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1. Introduction

In [7] the following inequality for vector polynomials was established: let

P (t) = (P1(t), . . . , Pn(t))

be an n-tuple of real polynomials of a single variable whose degrees are at most d, and
set

JP (t1, . . . , tn) = det(P ′(t1) · · ·P ′(tn)) and LP (t) = det(P ′(t) · · ·P (n)(t)),

the determinants of n × n matrices whose jth columns are given by P ′(tj) and P (j)(t),
respectively. Then there exist constants ε = εd,n, M = Md,n with 0 < ε, M < ∞, so that
any closed interval I ⊂ R can be decomposed as I =

⋃N
�=1 J�, where the J� are closed

intervals with disjoint interiors, N � M and, for each 1 � � � N ,

|JP (t)| � ε

n∏
j=1

|LP (tj)|1/n
∏

1�r<s�n

|tr − ts| (1.1)
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for all t = (t1, . . . , tn) ∈ Jn
� . Note that (1.1) remains unchanged if P is replaced by any

affine image AP +v, where A ∈ GLn(R) and v ∈ R
n. This affine invariance is important

in applications (see [7] for an application of (1.1) to Fourier restriction and [8] for an
application to Lp improving bounds for averaging operators) as well as being crucial in
the proof to establish (1.1) itself.

In this paper we extend (1.1) to rational functions. More precisely, we establish the
following result.

Theorem 1.1. Let R(t) = (R1(t), . . . , Rn(t)) be an n-tuple of rational functions whose
degrees do not exceed d and set JR(t) and LR(t) as above. Then there exist positive and
finite constants εd,n and Md,n so that every closed interval I can be decomposed as
I =

⋃N
�=1 J�, where the {J�}N

�=1 are closed intervals with disjoint interiors, N � Md,n

and (1.1) holds with ε = εd,n on the interior of each Jn
� .

As an application of Theorem 1.1, we have the following result in the theory of Fourier
restriction to curves.

Theorem 1.2. Let R(t), LR(t) be as in Theorem 1.1 and set w(t) = |LR(t)|2/n(n+1).
Then,

for p′ =
n(n + 1)

2
q and 1 � p <

n2 + 2n

n2 + 2n − 2
,

( ∫
R

|f̂(R(t))|qw(t) dt

)1/q

� C‖f‖Lp(Rn) (1.2)

holds for all f ∈ C∞
c (Rn) and some C = Cp,d,n.

Remarks 1.3.

(i) The example R(t) = (t, t2, . . . , tn) shows that the condition p′ = n(n + 1)/2q is
sharp, but from the work of Drury [9] and Arkipov et al . [1] one expects that the
range of p could be enlarged to 1 � p < (n2 + n + 2)/(n2 + n).

(ii) The measure ω on the curve parametrized by R(t) (defined on a test function φ

by ω(φ) =
∫

R
φ(R(t))w(t) dt) is called the affine arc-length measure and mitigates

any curvature degeneracies which R may possess. One then expects (1.2) to hold
for large classes of curves in R

n with a corresponding uniform bound C; this has
been investigated by a number of authors (see, for example, [2, 3, 7, 10–12, 14,
16]). However, simple examples show that (1.2) can fail if LR(t) changes sign too
often [16] and so the class of rational curves is natural to consider, as the number of
sign changes of LR is controlled by d. Finally, a nice feature is that, on the critical
line p′ = n(n + 1)/2q, the estimate (1.2) is affine-invariant.

(iii) The proof of Theorem 1.2 follows the argument of Christ in [5], using Theorem 1.1∗

(see [7] for details).
∗ Strictly speaking, in addition to (1.1), the proof of Theorem 1.2 requires that the map

ΦΓ (t1, . . . , td) = Γ (t1) + · · · + Γ (td)

be injective but the proof of this follows exactly as in [7].
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Another application of Theorem 1.1 lies in the area of universal Lp improving bounds
for averaging operators along curves defined with respect to the affine arc-length measure
ω. The following theorem extends results in [8,15].

Theorem 1.4. With R and ω defined as above, set Af(x) = f ∗ ω(x) and n = 2 or
3. Then, for every ε > 0,

‖Af‖L(n2+n)/(2n−2),((n+1)/2)+ε(Rn) � C‖f‖L(n+1)/2(Rn)

and

‖Af‖L(n+1)/(n−1),(n2+n)/(n2−n+2)+ε(Rn) � C‖f‖L(n2+n)/(n2−n+2)(Rn),

holds for all f ∈ C∞
c (Rn) and some C = Cp,d,n.

Up to the ε > 0 factor in the Lorentz norms, the estimates here are sharp (see, for
example, [8]). The proof of Theorem 1.4 combines the argument of Christ [6] with an
application of Theorem 1.1 (see [8] for details). The argument in [8] must be suitably
changed when LR(t) ∼ (t− b)k and k < 0. For instance, when n = 2, it is natural to split
the analysis into the cases k � −2, k � −4 and k = −3. The cases k � −2 and k � −4
follow the argument in [8] with obvious modifications and a slight reshuffling of powers.
The case k = −3 (the analogous case for n = 3 is k = −6) requires more thought but
the changes are straightforward.

Notation

Let A, B be complex-valued quantities. We use the notation A � B or A = O(B) to
denote the estimate |A| � C|B|, where C depends only on n, d and Lebesgue exponents
p. We use A ∼ B to denote the estimates A � B � A.

2. First stage: the initial decomposition

In this section we begin the proof of Theorem 1.1. The main observation is that the
algorithm developed in [7] to establish the corresponding inequality for polynomials is
robust enough to handle general rational functions with a few modifications. We use the
convention that a rational function can be expressed as a ratio of polynomials R = P/Q,
where Q is not the zero polynomial and we make the basic assumption that LR(t) is not
the zero rational function; otherwise the proof of Theorem 1.1 is a triviality.

The proof of Theorem 1.1 for polynomials in [7] is carried out in two stages. The exten-
sion to rational functions will require three stages. The first stage in [7] is elementary and
produces an initial decomposition of any closed interval into O(1) closed intervals with
disjoint interiors so that on each subinterval a formula relating JP (t) and LP (t) holds.
This initial decomposition and formula carry over to the setting of rational functions
without change. We first establish some notation.
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Notation

For any sequence (finite or infinite) of real rational functions S = (S1, S2, . . . ), we set,
for any j � 1, Sj = (S1, . . . , Sj) and

LS,j(t) = LS1···Sj (t) := det(S′
j(t) · · ·S(j)

j (t))

so that, in particular, LR = LR,n = LR1···Rn for our original n-tuple of rational functions
R = (R1, . . . , Rn). For convenience we will often denote LR,j simply by Lj for 1 � j � n.

As in [7] we have the following generalization of the quotient rule for derivatives [7,
Lemma 4.1].

Lemma 2.1. If S1, . . . , Sk, R, T are k + 2 real rational functions so that LS1···SkR is
not the zero rational function, then(

LS1···SkT

LS1···SkR

)′
=

LS1···SkRT LS1···Sk

[LS1···SkR]2
. (2.1)

And as a consequence we have the following [7, Lemma 4.2].

Lemma 2.2. If LR = LR1···Rn
is not the zero rational function, then, for every

1 � j � n, LR,j = LR1···Rj is not the zero rational function.

The real roots and real poles of all the rational functions {LR,j}n
j=1 give us our initial

decomposition of an arbitrary closed interval I =
⋃

J into O(1) closed intervals with
disjoint interiors so that on the interior of each J every LR,j is either strictly positive or
strictly negative.

We now write down a formula relating the determinant of the Jacobian matrix for the
mapping ΦR(t) = R(t1) + · · · + R(tn), JR(t) = det(R′(t1) · · ·R′(tn)), and the rational
functions Lj = LR,j , 1 � j � n, which will be valid on each interval J . We will write JR

as a series of nested iterated integrals. To this end we define a sequence of multivariate
functions {Ir}n

r=1; for each 1 � r � n, Ir = Ir(x1, . . . , xr) will be a function of r variables
that will be well defined on Jr for each interval J arising in the initial decomposition.
We define this sequence inductively. For r = 1 we set I1(x) = Ln−2(x)Ln(x)/[Ln−1(x)]2

and then, inductively, define

Ir(x1, . . . , xr) =
r∏

s=1

Ln−r−1(xs)Ln−r+1(xs)
[Ln−r(xs)]2

×
∫ x2

x1

· · ·
∫ xr

xr−1

Ir−1(y1, . . . , yr−1) dy1 · · ·dyr−1.

In order to make sense of In−1 and In we set L0 = L−1 ≡ 1.
Following the differential calculus argument in [7] verbatim we see that the formula

JR(t1, . . . , tn) = In(t1, . . . , tn) (2.2)

holds on each Jn. When n = 2, (2.2) simply states that

JR(s, t) = L1(s)L1(t)
∫ t

s

L2(w)
L2

1(w)
dw (2.3)
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for any s, t ∈ J , where J is an interval from our initial decomposition. When n = 3, (2.2)
becomes

JR(s, t, u) = L1(s)L1(t)L1(u)
∫ t

s

∫ u

t

L2(v)L2(w)
[L1(v)L1(w)]2

∫ w

v

L3(z)L1(z)
L2(z)2

dz dw dv

for any s, t, u ∈ J .

3. Second stage: two decomposition procedures

Our goal now is to use two decomposition procedures to decompose each interval J

arising from the initial decomposition into O(1) intervals, so that on each subinterval
every rational function LR,j , 1 � j � n, appearing in the formula (2.2) for JR(t) behaves
like a centred monomial, LR,j(t) ∼ Aj(t − b)kj for some kj ∈ Z, all with the same centre
b ∈ R! In fact, we have the following.

Proposition 3.1. Let P1, . . . , PM be M real polynomials with degrees at most D.
Then any closed interval J =

⋃
L can be decomposed into O(1) (here the implicit

constant depends only on M and D) closed intervals with disjoint interiors so that, for
every L, we have M exponents k1 = k1(L), . . . , kM = kM (L) ∈ Z, M non-zero constants
A1 = A1(L), . . . , AM = AM (L) and a single centre b = b(L) ∈ R, where, for each
1 � j � M , we have Pj(t) ∼ Aj(t − b)kj holding on L.

We remark that the proposition implies its extension to general real rational functions
by applying Proposition 3.1 to the polynomial sequence of numerators and denominators;
however, we shall apply it only in its current form. The proof of Proposition 3.1 relies on
two decomposition procedures.

The first procedure was introduced in [7] and decomposes any interval J with respect
to a given polynomial Q. This procedure has the advantage of describing Q over the
entire interval J .

(D1) Given a real polynomial Q, any closed interval J =
⋃

I can be decomposed into
O(1) closed intervals with disjoint interiors so that, on the interior of each I, Q(t) ∼
A(t − b)k for some A = AI �= 0, an integer k = kI � 0 and b = bI , the real part of
a root of Q.

The second decomposition procedure was introduced in [4] and gives a decomposition
that depends not only on a given polynomial Q but also on a given centre b. Here we
shall attempt to describe Q on most of J as monomials with varying exponents but with
a fixed centre b.

(D2) Given a real polynomial Q and a centre b ∈ R, any closed interval J =
⋃

I can
be decomposed into O(1) closed intervals with disjoint interiors which fall into two
classes: G (gaps) and D (dyadic).

On I ∈ G, Q(t) ∼ A(t − b)k for some A = AI �= 0 and an integer k = kI � 0. On
I ∈ D, (t − b) ∼ B for some B = BI �= 0. Furthermore, if Q(t + b) =

∑
cktk and

ck0 = 0, then no gaps I ∈ G exist on which Q(t) ∼ A(t − b)k0 .
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Using (D1) and (D2) in tandem, we will arrive at a proof of Proposition 3.1 (we will
not use the last statement in (D2) here but this will be important for the third stage).
This will be carried out in M steps. Step 1 is very simple: we apply (D1) to P1 to obtain
a decomposition J =

⋃
K so that, on each K,

P1(t) ∼ A1(t − b)k1 for some A1 = A1(K) �= 0, k1 = k1(K) ∈ Z and b = b(K) ∈ R.

In Step 2 we decompose each K further to pin down the behaviour of P2. In fact, to each
K, we apply (D2) with respect to P2 and b = b(K) to obtain a further decomposition
K = (

⋃
L′) ∪ (

⋃
L′′) into gaps L′ and dyadic intervals L′′. On each gap L′,

P2(t) ∼ A2(t − b)k2 for some A2 = A2(L′) �= 0 and k2 = k2(L′) ∈ Z

(but b = b(K) does not change).
However, on each dyadic L′′, t − b ∼ B for some non-zero B = B(L′′) and therefore

P1(t) ∼ A1B
k1 on L′′. To complete Step 2, we decompose each dyadic L′′ =

⋃
L′′′ further

using (D1) with respect to P2 so that, on each L′′′,

P2(t) ∼ A2(t − c)k2

for some non-zero A2 = A2(L′′′), k2 = k2(L′′′) ∈ Z and c = c(L′′′) ∈ R.
The important observation here is that we also have P1(t) ∼ Ã1(t − c)0 on L′′′ where

Ã1 = A1B
k1 and c = c(L′′′) as above. This completes Step 2. To recapitulate, Step 2 has

produced a decomposition K =
⋃

L into O(1) closed intervals, so that, on the interior
of each L,

P1(t) ∼ A1(t − b)k1 and P2(t) ∼ A2(t − b)k2

for some non-zero constants A1 = A1(L), A2 = A2(L), exponents k1 = k1(L), k2 =
k2(L) ∈ Z and centre b = b(L) ∈ R.

Step 3 simply repeats Step 2 for P3, etc., and by the time step M is carried out the
proof of Proposition 3.1 is complete.

Of course we could at this stage apply Proposition 3.1 to the sequence of polynomials
formed from the numerators and denominators of the rational functions LR,j , 1 � j � n,
appearing in the series of nested iterated integrals In, making the various integrands of
In consist of centred monomials, all of which have the same centre. However, in this
way we are treating the rational functions LR,j independently (which of course they are
not) and consequently we will have no control over the exponents that arise. Without
avoiding certain ‘bad’ exponents, the resulting inequality is in fact false. We will see
in the third stage how to use the affine invariance of the inequality to guarantee that
these bad exponents do not arise. But in order to achieve this (learning various lessons
from [13]) it will be important to first stabilize the behaviour of the denominators of the
original n-tuple of rational functions.

This is the second stage that produces a secondary decomposition, decomposing each
interval J from the initial decomposition further. Applying Proposition 3.1 to the poly-
nomials arising as denominators Q1, . . . , Qn from our original n-tuple of rational functions
R = (R1, . . . , Rn), where Rj = Pj/Qj , we see that every interval J =

⋃
K from the
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original decomposition can be decomposed into O(1) disjoint intervals so that, on each
K,

Qj(t) ∼ Aj(t − b)�j

for some non-zero Aj = Aj(K), �j = �j(K) ∈ Z and b = b(K) ∈ R.
Thus, on K, [Q1 · · ·Qn](t) ∼ B(t − b)�1+···+�n for some non-zero B = B(K). We will

use the affine invariance of (1.1) for R to change the rational functions LR,j , 1 � j � n,
in order to avoid certain bad exponents and we shall see that various powers of Q1 · · ·Qn

will appear as denominators of the transformed LR,j . For instance, we shall begin the next
section by stabilizing the behaviour of LR,n and we note that NR,n := [Q1 · · ·Qn]2

n

LR,n

is a polynomial and serves as a numerator for LR,n.

4. Third stage: the algorithm

We now describe the general algorithm developed in [7] with the appropriate modifi-
cations needed to pass from polynomials to rational functions. The algorithm is car-
ried out in n steps and roughly follows the M steps in the proof of Proposition 3.1
with respect to certain polynomial numerators NR,j of LR,j (with the order given by
NR,n, NR,1, NR,2, . . . , NR,n−1). However, we shall keep modifying the n-tuple of rational
functions R by an affine map R → AR at the end of each step (to avoid certain bad
exponents) before proceeding to the next step. The key to making this work lies in the
feature (which we have not yet used) of (D2) that if Q(t + b) =

∑
cktk and ck0 = 0, then

no gaps I ∈ G exist on which Q(t) ∼ A(t − b)k0 .
As in [7] we shall systematically suppress all multiplicative non-zero constants arising

in inequalities for polynomials on various intervals; for example, we shall write Q(t) ∼
(t − b)k0 instead of Q(t) ∼ A(t − b)k0 as above. The reader can easily check that these
constants always cancel out by homogeneity of the inequality (1.1) that we are trying to
establish for rational functions.

Much of this section closely follows [7], but we have decided not to truncate the
presentation for the convenience of the reader. Our aim is to decompose an interval
K from the secondary decomposition into O(1) intervals so that on each subinterval
(1.1) holds for R. Recall that associated to K are a centre b = b(K) and exponent
ln = ln(K) = 2n[�1 + · · · + �n] so that, on K, [Q1 · · ·Qn]2

n

(t) ∼ (t − b)ln (we apply our
convention to suppress multiplicative constants).

Step 1. Here we shall decompose K into O(1) disjoint intervals of two types, T0 and
T1. Use (D2) with respect to NR,n and b to decompose K =

⋃
L into O(1) gap (G)

intervals or dyadic (D) intervals so that, on each L ∈ G,

NR,n(t) ∼ (t − b0)j0

for some exponent j0 = j0(L) and where b0 = b.
The intervals L ∈ G are those of type T0. To obtain the intervals of type T1 we first

observe that, on L ∈ D, t−b ∼ 1, and so every denominator Qj is approximately constant;
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that is, Qj(t) ∼ 1 on L. Next we apply (D1) to NR,n in order to decompose each L ∈ D,
L =

⋃
L′, into O(1) disjoint intervals so that, on each L′,

NR,n(t) ∼ (t − b1)j1

for some exponent j1 = j1(L′) and some centre b1 = b1(L′).
The intervals L′ are those of type T1. To recapitulate, in this initial step we have

decomposed K =
⋃

L into O(1) intervals of two types: T0 and T1. To each interval
L ∈ Tr, r = 0, 1, we have associated a centre br = br(L) (b0 = b and b1 = b1(L)) and an
exponent kr = kr(L) (k0 = j0(L) − ln(K) and k1 = j1(L)) so that, on L ∈ Tr,

LR,n(t) ∼ (t − br)kr .

We choose to emphasize the dependence of various quantities on the type, indexed
by r = 0, 1, over the dependence on the interval L ∈ Tr. Before we proceed to Step 2
we transform R in order to avoid certain bad exponents (see Lemma 5.3 and its proof
to understand the motivation for the particular values we come up with for the bad
exponents) when we apply (D2) to a certain NR,1 and centre br. To this end we introduce,
for each L ∈ Tr, r = 0, 1,

Ar = Ar(L) =

(
a1 · · · an

∗

)
∈ GLn(R),

where the row vector ar = ar(L) = (a1, . . . , an) ∈ R
n will be chosen presently to be non-

zero and the remaining entries chosen to guarantee that Ar is invertible but otherwise
chosen in an arbitrary fashion. We note that LArR,n = (detAr)LR,n is only changed by
a multiplicative constant and so will not affect (1.1). On the other hand,

LArR,1 =
n∑

m=1

am

(
Pm

Qm

)′
=

∑n
m=1 amSm

[Q1 · · ·Qn]2

for certain polynomials Sm. We define

NArR,1 := [Q1 · · ·Qn]2LArR,1 =
n∑

m=1

amSm.

Thus, if Sm(t + br) =
∑

cm
j tj , then

NArR,1(t + br) =
∑

j

ar · cjt
j ,

where cj = (c1
j , . . . , c

n
j ). For L ∈ T0, we choose a0 = a0(L) = (a1, . . . , an) to be any

non-zero vector which is orthogonal to the hyperplane

H0 = span{cN0+m}n−1
m=1,
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where

N0 = N0(L) =
⌊

k0

n

⌋
+ 2(�1 + · · · + �n).

For L ∈ T1, we choose a1 = a1(L) = (a1, . . . , an) to be any non-zero vector which is
orthogonal to the hyperplane

H1 = span{cN1+m}n−1
m=1,

where

N1 = N1(L) =
⌊

k1

n

⌋
.

Step 2. In this step we shall decompose each L ∈ Tr, r = 0, 1, arising from Step 1
and repeat the process with NR,n replaced by NArR,1; thus, by the end of this step we
shall arrive at intervals of four types: T00, T01, T10 and T11. Fix the type r ∈ {0, 1} and
interval L ∈ Tr from Step 1 and apply (D2) with respect to NArR,1 and br to decompose
L =

⋃
M into O(1) gap (G) intervals and dyadic (D) intervals. The intervals M ∈ G are

the intervals of type Tr0 and, on such an M ,

NArR,1(t) ∼ (t − br0)jr0

for some centre br0 and exponent jr0. Here the centre br0 = br has not changed and,
most importantly, by our choice of Ar, the exponent jr0 /∈ {Nr + m}n−1

m=1.
Furthermore, on a dyadic interval M ∈ D, t − br ∼ 1 and so LArR,n(t) ∼ 1 and each

denominator Qj(t) ∼ 1 on M . To arrive at the intervals of type Tr1, we use (D1) with
respect to NArR,1 to decompose each dyadic M =

⋃
M ′ into O(1) disjoint intervals so

that, on each M ′,
NArR,1(t) ∼ (t − br1)jr1

for some centre br1 = br1(M ′) and exponent jr1 = jr1(M ′). Here we have no control over
which exponent jr1 arises. The intervals M ′ are the intervals of type Tr1.

To recapitulate, we have decomposed an interval L from Step 1 of type Tr, L =
⋃

M ,
into O(1) intervals of two further types, Tr0 and Tr1. To each interval M ∈ Trs, s = 0, 1,
we have associated a centre brs = brs(M) (br0 = br) and an exponent krs = krs(L)
(k00 = j00 − 2ln, k10 = j10, k01 = j01 and k11 = j11) so that, on M ∈ Tr0,

LArR,n(t) ∼ (t − br0)kr , LArR,1(t) ∼ (t − br0)kr0 ,

where

br0 = br and kr0 /∈
{⌊

kr

n

⌋
+ m

}n−1

m=1
,

and, on M ∈ Tr1,

LArR,n(t) ∼ 1, LArR,1(t) ∼ (t − br1)kr1 .
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Before we proceed to the next step, we transform ArR in order to again avoid certain
bad exponents when we apply (D2) with respect to a certain NArR,2 and br0. To this
end we introduce, for each M ∈ Trs, r, s ∈ {0, 1},

Ars = Ars(M) =

⎛
⎜⎝ 1 0

a1a2 · · · an−1

0 ∗

⎞
⎟⎠ Ar

for an appropriate choice of a non-zero ars = ars(M) = (a1, . . . , an−1) which we will
briefly describe. First we note from the form of Ars that LArsR,1 = LArR,1 remains
unchanged and LArsR,n changes only by a multiplicative constant.

If ArR = (U1, . . . , Un), where each [Q1 · · ·Qn]Uj is a polynomial, then

LArsR,2 = a1LU1U2 + a2LU1U3 + · · · + an−1LU1Un

and so

LArsR,2 =
n−1∑
m=1

amSm/[Q1 · · ·Qn]6

for certain polynomials Sm. We define NArsR,2 := [Q1 · · ·Qn]6LArsR,2. Thus, if

Sm(t + brs) =
∑

cm
j tj ,

then

NArsR,2(t + brs) =
∑

j

ar · cjt
j ,

where cj = (c1
j , . . . , c

n−1
j ). For M ∈ Trs, we choose ars = ars(M) = (a1, . . . , an−1) to

be any non-zero vector which is orthogonal to the subspace spanned by {cNrs+m}n−2
m=1,

where

N00 = N00(M) =
⌊

n − 2
n − 1

k00 +
k0

n − 1

⌋
+ 6ln,

N10 = N10(M) =
⌊

n − 2
n − 1

k10 +
k1

n − 1

⌋

and

Nr1 = Nr1(M) =
⌊

n − 2
n − 1

kr1

⌋
.

Step m to Step (m+1). We now describe how we pass from Step m to Step (m+1),
2 � m � n − 1.

The intervals which arise by Step m will be of 2m−1 types Tr, parametrized by 0–1
bitstrings r = r1 · · · rm−1 of length m − 1. Fix an interval J of type Tr; we will have
associated to J a centre (real number) br = br(J) and an exponent (integer) kr = kr(J).
Furthermore, J will have a unique parent (and grandparent, etc., all the way back to
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an interval from the secondary decomposition) J̃ from the previous step (Step (m − 1))
of type Tr̃, where r̃ = r1 · · · rm−2 and there will have been associated to J̃ a matrix
Ar̃ = Ar̃(J̃) ∈ GLn(R) so that, on J ,

LAr̃R,m−2(t) ∼ (t − br)kr . (4.1)

When m = 2, r̃ is the empty string and the left-hand side of (4.1) is interpreted as LR,n.
To carry out the decomposition of each interval J =

⋃
K into intervals of type Tr0 or

type Tr1 for Step (m + 1), we will need to construct an appropriate invertible matrix
Ar = Ar(J) (which in fact will leave the first m − 2 components of Ar̃R unchanged).
For an interval K of type Tr0 we will find a centre br0 = br0(K) and an exponent
kr0 = kr0(K) so that, on K,

LArR,m−1(t) ∼ (t − br0)kr0 . (4.2)

Importantly, we will achieve this with br0 = br and some kr0 /∈ {Nr + 1, . . . , Nr + n −
m + 1}, where, for m � 3,

Nr =
⌊

n − m + 1
n − m + 2

kr

⌋
if r �= r10 · · · 0

and

Nr =
⌊

n − m + 1
n − m + 2

kr +
kr1

n − m + 2

⌋
if r = r10 · · · 0. (4.3)

When m = 2, r = r1 and

Nr =
⌊

kr1

n − m + 2

⌋
=

⌊
kr1

n

⌋
.

For an interval K of type Tr1 we will find a centre br1 = br1(K) and an exponent
kr1 = kr1(K) so that, on K,

LArΓ,m−1(t) ∼ (t − br1)kr1 . (4.4)

Here we will have no control over the values of br1 and kr1.
Before we prove (4.2) and (4.4) we construct the invertible matrix Ar = Ar(J), which

will depend on br = br(J) and kr = kr(J) already determined by Step m. In fact,

Ar =

⎛
⎜⎝ Im−2 0

a1a2 · · · an−m+2

0 ∗

⎞
⎟⎠ Ar̃

for an appropriate choice of ar = ar(J) = (a1, . . . , an−m+2) ∈ R
n−m+2 which we shall

briefly describe. First, note that, from the form of Ar, LArR,j = LAr̃R,j , 1 � j � m − 2
(if m � 3), remain unchanged, while LArR,n changes only be a multiplicative constant.



650 S. Dendrinos, M. Folch-Gabayet and J. Wright

If Ar̃R = (U1, . . . , Un), where each [Q1 · · ·Qn]Uj is a polynomial, then

LArR,m−1 =
n−m+2∑

q=1

aqLU1···Um−2Um−2+q

and so

LArR,m−1 =
n−m+2∑

q=1

aqSq/[Q1 · · ·Qn]2
m−2

for certain polynomials Sq. We define NArR,m−1 := [Q1 · · ·Qn]2
m−2LArR,m−1. Thus, if

Sq(t + br) =
∑

cq
j t

j ,

then
NArR,m−1(t + br) =

∑
j

ar · cjt
j ,

where cj = (c1
j , . . . , c

n−m+2
j ). For J ∈ Tr, we choose ar = ar(J) = (a1, . . . , an−m+2) to

be any non-zero vector which is orthogonal to the subspace spanned by

{cNr+m}n−m+1
m=1 ,

where Nr = Nr if r �= 0 · · · 0 and Nr = Nr + [2m − 2]ln if r = 0 · · · 0 (Nr as in (4.3)).
The procedure to establish (4.2) and (4.4) is exactly the same as in Steps 1 and 2; use

(D2) with respect to the polynomial NArR,m−1 and centre br to decompose J =
⋃

K

into gap (G) intervals or dyadic (D) intervals. Note that, by construction, (4.2) is satisfied
for our gap intervals K ∈ G since

NArR,m−1(t + br) =
∑

cjt
j

has the property that the coefficients cNr+� vanish for all � = 1, 2, . . . n − m + 1. The
way we defined Ar guarantees that this is the case. Hence, these gap intervals will be
our intervals of type Tr0. To arrive at our intervals of type Tr1 we use (D1) with respect
to the polynomial NArR,m−1 to decompose each dyadic K =

⋃
K ′ further into O(1)

disjoint intervals so that on each K ′ (4.4) holds. This completes the inductive step from
Step m to Step (m + 1).

Step n. Eventually, we arrive at the final step. Let us fix an interval Jr, r = r1 · · · rn,
of type Tr at this final step and describe what the algorithm produces on this interval. To
this end let rj = r1 · · · rj when 1 � j � n (so that rn = r) and let r0 denote the empty
string. We have n − 1 invertible matrices {Ar1 , . . . , Arn−1}, n centres {br1 , . . . , brn = br}
and n exponents {kr1 , . . . , kr} associated to Jr, its parent, grandparent, etc., all the way
back to an interval J from the secondary decomposition (note there is no matrix Ar as we
do not pass from Step n to Step (n+1)). Let 0 � m � n be such that r = r1 · · · rm0 · · · 0
and rm = 1 (m = 0 being the case r = 0 · · · 0). When m � 2 we have the following
properties from our algorithm.
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(1) On Jr,

LR,n(t) ∼ 1, . . . , LArm−2R,m−2(t) ∼ 1, LArm−1R,m−1(t) ∼ (t − brm
)krm ,

LArm R,m(t) ∼ (t − brm+1)
krm+1 , . . . , LArn−1R,n−1(t) ∼ (t − br)kr ,

where krm
∈ Z is unrestricted but, for m + 1 � j � n,

krj /∈ {Nrj−1 + 1, . . . , Nrj−1 + n − j + 1}, where Nrj−1 =
⌊

n − j + 1
n − j + 2

krj−1

⌋

(the m = 2 case being interpreted as LR,n ∼ 1, LAr1R,1(t) ∼ (t − br11)
kr11 , etc.).

(2) For each 1 � j � n − 1, LArj
R,j = LArn−1R,j because of the form of the matrices

Arj
. Hence, on Jr, if Q = Arn−1R,

LQ,n(t) ∼ 1, LQ,1(t) ∼ 1, . . . , LQ,m−1(t) ∼ 1,

LQ,m(t) ∼ (t − brm+1)
krm+1 , . . . , LQ,n−1(t) ∼ (t − br)kr .

(3) For m � j � n, brj = br.

The cases m = 0 and m = 1 are special; here r = r10 · · · 0. In this case we have, on Jr,

LQ,n(t) ∼ (t − br1)
kr1 , LQ,1(t) ∼ (t − br1)

kr2 , . . . , LQ,n−1(t) ∼ (t − br1)
kr , (4.5)

where kr1 ∈ Z is unrestricted but each krj , 2 � j � n, has the restriction krj
/∈ {Mrj−1 +

1, . . . , Mrj−1 + n − j + 1}, where

Mrj−1 =
⌊

n − j + 1
d − j + 2

krj−1 +
kr1

n − j + 2

⌋

(here kr1 = 0).
We are now in a position to describe our final decomposition of I =

⋃
J of any

closed interval I into O(1) closed subintervals with disjoint interiors so that (1.1) for
R holds on the interior of each J . The initial and secondary decompositions together
with the algorithm set out in this section produce a decomposition of I =

⋃
J so that

properties (1)–(3) hold on each J (this is the case when m � 2; property (4.5) holding
for the cases m = 0 and m = 1). Now collect together all the centres {br} associated to
each J , its parent, grandparent, etc. (there are O(1) such centres) and decompose each J

into closed intervals with disjoint interiors avoiding these real numbers. Thus, we finally
arrive at our desired final decomposition for I.

5. Proof of Theorem 1.1

We now follow [7] and apply properties (1)–(3) to reduce (1.1) for R to establishing a
concrete inequality on each interval J from the final decomposition. We begin with the
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cases 2 � m � n; for q � 2, we change notation slightly and start with any sequence of
q − 1 integers k0, k1, . . . , kq−2 where k0 is unrestricted but, for 1 � j � q − 2,

either kj � q − j − 1
q − j

kj−1 or kj � q − j − 1
q − j

kj−1 + (q − j − 1). (5.1)

One can easily check that the interval of values of kj which are prohibited above (in
terms of kj−1) are the ones avoided in the algorithm of the previous section, thanks
to the affine invariance of (1.1). In a moment we will see why we chose to avoid these
particular values.

From this sequence kj we form a new sequence of integers; when 1 � j � q − 3 we set
σj = kj+1 + kj−1 − 2kj . When j = 0 we set σ0 = k1 − 2k0 and when j = q − 2, we set
σq−2 = kq−3 − 2kq−2. We now define Eq = Eq(x1, . . . , xq, b) as a nested series of iterated
integrals in the following manner. First set

Eq,2 = Eq,2(u1, u2) = |u1 − b|σq−3 |u2 − b|σq−3

∫ u2

u1

|w − b|σq−2 dw.

Next define

Eq,3(v1, v2, v3) =
3∏

r=1

|vr − b|σq−4

∫ v2

v1

∫ v3

v2

Eq,2(u1, u2) du1 du2

and, iteratively,

Eq,j(x1, . . . , xj) =
q∏

r=1

|xr − b|σq−j−1

∫ x2

x1

· · ·
∫ xj

xj−1

Eq,j−1(y1, . . . , yj−1) dy1 · · ·dyj−1.

Finally, we arrive at Eq := Eq,q with the understanding that σ−1 = k0. In other words,

Eq =
q∏

r=1

|xr − b|k0

∫ x2

x1

· · ·
∫ xq

xq−1

q−1∏
r=1

|yr − b|σ0 · · ·
∫ u2

u1

|w − b|σq−2 dw du1 · · ·dyq−1.

Our desired inequality in this case is implied by the following proposition [7].

Proposition 5.1. For any q � 2, x1 < x2 < · · · < xq and b /∈ [x1, xq],

Eq �
∏
r<s

(xs − xr).

The cases m = 0 and m = 1 reduce to a slight variant of Proposition 5.1. Here we
start with a sequence of n integers (slightly changing notation again) k0, . . . , kn−2 and
k, where now k is unrestricted but, for 0 � j � n − 2 (k−1 = 0),

kj � n − j − 1
n − j

kj−1 +
k

n − j
or kj � n − j − 1

n − j
kj−1 +

k

n − j
+ (n − j − 1). (5.2)

We define a sequence σ̃j = σj for 0 � j � n − 3 (where the σj are defined above) but we
define σ̃n−2 = k + kn−3 − 2kn−2. Finally, we define Fn = Fn(x1, . . . , xn, b) exactly as we
defined Eq with q = n, except that the sequence {σj} is replaced by {σ̃j}. Our desired
inequality in these cases follows from the next proposition (again see [7]).
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Proposition 5.2. For any x1 < x2 < · · · < xn and b /∈ [x1, xn],

|Fn| �
n∏

r=1

|xr − b|k/n
∏
r<s

|xs − xr|.

For the proof of Propositions 5.1 and 5.2 we will need to examine iterated integrals of
the form

I =
∫ z2

z1

· · ·
∫ z�

z�−1

�−1∏
r=1

|yr − b|ρr

∏
r<s

|yr − ys| dy1 · · ·dy�−1,

where z1 < · · · < z� < b.
One important case to consider is where all the exponents ρr are equal (a proof of the

following lemma can be found in [7]).

Lemma 5.3. If ρ1 = ρ2 = · · · = ρ�−1 = ρ,

I �
�∏

r=1

|zr − b|ρ(�−1)/�
∏
r<s

|zr − zs|

holds if and only if ρ � 0 or ρ � −�.

We now return to Eq and Fn in Propositions 5.1 and 5.2 and prove an estimate for
these nested series of iterated integrals by making repeated use of Lemma 5.3. We start
with the innermost integral and apply Lemma 5.3 to it:∫ u2

u1

|w − b|s dw � |u1 − u2|[|u1 − b||u2 − b|]s/2

holds if and only if s � 0 or s � −2. For Eq, s = σq−2 = kq−3 −2kq−2 and by (5.1) either

kq−2 � 1
2kq−3 =⇒ s = σq−2 � 0

or

kq−2 � 1
2kq−3 + 1 =⇒ s = σq−2 � −2.

For Fn, s = σ̃n−2 = k + kn−3 − 2kn−2 and by (5.2) either

kn−2 � 1
2kn−3 + 1

2k =⇒ s = σ̃n−2 � 0

or

kn−2 � 1
2kn−3 + 1

2k + 1 =⇒ s = σ̃n−2 � −2.

Observe that, when we apply Lemma 5.3 iteratively to each successive nested iterated
integral defining either Eq or Fn, we end up with an iterated integral with the form I

above, where all the exponents ρr are equal and so Lemma 5.3 can once again be applied.
At the (� − 1)th application (2 � � � q or n) of Lemma 5.3 we need to estimate

I� =
∫ z2

z1

· · ·
∫ z�

z�−1

∏
r<t

|yr − yt|
�−1∏
r=1

|yr − b|ρ� dy1 · · ·dy�−1,
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where ρ2 = sq−2 and then iteratively

ρ� = sq−� +
� − 2
� − 1

ρ�−1;

here s = σ for Eq and s = σ̃ for Fn (and then q = n).

Claim 5.4. For Eq (and so s = σ),

ρ� = kq−�−1 − �

� − 1
kq−�, 2 � � � q.

Here we interpret k−1 = 0. To prove this claim we proceed by induction on �, the case
� = 2 being clear. By induction, for 3 � � � q,

ρ� = σq−� +
� − 2
� − 1

(
kq−� − � − 1

� − 2
kq−�+1

)

= kq−�−1 + kq−�+1 − 2kq−� +
� − 2
� − 1

kq−� − kq−�+1

and so ρ� = kq−�−1 − (�/� − 1)kq−�.
By (5.1) we see that Claim 5.4 implies that either ρ� � 0 or ρ� � −� only if 2 � � � q−1

and so Lemma 5.3 can be applied to these I�.

Claim 5.5. For Fn (and so s = σ̃),

ρ� = kn−�−1 − 1
� − 1

(�kn−� − k), 2 � � � n.

The proof of Claim 5.5 is the same as that of Claim 5.4, proceeding by induction on �.
Hence, by (5.2), Claim 5.5 implies that either ρ� � 0 or ρ� � −� for all 2 � � � n and so
Lemma 5.3 can be applied to all the iterated integrals defining Fn, giving us the desired
estimate for Fn, completing the proof of Proposition 5.2.

On the other hand, after the (q−1)th application of Lemma 5.3 to each of the iterated
integrals defining Eq we have

Eq �
q∏

r=1

|xr − b|k0

∫ x2

x1

· · ·
∫ xq

xq−1

q−1∏
r=1

|yr − b|−k0(q/(q−1))
∏
r<s

|yr − ys| dy1 · · ·dyq−1.

Unfortunately, the exponent k0 is unrestricted, preventing us from obtaining an uncon-
ditional estimate for Eq. Nevertheless, if k0 � 0 or k0 � q − 1, then Lemma 5.3 can be
applied once more to conclude that

Eq �
∏
r<s

|xr − xs|,

completing the proof of Proposition 5.1 in this case.
It still remains to prove Proposition 5.1 in the case when 1 � k0 � q − 2. It turns

out that, even with this reduction, the proof of Proposition 5.1 involves an intricate
combinatorial argument but follows exactly as in [7]; we simply note that that the non-
negativity of the sequence {kj} was not used there: only the fact that it is a sequence
of integers (positive or negative) was important. We refer the reader to [7] for this
combinatorial argument.
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