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Abstract 

Background : With long reads getting even longer and cheaper, large scale sequencing projects can be accom-
plished without short reads at an affordable cost. Due to the high error rates and less mature tools, de novo assembly 
of long reads is still challenging and often results in a large collection of contigs. Dense linkage maps are collections of 
markers whose location on the genome is approximately known. Therefore they provide long range information that 
has the potential to greatly aid in de novo assembly. Previously linkage maps have been used to detect misassemblies 
and to manually order contigs. However, no fully automated tools exist to incorporate linkage maps in assembly but 
instead large amounts of manual labour is needed to order the contigs into chromosomes.

Results : We formulate the genome assembly problem in the presence of linkage maps and present the first method 
for guided genome assembly using linkage maps. Our method is based on an additional cleaning step added to the 
assembly. We show that it can simplify the underlying assembly graph, resulting in more contiguous assemblies and 
reducing the amount of misassemblies when compared to de novo assembly.

Conclusions : We present the first method to integrate linkage maps directly into genome assembly. With a modest 
increase in runtime, our method improves contiguity and correctness of genome assembly.
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Introduction
High-throughput, second generation, sequencing tech-
nologies made large scale de novo assemblies possible 
and commonplace. Their short read lengths however still 
pose a major problem to this day. Third generation, long 
read sequencing technologies, such as single-molecule 
real-time sequencing (SMRT) and Oxford Nanopore 
(ONT) are promising but their error rates have made 
assemblies difficult in practice. Therefore most long read 
assemblers include an error correction step to reduce the 
error rate.

Recently introduced Minimap–Miniasm workflow [1] 
has given new insight towards an error correction-free 
pipeline for long read assemblies. Minimap finds useful 
overlaps in long reads with high error rates and makes 
long read-only assembly projects practical and highly 

efficient. However finding the overlaps between reads 
with high error rates becomes impractical in very large 
data sets and splitting the reads into smaller sets is not 
possible without additional information on the reads.

Compared to de novo assembly, where the only avail-
able information for the assembly are the reads, guided 
genome assembly has additional data that gives informa-
tion on the positions of the reads. Normally this addi-
tional data is a reference genome of a closely related 
species, see e.g. [2–4]. The reads can be aligned to the 
reference genome, which results in a linear ordering of 
the reads. This clearly makes it easier to then assemble 
the reads.

Directly guiding the assembly this way makes it hard to 
get an assembly that is higher quality than the reference. 
This becomes an issue when no high quality reference 
genome exists, or if the donor genome deviates too far 
from the reference genome. In this paper, we guide the 
assembly using linkage maps.

Linkage maps (also called genetic linkage maps or 
genetic maps) [5] are a useful technique to orient and 
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place contigs within a chromosome and to detect mis-
assembled contigs. The linkage maps themselves con-
sist of variable genetic markers, typically called relative 
to some draft assembly. The markers are derived from 
a set of variations, such as single-nucleotide variations 
(SNVs), found from a sequenced cross, a population of 
related individuals. SNVs that are close to each other 
in the genome are more likely to be inherited together 
than SNVs that are more distant from each other. Link-
age maps can therefore be constructed by genotyping the 
individuals in the cross and examining the probabilities 
of SNVs being inherited together.

Recently genotyping technologies have advanced so 
that more variations on larger crosses can be detected 
which allows for construction of much denser linkage 
maps than before. This has spurred the development of 
computational tools for linkage map construction for 
such dense data sets [5]. Dense linkage maps have been 
constructed for several recently sequenced genomes, 
including e.g. M. cinxia [6], H. erato [7], B. pendula [8], 
T. cacao [9], G. aculeatus [10] and T. urartu [11]. With a 
dense enough linkage map, it is possible to find approxi-
mate genomic locations for long reads directly.

In this paper, we formulate the genome assembly prob-
lem in the presence of linkage maps. We propose the first 
method to directly use linkage maps in genome assembly. 
Our method disentangles the overlap graph by removing 
spurious edges based on the linkage map. Our experi-
mental results show that the method is able to simplify 
the overlap graph and we further show that our method 
decreases the number of misassemblies and improves the 
N50 statistic as compared to de novo assembly without 
linkage maps.

This linkage map-guided genome assembly can be seen 
as a generalisation of reference-guided genome assembly. 
With a hypothetical linkage map of evenly spaced mark-
ers, the linkage map-guided assembly becomes essentially 
reference-guided assembly as each read can be placed on 
the genome unambiguously.

We have implemented our method in a tool called Ker-
mit which is freely available at https ://githu b.com/rikuu /
kermi t.

Related work
Despite the emergence of long read sequencing technolo-
gies like PacBio and ONT and the development of long 
read assemblers [1, 12–14], auxiliary long range data is 
still needed to organise the resulting scaffolds or contigs 
to chromosomes for large eukaryotic genomes. Depend-
ing on the characteristics of the species of interest such 
data may include optical mapping data, Hi-C data, or 
linkage maps.

Linkage maps consist of a set of markers, typically 
SNVs, on a genome. The location of the markers with 
respect to each other is at least approximately known. 
Typically a linkage map successfully divides the mark-
ers into chromosomes and a partial order of the mark-
ers within each chromosome is known. Markers can be 
localised on contigs or scaffolds and the linkage map 
can be used to correct the scaffolds and to order them 
into chromosomes [6–8]. However, currently detecting 
misassembled scaffolds and ordering of scaffolds based 
on a linkage map is a mostly manual process as no fully 
automated tools exist. Because de novo assemblies often 
contain thousands of scaffolds, this becomes time-con-
suming and error prone [15]. Furthermore, all current 
tools use linkage maps as a post processing step after 
assembly, whereas our work integrates the linkage maps 
already in the assembly phase.

Chromonomer [16] attempts to correct and orient scaf-
folds based on a linkage map. It first finds a non-con-
flicting set of markers in the linkage map. It then assigns 
orientation to scaffolds containing more than one recom-
bination point and splits scaffolds if they conflict with the 
linkage map. Finally, Chromonomer produces a visualisa-
tion of the linkage map and the scaffolds. Another tool 
that facilitates the visualisation of linkage maps and cor-
responding genome assemblies is ArkMAP [17]. How-
ever, ArkMAP focuses on visual exploration including 
cross species comparisons and as such does not support 
automatic ordering of scaffolds into chromosomes. Both 
of these methods require visual inspection and manual 
work to order the scaffolds. Furthermore, if the genome 
assembler has omitted connections between contigs from 
the assembly because of conflicting information, these 
connections are not available at the post processing step 
anymore even if the linkage map could be used to resolve 
the conflicts.

Similarly to linkage maps also optical mapping data 
can be used for improving genome assemblies. Also for 
optical mapping data the main focus has been to use 
the optical map in a post processing step after genome 
assembly. AGORA [18] is one of the few methods inte-
grating optical map data with genome assembly. It is a de 
Bruijn graph based assembler that uses optical map data 
to eliminate alternative paths that are not consistent with 
the optical map. The method by Alipanahi et al. [19] for 
disentangling the de Bruijn graph using optical map data 
is more related to our work. They map the long reads to 
the genome wide optical map and use this mapping to 
produce a positional de Bruijn graph which resolves most 
ambiguities in the de Bruijn graph. In our work we simi-
larly first get a preliminary ordering of long reads based 
on a linkage map and then use this ordering to disentan-
gle the overlap graph.

https://github.com/rikuu/kermit
https://github.com/rikuu/kermit
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Definitions
De novo assembly
De novo assembly, the problem of assembling a genome 
given only a set of reads, has historically been given solu-
tions in two different categories. The de Bruijn graph-
based (DBG) assembly algorithms, such as SPAdes [20], 
and Overlap-Layout-Consensus (OLC) algorithms, such 
as Canu [12] and Miniasm [1].

OLC-assemblers attempt to first find pair-wise over-
laps between reads, i.e. find a pair of reads (u, v) , where a 
suffix of u and a prefix of v are similar. From these over-
laps, a directed graph of the set of reads, called an overlap 
graph, is laid out by assigning edges between reads if an 
overlap is observed. Note that as the orientation of reads 
is not known during this stage, we have two nodes in the 
graph for every read to cover both possible orientations.

Here we use a broader definition of an overlap graph 
than is traditional. Firstly, we allow the overlaps to be 
approximate, as we are using error-dense long reads. Sec-
ondly, we only add edges between reads that have suffi-
ciently long overlaps and thus the graph is not complete.

Ideally the graph would be simple enough to unam-
biguously spell a genome assembly by following the edges 
from one side of the graph to the other. This is rarely the 
case but as long as we assume that there is an assembly 
path contained in the graph, we can attempt to remove 
edges based on different rules to hopefully be left with 
a simple assembly path. This pruning process is also 
referred to as the layout step.

DBG-assemblers attempt to simplify the entire process 
by not looking for overlaps between the reads. Instead 
they take all possible k − 1 length overlaps between sub-
strings of length k from the set of reads to construct a de 
Bruijn graph. The methods for finding the genome from 
the overlap graph in the OLC setup mostly apply here 
too.

Though simpler than the OLC assembly algorithms, the 
effectiveness of further splitting the reads diminishes the 
usefulness of using long reads for genome assembly. For this 
reason we will be looking at the OLC category of assembly 
algorithms, more specifically, we are looking at Miniasm [1], 
a highly efficient implementation of an OLC-assembler.

Unlike traditional OLC-assemblers, Miniasm only 
implements the overlap and layout steps. This reduces 
the base-level quality of the resulting assembly but does 
not greatly affect the large scale structure. It also does 
not use any overly sophisticated method for finding the 
genome in the overlap graph.

To choose an assembly path, Miniasm finds unitigs 
which are maximal non-branching paths in the overlap 
graph. Such paths are simple to find and intuitively give 
the maximal unambiguous and non-repetitive sequences 
that the overlap graph can spell without changing the 

graph. The problem of finding the unitigs from the over-
lap graph can be stated as follows:

Definition 1 Unitig assembly problem. Given a directed 
graph G = (V ,E) , find all maximal paths P = v1v2 · · · vn 
such that

where deg+ v and deg− v are the outdegree and indegree 
of v respectively.

Unitigs can be efficiently found by first looking for a vertex 
with either zero or more than one incoming edge and exactly 
one outgoing edge. Following the outgoing edges until we find 
a vertex with more than one incoming edge or zero or more 
than one outgoing edge constructs a path spelling a unitig.

Guided assembly
Reference-guided genome assembly can be done by align-
ing the read set to a reference and partitioning the reads 
based on the alignments into smaller, similar sets of reads 
[2]. The small sets are then assembled into contigs and later 
the set of contigs are assembled into super-contigs.

For linkage map-guided assembly, we partition the reads 
based on the linkage map. A linkage map is a set of mark-
ers M which are assigned to a set of bins B . Each marker 
m ∈ M belongs to a single bin b ∈ B . The bins are further 
assigned to chromosomes and within each chromosome 
the order of the bins is given.

We assume now that each read has been assigned a set 
of bins based on the linkage map. Now this coarse-grained 
ordering tells if a subset of reads clearly belong before or 
after another subset of reads. We encode this ordering into 
the overlap graph by assigning each vertex a set of colours 
representing the bins, resulting in a coloured overlap graph.

A coloured overlap graph is thus a directed graph 
G = (V ,E) accompanied by a colouring c : V → P(N) , 
where P(N) is the power set of natural numbers. In the col-
oured overlap graph we define the colour consistent inde-
gree deg−c  of a vertex v to be the number of in-neighbours 
of vi that have at least one colour that is the same as or adja-
cent to a colour of vi , i.e.

Similarily we define the colour consistent outdegree deg+c  
as

∀vi ∈ {v1, . . . , vn−1}, deg
+ vi = deg− vi+1 = 1,

deg−c vi = |{vj|(vj , vi) ∈ E and ∃cj ∈ c(vj),

ci ∈ c(vi) s.t. |cj − ci| ≤ 1}|.

deg+c vi = |{vj|(vi, vj) ∈ E and ∃cj ∈ c(vj),

ci ∈ c(vi) s.t. |cj − ci| ≤ 1}|.
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The problem of guided assembly can then be modelled as 
finding a rainbow path in the coloured overlap graph. A 
rainbow path is a path such that no two vertices have the 
same colour [21]. We use a modified variant of rainbow 
paths; we allow paths to reuse a colour in consecutive 
vertices and we require the colours of a path to be con-
secutive and increasing. I.e. colour i must be followed by 
colour i + 1 on the path. A more formal definition of this 
assembly problem can be stated as:

Definition 2 Guided unitig assembly problem. Given a 
directed graph G = (V ,E) , and a colouring c : V → N , 
find all maximal paths P = v1v2 · · · vn such that

and

We note that the above definition only recovers paths 
in one direction in the coloured overlap graph. How-
ever, because we add each read both in the forward and 
reverse orientation to the overlap graph, for each reverse 
complementary path there also exists a corresponding 
forward strand path in the graph.

Rather than modifying the layout step of the OLC-
assembly pipeline, we implement a graph cleaning step, 
which removes edges that make unitigs non-rainbow 
path unitigs.

Methods
Overview of our method
The input to our method is a draft assembly, a linkage 
map, and long reads. The draft assembly can be gen-
erated from any read data from the same species. For 

∀vi ∈ {v1, . . . , vn−1}, deg
+
c vi = deg−c vi+1 = 1,

∀c ∈ c(vi), c ≥ max (c(vi−1)).

example, it can be generated from the same long reads 
given also as input to our method or from the sequencing 
data used for calling the markers of the linkage map. The 
draft assembly can be a low quality assembly with many 
short contigs and even some assembly errors.

Constructing a linkage map involves localising the 
markers, which are typically single nucleotide varia-
tions, on the draft assembly. The markers are then fur-
ther placed into bins based on the hereditary patterns 
seen in a cross-bred population of individuals. The bins 
are assigned to chromosomes and the order of the bins 
within each chromosome is known. Thus the mark-
ers give a partial order of the genome. The linkage map 
should be dense. It should contain sufficiently many 
markers so that most reads contain at least one marker 
location. Such dense linkage maps can be constructed 
for example by Lep-MAP3 [5]. We note that whereas the 
draft assembly contains only short range information 
spanning a single contig, the linkage map gives a global 
view of the genome spanning whole chromosomes. Thus 
the linkage map is superior to the draft assembly as a ref-
erence for guiding the assembly in our method.

Figure 1 shows an overview of our method. We first use 
Minimap2 [22] to map the long reads on the draft assem-
bly to assign colours (i.e. bin numbers) to the long reads. 
Miniasm [1] is then used to build the overlap graph of 
the long reads and missing colours are propagated in the 
overlap graph. The overlap graph is then cleaned based 
on the colour assignments of the reads. Finally the unitigs 
are read from the cleaned overlap graph. The colouring, 
propagation, and cleaning steps are discussed in more 
details in the following subsections.

Colouring
To colour the underlying overlap graph, we map all the 
reads against the draft assembly using Minimap2 [22] and 

Mapping and colouring

a
b c

d e f
hg

i
j

Coloured overlap graph

a b c d e f g h i j

After colour propagation

a b c d e f g h i j

After cleaning

a b c d e f g h i j

Fig. 1 Overview of our method. First the reads are mapped to the draft assembly and assigned colours (top left). Each colour represents one bin 
in the linkage map. In this example we have three bins (brown, green and red) and the ordering of the bins is brown < green < red. All bins belong 
to the same chromosome. Miniasm is then used to construct the overlap graph which is augmented with the colours. Next vertex f  is coloured 
through the colour propagation process. Finally we remove the edges (a, i) and (h, b) because they have inconsistent colourings
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store the longest mappings for each read. We extend each 
of the longest mappings into naive linear “alignments” by 
stretching the start and end positions to cover the entire 
read. As the insertion errors are the dominant error type 
[23], we limit the number of characters by which we 
extend the mappings (by default we use a limit of 250 bp).

All the extended mappings are then stored in a simple 
query structure, where each chromosome in the refer-
ence genome is split into equal length blocks. For each 
marker in the linkage map, we query the index for reads 
that overlap with the marker and assign every over-
lapping read the colour the marker in the linkage map 
belongs to.

As there can still be reads with no mapping to the refer-
ence, we attempt to colour them using the overlap graph. 
For each uncoloured vertex u we find the set of coloured 
vertices Vc(u) that are reachable from u by paths that 
traverse only uncoloured vertices. The uncoloured vertex 
u is then given all the colours that the vertices in Vc(u) 
have, i.e. c(u) =

⋃
v∈Vc(u)

c(v) . The set Vc(u) can be found 
by a breadth first search on the graph starting at vertex u.

If a coloured vertex is too far from the uncoloured ver-
tex, we get an over-approximation of the colour for the 
vertex. To reduce this effect, we apply a limit to the depth 
of the search (by default 10). We can also get conflicting 
colours from the propagation. If there are missing col-
ours between the propagated colours, we are skipping 
some part of the genome entirely. As we cannot use the 
colouring to usefully clean the graph, we simply remove 
the read from the graph entirely.

Graph cleaning
To make sure any unitig path is a valid rainbow path, we 
remove any edges between vertices with inconsistent 
colourings from the overlap graph. If the vertices share 
a colour, the colourings are always consistent as they can 
be merged without affecting the connectivity of the col-
ours in the graph.

Edges between vertices with different colours are incon-
sistent if there are no adjacent colours between the verti-
ces. Such an edge could never be part of a rainbow path 
because the path would not have consecutive colours.

Edges with colourings further apart may still be consid-
ered correct, as the linkage maps may have noisy marker 
positions. Therefore we define an edge (vi, vj) to be incon-
sistently coloured if there are no colours ci ∈ c(vi) and 
cj ∈ c(vj) such that the colours ci and cj would be within 
some distance d , i.e.  | ci − cj |≤ d . Our graph cleaning 
step removes all inconsistently coloured edges from the 
overlap graph.

The set of edges in the overlap graph can be divided 
into two disjoint subsets: the genomic edges which con-
nect reads that are derived from overlapping positions in 

the genome and the additional spurious edges caused by 
reads that overlap although they are derived from distinct 
positions in the genome.

Theorem  1 If all reads are correctly coloured and the 
overlap graph contains at least one genomic incoming and 
outgoing edge for each node that is not the endpoint of a 
chromosome, then removing all inconsistently coloured 
edges results in all unitigs being rainbow unitigs.

Proof When all inconsistently coloured edges have been 
removed from the set of spurious edges, the only remain-
ing spurious edges are those that are not inconsist-
ently coloured. These edges represent spurious overlaps 
between reads that have consistent colours.

Let (u, v) be a spurious edge that is not inconsistently col-
oured and thus it may falsely connect two rainbow paths 
in the overlap graph. First we note that if both u and v are 
endpoints of chromosomes, then the edge (u, v) must be 
inconsistently coloured because we assumed all reads are 
correctly coloured. Thus either u or v must not be an end-
point of a chromosome.

Without loss of generality let us assume that u is not an 
endpoint of a chromosome. Because all nodes have an 
outgoing genomic edges in the overlap graph, there must 
be another edge (u, v′) in the graph. Thus u is a branching 
node and a unitig cannot contain edge (u, v) . Therefore a 
unitig cannot contain any spurious edges. Because unit-
igs now consist of only genomic edges and all reads are 
correctly coloured, all unitigs must be rainbow unitigs. �

Results
We implemented our method in a tool called Kermit. 
Kermit uses Miniasm [1] to find the overlaps between 
the reads and to perform the layout step to find unitigs. 
In between these two steps Kermit colours the vertices 
of the overlap graph and cleans the graph by removing 
inconsistently coloured edges as explained in the previ-
ous section.

We compared Kermit to Miniasm [1] and Canu [12] 
which ranked the best in the average rankings of all 
assemblies in a recent survey on long read assembly by 
Jayakumar and Sakakibara [24]. For Kermit and Miniasm, 
both the overlap and the mapping steps were done using 
Minimap2 v2.12 [22], an improved implementation of 
Minimap. All results are given using default settings for 
the tools. We tried varying the minimum overlap param-
eter and the minimal coverage of overlaps in Miniasm but 
found that the default settings gave the best performance. 
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All experiments were run on 32 GB RAM machines 
equipped with 8 cores.

Data
We performed experiments both on simulated and real 
data. All data used in the experiments is summarised in 
Tables 1 and 2.

First, we performed experiments using both simulated 
reads and a simulated linkage map for S. cerevisiae and 
C. elegans. We simulated reads using SimLoRD [23] to a 
coverage of 40x, sampling read lengths from a real PacBio 
data set with shortest (< 10,000 bp) reads filtered out.

To generate a simulated linkage map, markers were 
randomly placed on the reference and binned such that 
the bins are separated by at least 200 bp. The number of 
markers was chosen to give a marker density similar to 
real linkage maps. The size of bins was chosen such that 
the resulting densities of bins are similar to the real link-
age maps as shown in Table 2. These experiments on sim-
ulated read and linkage map data allow us to evaluate the 
colouring and cleaning steps because the origin of each 
read is known.

To understand how our method performs on real 
data, we first ran experiments using real PacBio reads 
for S. cerevisiae and C. elegans but still using the simu-
lated linkage map as we are not aware of dense enough 
real linkage maps for these species. Good reference 
genomes are available for these genomes so we could 
evaluate also the correctness of the resulting assemblies 
on these data sets.

Finally, to show that our method works on real link-
age maps, we ran experiments on real PacBio reads 
and real linkage maps for H. erato and B. pendula. 
The genomes for these species are in draft stage so we 
could not reliably measure the correctness of these 
assemblies.

Colouring
We first evaluated the results of the colouring and 
propagation steps on the simulated reads and linkage 
maps. Because the reads are simulated, we know for 
each read the position where it derives from. There-
fore we can also deduce the correct colours for each 
read as follows. For every read there are two markers 
in the linkage map that form the upper and lower limit 
of acceptable colours the read can get. All the colours 
should be between the colour of last marker before the 
read and the first marker after the read.

We are mostly interested in the set of reads that are 
fully within the correct range, i.e. no colour given to the 
read is incorrect, and the set of reads that are fully out-
side the correct range.

As can be expected, Table 3 shows that a vast major-
ity of the reads are completely inside their colour 
ranges. The small amount of reads outside the range are 
reads that have been mapped to an entirely wrong posi-
tion of the draft assembly.

Table 1 Summary of read data used in the experiments

a https ://githu b.com/Pacif cBio scien ces/DevNe t/wiki/Sacch aromy ces-cerev isiae -W303-Assem bly-Conti gs
b https ://githu b.com/Pacif cBio scien ces/DevNe t/wiki/C.-elega ns-data-set

Data set Reads Total bases Coverage Accession

S. cerevisiae (simulated) 36,639 486,048,334 39.98 Simulated

C. elegans (simulated) 296,230 3,930,689,562 39.99 Simulated

S. cerevisiae 52,208 690,899,144 56.83 PacBio DevNeta

C. elegans 740,776 8,118,404,281 82.59 PacBio DevNetb

H. erato 10,818,653 27,094,241,328 60.89 SRR3476970 SRR4039325

B. pendula 1,898,360 19,032,363,776 49.71 ERR2003767 ERR2003768

Table 2 Summary of linkage maps used in the experiments

Data set Markers Marker density Bins Bin density References

S. cerevisiae (simulated) 100,009 0.008 19,283 0.002 Simulated

C. elegans (simulated) 750,004 0.008 162,601 0.002 Simulated

H. erato 2,781,314 0.007 145,863 0.002 Van Belleghem et al. [7] 
Generated by LepMap3 
[5]

B. pendula 2,979,993 0.007 925,123 0.002 Salojärvi et al. [8]

https://github.com/PacificBiosciences/DevNet/wiki/Saccharomyces-cerevisiae-W303-Assembly-Contigs
https://github.com/PacificBiosciences/DevNet/wiki/C.-elegans-data-set
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Cleaning
To evaluate the effectiveness of removing colour cross-
ing edges, we find the simulated positions of the two 
reads corresponding to each edge in the graph and check 
whether they overlap in the reference genome. We con-
sider those overlapping reads to be genomic in the sense 
that using that single edge in a contig would spell the cor-
rect sequence.

Miniasm already implements a number of cleaning 
methods which are solely based on the topology of the 
overlap graph. We counted the number of genomic and 
spurious edges both with and without these cleaning 
steps to understand how each cleaning step affects the 
overlap graph.

Table 4 shows how Kermit is able to improve the per-
centages of genomic edges by removing spurious edges 
in the graph. Though the amounts of spurious edges 
removed is relatively small, any single wrong edge used in 
the assembly can cause a misassembly or break a unitig.

Assembly
Lastly, we compare the actual assemblies produced by 
our tool to those produced by Miniasm and Canu. To 
get a better picture of the assemblies, we also applied a 
consensus tool, Racon v1.3.1 [25], on the S. cerevisiae and 
C. elegans assemblies produced by our tool and Mini-
asm. On the H. erato and B. pendula assemblies Racon 
was very slow so we did not run it on those assemblies. 

The assembly statistics were generated with QUAST v5.0 
[26].

Table 5 shows how the assembly statistics are improved 
using Kermit on the simulated S. cerevisiae and C. ele-
gans reads and simulated linkage maps. The number of 
contigs is reduced and the NGA50 statistic is increased 
indicating a more contiguous assembly. Also the number 
of misassemblies is either reduced or stays the same.

Next, we evaluated Kermit on the real read data and 
simulated linkage map of S. cerevisiae and C. elegans. 
Table  6 shows that when compared to Miniasm the 
number of contigs and the number of misassemblies is 
reduced, whereas the NGA50 statistic is increased on the 
S. cerevisiae data. On the C. elegans data Kermit is more 
conservative. It reduces the number of misassemblies but 
the NGA50 statistic is slightly decreased and the number 
of contigs is slightly increased. Canu produces assemblies 
with comparable NGA50 values but it produces more 
misassemblies than Miniasm or Kermit.

Finally, we ran experiments on real read data and 
real linkage maps (H. erato and B. pendula). For these 
species only draft assemblies are available and thus we 
could not validate the produced assemblies and com-
pute the number of misassemblies or the NGA50 sta-
tistics. Table  7 shows that for both data sets Kermit 
reduces the number of contigs and increases N50 as 
compared to Miniasm. Both of these measures indicate 
a more contiguous assembly. Canu produces more frag-
mented assemblies than Miniasm or Kermit on both of 
these data sets.

For the B. pendula set, our machine would run out of 
memory when constructing the graph with Miniasm and 
Kermit. This was alleviated by using the option to remove 
clearly contained reads.

We also note that all of the assemblers struggle on the 
H. erato data. We believe this is largely due to the fact 
that we needed to pool PacBio reads from two experi-
ments using two different individuals to have enough 
reads for assembly. This introduces heterogeneity to the 
data and makes assembly challenging.

Table 3 Number of  reads fully inside  and  outside their 
acceptable colour ranges

Reads inside Reads outside

S. cerevisiae 36,562 (99.79%) 31 (0.08%)

C. elegans 296,134 (99.97%) 3 (0.001%)

Table 4 Number of  edges supported by  the  positions 
the reads were simulated from

Graphs marked cleaned are also using the graph cleaning steps that are already 
implemented in Miniasm

Graph Genomic edges Spurious edges

S. cerevisiae Miniasm 76,538 (99.39%) 466 (0.60%)

Kermit 76,518 (99.93%) 52 (0.07%)

Miniasm cleaned 7146 (99.92%) 6 (0.08%)

Kermit cleaned 7114 (100.0%) 0 (0.0%)

C. elegans Miniasm 668,012 (99.80%) 1306 (0.19%)

Kermit 667,970 (99.99%) 58 (0.003%)

Miniasm cleaned 60,416 (99.95%) 28 (0.05%)

Kermit cleaned 60,356 (99.997%) 2 (0.003%)

Table 5 Assembly statistics for  simulated S. cerevisiae 
and C. elegans reads and simulated linkage maps

Assembly S. cerevisiae C. elegans

Miniasm Kermit Miniasm Kermit

# of contigs 26 22 291 261

Total length 11,831,837
(97.32%)

11,728,421
(96.47%)

102,040,817
(103.81%)

101,632,493
(103.40%)

N50 605,399 640,779 2,337,914 2,293,633

NGA50 565,122 585,849 2,070,983 2,337,914

Misassemblies 2 1 7 7
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We also investigated the effect of the distance param-
eter for determining colouring inconsistency using 
the real B. pendula dataset. In a real linkage map, the 
boundaries of colours can be noisy and thus markers with 
nearby colours could be in the wrong order. We looked 
at assemblies using four different values for the distance 
( d = 0, 1, 2, 3 ) and a setting where all chromosomes are 
given a single colour and d = 0 . This latter represents the 
largest distance we could possible allow, as only edges 
that connect non-contiguous regions of the genome are 
removed. The results are summarised in Table 8.

We see that the distance parameter does not have a 
large effect on the assembly contiguity which indicates 
that our method is robust with respect to the mixing 
of nearby colours in real linkage maps. Furthermore, 
when using a single colour for each chromosome the 
N50 value is only slightly decreased as compared to 
the more fine grained schemes. As misassemblies con-
nect random parts of the genome, most of them will 
span two chromosomes. Therefore it is not surprising 

that using a single colour for each chromosome results 
in almost equally good contiguity as more fine grained 
schemes.

Running time
We recorded the wall clock time for all experiments. 
Table 9 shows that Kermit needs at most 5% more time 
than Miniasm on all data sets except H. erato on which 
it needs 13% more time. In some cases the total run-
ning time is even reduced.

Compared to Canu, both Miniasm and Kermit are 
significantly faster. This is likely due to Canu having 
a read error correction step. However, we did not run 
Racon on the H. erato and B. pendula assemblies of 
Miniasm and Kermit, whereas Canu pipeline includes 
error correction and consensus steps which contribute 
to its higher running time. Additionally, we see that the 
consensus step using Racon easily dominates the Mini-
asm and Kermit pipelines in terms of time to complete.

Table 6 Assembly statistics for real S. cerevisiae and C. elegans reads and simulated linkage maps

Assembly S. cerevisiae C. elegans

Miniasm Kermit Canu Miniasm Kermit Canu

# of contigs 31 29 34 177 188 159

Total length 12,118,143
(99.68%)

11,997,376
(98.69%)

12,426,814
(102.22%)

109,318,925
(111.22%)

104,545,368
(106.36%)

108,154,535
(110.03%)

N50 732,688 763,111 739,529 2,270,602 1,928,805 3,202,659

NGA50 345,801 376,210 375,952 272,995 271,763 271,783

Misassemblies 65 60 82 1837 1651 2019

Table 7 Assembly statistics for real H. erato and B. pendula reads and real linkage maps

Assembly H. erato B. pendula

Miniasm Kermit Canu Miniasm Kermit Canu

# of contigs 7444 6091 100,615 2201 1587 14,189

Total length 327,725,353
(86.24%)

280,881,758
(73.92%)

691,789,561
(180.69%)

473,300,369
(107.57%)

425,356,395
(96.67%)

387,624,902
(87.11%)

N50 58,892 60,356 12,592 435,830 539,400 45,255

Table 8 Assembly statistics for B. pendula dataset with different colour distance parameters

The unicoloured column shows results for colouring each chromosome with a single colour

Assembly Unicoloured d = 0 d = 1 d = 2 d = 3

# of contigs 1583 1594 1587 1585 1583

Total length 426,546,974 425,333,715 425,356,395 425,531,261 425,708,460

N50 537,429 539,400 539,400 538,989 538,770
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Conclusions
We defined guided assembly with linkage maps by 
extending the unitig assembly model. Our method, 
Kermit, is implemented as a graph cleaning step and 
the contigs are generated with a simple unitig algo-
rithm. As such the graph cleaning step could be used 
as a preprocessing step of a more complicated traversal 
algorithm for retrieving the contigs. Colouring the 
reads also leads naturally into non-overlapping bins of 
reads, that can be assembled independently. This allows 
massive parallelism in the assembly and could make 
more sophisticated assembly algorithms practical.

When defined as an independent graph cleaning step, 
our method guiding the assembly could be applied not 
only to other OLC-assemblers, but also to DBG-assem-
blers. In this case, the colours would be assigned to 
reads and the k-mers would get all colours present in 
reads where they derive from.

The colouring can also be used for ordering the 
assembled unitigs. While the current implementation 
only reports the colours for each unitig, these unitig 
colourings could be used to also connect the unitigs 
into more complete contigs.

Our experiments show that Kermit successfully 
removes spurious edges from the overlap graph. Fur-
thermore we showed that with only a modest increase 
in runtime Kermit improves the contiguity and correct-
ness of assembly as compared to current de novo long 
read assemblers.
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