for genome assemblies. Bioinformatics. 2013;29(8):1072–5.

http://catchenlab.life.illinois.edu/chromonomer/
http://catchenlab.life.illinois.edu/chromonomer/
https://arxiv.org/abs/1708.01492
https://doi.org/10.1093/bib/bbx147

	Kermit: linkage map guided long read assembly
	Abstract
	Background :
	Results :
	Conclusions :

	Introduction
	Related work
	Definitions
	De novo assembly
	Guided assembly

	Methods
	Overview of our method
	Colouring
	Graph cleaning

	Results
	Data
	Colouring
	Cleaning
	Assembly
	Running time

	Conclusions
	Authors’ contributions
	References

