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PREFACE

The area of Boolean satisfiability (SAT) solving has seen tremendous progress over the
last years. Many problems (e.g., in hardware and software verification) that seemed to be
completely out of reach a decade ago can now be handled routinely. Besides new algorithms
and better heuristics, refined implementation techniques turned out to be vital for this
success. To keep up the driving force in improving SAT solvers, SAT solver competitions
provide opportunities for solver developers to present their work to a broader audience and
to objectively compare the performance of their own solvers with that of other state-of-the-
art solvers.

SAT Competition 2013 (SC 2013), a open competitive event for SAT solvers, was orga-
nized as a satellite event of the 16th International Conference on Theory and Applications
of Satisfiability Testing (SAT 2013, July 8-12 in Helsinki, Finland). SC 2013 stands in
the tradition of the previously organized main competitive events for SAT solvers: the
SAT Competitions held yearly from 2002 to 2005 and biannually starting from 2007, the
SAT-Races held in 2006, 2008 and 2010, and SAT Challenge 2012.

SC 2013 consisted of a total of 14 competition tracks, each track being characterized
by the combination of (i) the type of solvers allowed to participate in the track, (ii) the
computational resources provided to each solver, and (iii) the class of benchmarks used
(Application / Hard Combinatorial / Random; SAT/UNSAT/SAT+UNSAT). In addition
to nine main tracks for sequential core solvers and three tracks for parallel core solvers,
the competition included an Open Track for any types of (parallel) solvers, as well as a
MiniSAT Hack Track following the tradition set forth by previous SAT Competitions.
New for 2013 was that solvers competing in the three main tracks on purely unsatisfiable
formulas were required to output actual proofs as certificates for unsatisfiability.

There were two ways of contributing to SC 2013: by submitting one or more solvers for
competing in one or more of the competition tracks, and by submitting interesting bench-
mark instances on which the submitted solvers could be evaluated on in the competition.
Following SAT Challenge 2012, the rules of SC 2013 required all contributors (both solver
and benchmark submitters) to submit a short, around 2-page long solver/benchmark de-
scription as part of their contribution. This book contains all these descriptions in a single
volume, providing a way of consistently citing the individual descriptions. Furthermore, we
have included descriptions of the selection and generation process applied in forming the
benchmark instances used in the SC 2013 competition tracks. We hope this compilation is
of value to the research community at large both at present and in the future, providing
the reader new insights into the details of state-of-the-art SAT solver implementations and
the SC 2013 benchmarks, and also as a future historical reference providing a snapshot of
the SAT solver technology actively developed in 2013.

We would like to thank all those who contributed to SC 2013 by submitting either solvers
or benchmarks and the related description. We thank Youssef Hamadi, Karem Sakallah,
and Roberto Sebastiani for agreeing to act as judges for SC 2013. We also thank SC 2013
Technical Assistants Daniel Diepold and Simon Gerber (University of Ulm, Germany) for
their active role in running SC 2013. Experiment Design and Administration for Computer
Clusters (EDACC) platform, and the bwGrid computing infrastructure operated by eight
Baden-Württemberg state universities, both provided critical infrastructure for successfully
running the competition.

Ulm, Dublin, Austin, and Helsinki, June 18, 2013
Adrian Balint, Anton Belov, Marijn J.H. Heule, & Matti Järvisalo

SAT Competition 2013 Organizers
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Balance between intensification and diversification:
two sides of the same coin

Chumin LI∗†
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Abstract—This document describes the SAT solver BalancedZ,
a stochastic local search algorithm featuring the balance between
intensification and diversification, where intensification refers to
search steps improving the objective function, and diversification
refers to search steps moving to different areas of the search
space. BalancedZ employs different techniques to keep the
balance between intensification and diversification according to
the 80/20 Rule.

I. INTRODUCTION

In Stochastical Local Search (SLS) for SAT, intensification
refers to search steps improving the objective function, and
diversification refers to search steps moving to different areas
of the search space. With the introduction of g2wsat [1],
the intensification steps are more clearly distinguished from
the diversification steps: when there are promising decreasing
variables, they are deterministically flipped to improve the
objective function, otherwise novelty [2] is called to diver-
sify search, in which intensification steps can still be made,
controlled by a noise.

Although very effective, promising decreasing variable is a
too strong notion forbidding many useful intensification steps,
because there are few promising decreasing variables in a local
search solving a hard SAT instance. Recently, a Configuration
Checking (CC) notion is introduced in SLS for SAT and proves
to be very useful: an improving variable x is deterministically
flipped if one of its neighbors has been flipped since the last
time x was flipped. The CC notion combined with another
intensification technique called Aspiration mechanism allows
the CCA solver [3] to win the random category of the SAT
challenge 2012 [4].

However, we found that the CC notion is too weak, es-
pecially for large k-SAT, where a variable often has many
neighbors: it is easy to have one of its neighbors flipped
since the flipping of a variable. In this case, too many search
steps make intensification and the search is not sufficiently
diversified.

We believed that the promising decreasing notion and the
CC notion are two extremities and a compromise between
them can be found to be more effective. The SLS solver
BalancedZ is designed to realize this compromise. Moreover,
BalancedZ employs other techniques to the balance between
intensification and diversification according to the 80/20 Rule
(i.e. 80% of steps are intensification and 20% of steps are
diversification).

II. MAIN TECHNIQUES

Given a SAT instance φ to solve, the weight of all clauses
being initialized to 1. BalancedZ first generates a random
assignment. The objective function of BalancedZ is the sum
of weights of all unsatisfied clauses to be reduced to 0. The
score of a variable is the decrease of the objective function if
the variable is flipped. While the objective function is not 0,
BalancedZ modifies the assignment as follows:

1) If there are changing decreasing variables, flip the best
one (CD step);

2) Otherwise, if there are decreasing variables with very
high score, flip the best one (AD step);

3) Otherwise, randomly pick an unsatisfied clause c and
flip the least recently flipped one (Div step);

4) Increase the weight of unsatisfied clauses, and smooth
the clause weights under some conditions

where CD refers to Changing Decreasing, AD refers to As-
piration Decreasing, and Div refers to Diversification. The
framework of BalancedZ is similar to that of CCASat, where
the intensification mode (CD step and AD step ) is yet more
clearly distinguished from the diversification mode (Div step)
than g2wsat. However, all these three steps are re-considered:

A variable x is a changing decreasing variable if its score
is positive and if it occurs in a clause that has been changed
from satisfied to unsatisfied, or from unsatisfied to satisfied
since the last time x was flipped. On the one hand, a changing
variable x is necessarily a CC variable, i.e. one of its neighbors
has been flipped since x was flipped. However the inverse
is not true. Obviously, changing variables reflect more a
changing context than the CC variables. On the other hand,
a promising decreasing variable is necessarily a changing
decreasing variable, but the inverse is not true. Changing
variables allow more intensification steps.

Since there are fewer changing decreasing variables in the
CD steps than the CC variables in CCASat, we increase the
number of AD steps by introducing a parameter λ: a variable
x is considered to have very high score if score(x) > λ ∗ g,
where g is the averaged clause weight (over all clauses) and
0 < λ < 1. In CCASat, λ=1.

In a CD step, the best variable is defined to be the variable
having the highest score, breaking tie in favor of the variable
that most recently becomes a changing decreasing variable.

In a AD step, the best variable is defined to be the variable
having the highest score, breaking tie in favor of the variable

Appears in A. Balint, A. Belov, M.J.H. Heule, and M. Järvisalo (eds.), Proceedings of SAT Competition 2013: Solver and Benchmark Descriptions,
volume B-2013-1 of Department of Computer Science Series of Publications B, University of Helsinki 2013. ISBN 978-952-10-8991-6.
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that least recently becomes a changing decreasing variable.
The remaining ties of a CD step and a AD step are broken

in favor of the least recently flipped variable.
Increasing the weight of unsatisfied clauses increases the

score of variables in these clauses, making some steps inten-
sifying. So clause weighting techniques are very important
for the performance of a SLS solver. BalancedZ utilizes two
clause weighting techniques for random k-SAT problem: SWT
scheme[5] for k < 4; PAWS scheme[6] for k ≥ 4. PAWS
scheme is also applied to the crafted problems. In PAWS
scheme, BalancedZ has an indicator called decreasingF lag
to record whether there are decreasing variables in the last
flip or not, and if there are, the decreasingF lag is true
and false otherwise. In the PAWS scheme, BalancedZ de-
creases each satisfied clause’s weight by one whose weight
is larger than one with a smooth probability sp or when the
decreasingF lag is true, otherwise, update all the unsatisfied
clauses’ weight by increasing one. In order to improve the
performance for solving random large k-SAT problem, there
is a noise[7] in BalancedZ as well. With a diversification
probability of dp[1], the weights of all unsatisfied clauses are
increased by one regardless of the smooth probability sp and
the decreasingF lag.

Last but not least, compared to the microscopic balance
mentioned above, BalancedZ accomplishes the task of balanc-
ing the intensification and diversification macroscopically as
well. On a more macroscopic level, BalancedZ manages the
noise sp adaptively in a similar way to Hoo’s adaptive noise
mechanism[8]. Our experimental analysis of solving random
k-SAT problems with different noises indicates that BalancedZ
delivers optimal performance when the ratio of number of
steps CD and AD to the number of steps Div is roughly 80%
to 20%, which conforms to the 80/20 Rule (Pareto Principle)
by coincidence.

III. PARAMETER DESCRIPTION

The parameters of BalancedZ mentioned above are set as
follows:

1) λ = 0.9, this parameter is not sensitive, but should be
set bigger than 0.8;

2) sp is managed adaptively in a similar way to Hoo’s adap-
tive noise mechanism. It controls the clause weighting
techniques in large k-SAT problems and is performance-
sensitive especially in random 7-SAT;

3) dp = 0.001, this parameter is designed for diversifica-
tion, and should be set smaller than 0.5;

Other parameters include: -maxtries a, -seed b, allowing to run
a times BalancedZ and the random seed of the first run being
b.

IV. SAT COMPETITION 2013 SPECIFICS

BalancedZ is submitted to three tracks in the competition:
Application track, Hard-combinatorial SAT track and Random
SAT track. BalancedZ is complied by gcc with the following
command:
gcc -O3 -static -m32 BalancedZ.c -o BalancedZ

BalancedZ should be called in the competition using:
BalancedZ INSTANCE -seed SEED
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ShatterGlucose and BreakIDGlucose
Jo Devriendt

University of Leuven
Leuven, Belgium

Bart Bogaerts
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Leuven, Belgium

Abstract—The defining characteristic of our submitted SAT
solvers is the addition of a preprocessing step in which symmetry
breaking clauses are added to the CNF theory.

I. INTRODUCTION

Many real-world problems exhibit symmetry, but the SAT
competition and SAT challenge seldomly feature solvers who
are able to exploit these symmetry properties. This discrepancy
can only be explained by the assumption that for most of
the problems in these competitions, symmetry exploitation is
not worth the incurred overhead. To experimentally verify this
hypothesis, we submit two symmetry breaking SAT solvers
which in a preprocessing step detect symmetry and add sym-
metry breaking clauses to the CNF theory. Another aim is to
simply compare both of these symmetry breaking approaches
with eachother.

II. MAIN TECHNIQUES

A. ShatterGlucose

This solver represents the current state-of-the-art in sym-
metry detection and breaking for SAT problems. It couples
Glucose [1], a former SAT competition winner, with Saucy
[2], a symmetry detection tool, and Shatter [3], a symmetry
breaking preprocessor for CNF theories. Since Saucy can not
handle duplicate clauses in a CNF theory, we also initially
run cnfdedup, which removes duplicate clauses from a CNF
theory.

The ShatterGlucose workflow is as follows:
1) cnfdedup removes duplicate clauses from the CNF the-

ory
2) Saucy 3.0 detects symmetry by converting the CNF

theory to a graph
3) Using the default literal ordering, for each generator

returned by Saucy, Shatter adds symmetry breaking
clauses to the CNF theory

4) Glucose 2.2 solves the resulting CNF theory
Note that we run four preprocessors before actually starting the
SAT solver search.: a first one to remove duplicate clauses, a
second one to detect symmetry, a third one to break symmetry,
and finally Glucose uses Minisat’s builtin theory simplification
algorithms before starting the search.

B. BreakIDGlucose

It can be shown that the generators returned by Saucy, and
the default ordering used by Shatter, are suboptimal, in the
sense that in certain cases, when using other generators for the

same symmetry group and another literal ordering to construct
symmetry breaking clauses, the resulting search space can be
exponentially smaller. BreakGlucose tries to improve these
points:

1) cnfdedup removes duplicate clauses from the CNF the-
ory

2) Saucy 3.0 detects symmetry by converting the CNF
theory to a graph

3) BreakID searches for special symmetry subgroups and
for symmetry generators of the detected symmetry group
which will result in short symmetry breaking constraints

4) BreakID constructs an order adjusted to the characteris-
tics of the detected generators and possible subgroups

5) Symmetry breaking clauses are added to the CNF theory
6) Glucose 2.2 solves the resulting CNF theory

Note that we again run four preprocessors before actually
starting Glucose’s search.

III. MAIN PARAMETERS

The main user-controlled parameters control when symme-
try detection should be halted, and how much time can be
devoted to looking for good symmetry generators. The sub-
mitted version of BreakIDGlucose put Saucy at a timeout of
200 seconds, while BreakID is allowed to construct symmetry
generators for 200 seconds, or until 100.000 generators are
constructed. Internally, BreakID also cuts of the size of any
symmetry breaking formula constructed for one symmetry
generator to 100 tseitin literals to reduce the overhead of
introducing many tseitin literals.
ShatterGlucose uses no symmetry detection time limit.

IV. SPECIAL ALGORITHMS, DATA STRUCTURES, AND
OTHER FEATURES

We will focus on the algorithms used by BreakID, since
cnfdedup has a trivial algorithm, and the other preprocessors
and solver of this submission are already documented fully in
literature. Some terms we will use in the next part are:

Definition IV.1. A literal l occurs in a symmetry S if S(l) 6= l.

Definition IV.2. The support of a symmetry S is the number
of literals that occur in S.

Given a symmetry group Σ represented by a (small) set of
generators σ, BreakID works in three steps.
Firstly, it constructs a large set of small generators γ by
recursively applying σ to any recently added members of γ.
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If a resulting symmetry S has a support smaller than or equal
to a floating limit n, S is added to γ, and n is decreased to
the support of S. If no more symmetries can be added to γ,
n is increased to infinity and σ is applied to the whole of γ.
This procedure continues until γ contains all symmetries of
Σ, until a timeout is reached, or until a limit to the size of γ
is reached.
Given this set of symmetry generators γ, the second step
consists of detecting easily-breakable symmetry subgroups
generated by a subset of γ. These symmetry subgroups are
known in literature, and can informally be described as
pigeonhole-like symmetries, which refers to the prototypical
pigeonhole problem. With the right ordering of literals to
construct symmetry breaking clauses, it has been shown that
breaking these groups results in an exponential speedup of the
solver at hand.
Finally, given a set of pigeonhole-like symmetry groups Π and
a set of generators γ, BreakID then creates an ordering O of
the literals by firstly ordering all literals occurring in Π so that
each member of Π is completely broken. Secondly, all literals
not occurring in Π are smaller than those occurring in Π,
and are subsequently ordered based on their total occurrence
in γ: the lower the smaller. Given ordering O, symmetry
breaking formula’s are added to the CNF theory for any
pigeonhole-like symmetry group in Π, and for any symmetry
generator S in γ such that the symmetry breaking formula of
S contains at least one relatively short constraint. This last
condition, together with the fact that we never add symmetry
breaking formula’s longer than 100 tseitin variables, limits the
total number of clauses and tseitin variables induced by static
symmetry breaking.

V. IMPLEMENTATION DETAILS

BreakID and cnfdedup were written from scratch in C++.
We refer to the webpages of the other programs for their
implementation details.

VI. SAT COMPETITION 2013 SPECIFICS

ShatterGlucose and BreakIDGlucose were both submitted to
the application and hard-combinatorial SAT+UNSAT tracks of
the SAT13 competition. GCC 4.8.0 was used by the organizers,
with -O3 optimization flags. The resulting binaries were 64 bit.

VII. AVAILABILITY

An older version of Shatter and Saucy are publicly
available at http://www.aloul.net/Tools/shatter/, where version
3.0 is available upon request. Glucose 2.2 is available at
https://www.lri.fr/~simon/?page=glucose. BreakID and cnfd-
edup are available at https://bitbucket.org/krr/symbreaker.
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Abstract—This document briefly describes the stochastic local
search solver CCA2013 in the configuration it has been submitted
to the SAT Challenge 2013. An interesting strategy called configu-
ration checking with aspiration (CCA) was recently proposed to
deal with the 3-SAT problem. For large k-SAT it is enhanced
with look ahead techniques which significantly improves the
performance. The solver CCA2013 is an implementation of the
CCA algorithm and look ahead, with some minor enhancements.

I. INTRODUCTION

Stochastic Local Search (SLS) is an effective method
for solving the propositional satisfiability problem (SAT).
CCA2013 is a SAT solver based on the solver CCASat
developed by Shaowei Cai [1], and it embed the look head
technique for large k-SAT [2].

II. MAIN TECHNIQUES

CCA2013 is an incomplete SAT solver based on stochastic
local search, and it incorporates techniques like tabu, look
head, clause weighting, and some heuristics for selecting the
initial assignment.

As we adapt CCASat to develop our solver, we exploit CCA
techniques as the tabu mechanism. That is, we forbid flipping
the variables whose configuration has not changed since it was
flipped last time.

However, this strategy only applies effectively to 3-SAT.
As to 5-SAT, 6-SAT and 7-SAT, it was recently observed
that look head technique [2] improves the performance CCA
strategy significantly. The intuition is, that clauses in which 2
literals are assigned true will be more likely to keep true after
a sequence of flips, compared to those where only 1 literal is
assigned true.

We adopt clause weighting scheme based on a threshold of
the averaged weight. Clause weights of all unsatisfied clauses
are increased by one; further, if the averaged weight w̄ exceeds
a threshold γ, all clause weights are smoothed as w(ci) :=
bρ · w(ci)c+ b(1− ρ)w̄c.

Unlike GSAT [3], our procedure starts with an initial
assignment greedily to some extent, and it restarts after it
attempts a number of flips. In this initial assignment, each
variable is assigned independently according to the probability
of their positive occurrences (and negative occurrences) in the
CNF formula.

III. MAIN PARAMETERS

Restart: our procedure restarts after it attempts a number of
flips. For further details, readers can refer to [4].

For 3-SAT and non-k-SAT, we adopt a clause weight γ =
200+ V (F )+250

500 , where V (F ) is the number of variables in F .
For large k-SAT, we adopt a clause weighting scheme similar
to PAWS [5]. With probability sp, smooth clause weights: for
each satisfied clauses whose weight is bigger than 1, decrease
the weight by 1. Otherwise, clause weights of all unsatisfied
clauses are increased by one.

We set ρ to be 0.3.

IV. SAT COMPETITION 2013 SPECIFICS

We use the CCA and look head heuristic to develop a new
SLS algorithm called CCA2013, which has been submitted to
SAT Challenge 2013, for the Random SAT track. We have
referred to CCASat, but we write codes ourselves, and we
have fixed some bugs in the original source codes.

CCA2013 is implemented in C++ on the basis of the codes
of CCASat [1]. It is compiled by g++ with the following
command:

gcc CCA2013.cpp -O2 -static -o CCA2013.
Its running command is:
CCA2013 <instance file name> <random seed>.

V. AVAILABILITY

The solver is not open source because the codes are prelim-
inary, and the authors are implementing various optimizations
on it. Readers can contact the authors to obtain the solver, but
are not allowed to use it for any commercial purposes.
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Abstract—This note describes the SAT solver “CCAnr”, which
is a local search solver designed for non-random SAT instances.

I. INTRODUCTION

Recently, we proposed a diversification strategy for local
search, which is called configuration checking (CC) [1]. The
CC strategy has been successfully used to improve SAT local
search algorithms [2], [3], [4]. Especially, the CCA heuristic
in [3] combines an aspiration mechanism with the CC strategy
and results in the Swcca algorithm, which shows state-of-the-
art performance on a large range of instances. Based on the
Swcca algorithm, we have developed an SLS solver called
CCASat [5], which performs very well on random instances.

CCAnr (CCA-based algorithm for non-random SAT) is
an improved version of Swcca, aiming to solve non-random
instances more effectively. CCAnr differs from Swcca in two
small but important modifications. First, in the diversification
mode, after selecting a random unsatisfied clause, while Swcca
picks the oldest variable from the clause to flip, CCAnr picks
the variable with the greatest score from the selected clause,
breaking ties by favoring the oldest one. Secondly, Swcca
utilizes the formula w(ci) := bρ · w(ci)c + b(1 − ρ) · wc
to smooth clause weights, while in CCAnr, this smoothing
formula is generalized as w(ci) := bρ · w(ci)c + bq · wc.
By setting q = 0, the smoothing scheme actually becomes
a “forgetting” scheme, which is similar to the one used in a
recent local search algorithm for Minimum Vertex Cover [6].

II. MAIN TECHNIQUES

CCAnr is an stochastic local search (SLS) algorithm based
on the CCA search framework.

We first give some definitions for the CCA heuristic. A
variable x is said configuration changed iff confChange[x] =
1. A configuration changed decreasing (CCD) variable is a
variable with both confChange[x] = 1 and score(x) > 0.
A significant decreasing (SD) variable is a variable with
score(x) > g, where g is a positive integer large enough,
and in this work g is set to the averaged clause weight (over
all clauses) w.

Originally proposed in [3], the CCA heuristic (outlined in
Algorithm 1) can be generalized as follows: The CCA heuristic
switches between the greedy mode and the diversification
mode. In the greedy mode, there are two levels with descend-
ing priorities. On the first level it picks the CCD variable with
the greatest score to flip. If there are no CCD variables, CCA

selects the SD variable with the greatest score to flip if there
is one, which corresponds to the second level. If there are
neither CCD variables nor SD variables, CCA switches to the
the diversification mode, where clause weights are updated,
and a variable in a random unsatisfied clause is picked to flip.

Algorithm 1: pickVar-heuristic CCA

//greedy mode1

if there exist CCD variables then return a CCD2

variable with the greatest score;
if there exist SD variables then return an SD variable3

with the greatest score;
//diversification mode4

update clause weights;5

pick a random unsatisfied clause c;6

return a variable in c;7

Therefore, to design an SLS algorithm based on the CCA
heuristic, we need to specify three technique details: (1), the
tie-breaking mechanism in the greedy mode; (2), the clause
weighting scheme; and (3), the heuristic to pick a variable
from an unsatsified clause in the diversification mode.

III. THE CCANR ALGORITHM

CCAnr is based on the CCA heuristic, and the three
technique details in the CCA heuristic are specified as follows
for CCAnr:

1) the tie-breaking mechanism in the greedy mode: CCAnr
break ties by favoring the oldest variable in the greedy
mode, as Swcca does.

2) the clause weighting scheme: CCAnr adopts a
Threshold-based Smoothed Weighting (TSW) scheme.
Each time TSW is called, clause weights of all unsatis-
fied clauses are increased by one; further, if the averaged
weight w exceeds a threshold γ, all clause weights are
smoothed as w(ci) := bρ · w(ci)c+ bq · wc.

3) the pick-var heuristic in the diversification mode: CCAnr
picks the variable with the greatest score from an
unsatisfied clause, breaking ties by favoring the oldest
one.

IV. MAIN PARAMETERS

There are three parameters in CCAnr: the average weight
threshold parameter γ, and the two factor parameters ρ and q.
All of the three parameters are for the TSW weighting scheme.
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The parameters are set as follows: γ = 300; ρ = 0.3; q is set
to 0 if r ≤ 15, and 0.7 otherwise (r is the ratio of the instance).

V. IMPLEMENTATION DETAILS

CCAnr is implemented in C++. It is developed based on
the codes of Swcca solver [3], which can be downloaded from
www.shaoweicai.net/research.html.

VI. SAT COMPETITION 2013 SPECIFIES

CCAnr is submitted to “Core solvers, Sequential, Hard-
combinatorial SAT track”. It is compiled by g++ with the ’O2’
optimization option.

Its running command is:
CCAnr <instance file name> <random seed>.
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Abstract—This note describes the SAT solver “CScore-
SAT2013”, which is a local search solver, especially designed for
random instances.

I. INTRODUCTION

Recently, we proposed a new variable property called
subscore [1], which shares the same spirit with the commonly
used property score. While score measures the increment of
satisfied clauses by flipping a variable, subscore does that of
clauses with more than one true literal. Further, we design a
scoring function called comprehensive score [2], which is a
linear combination of score and subscore. We also define a
new type of “decreasing” variables namely comprehensively
decreasing variables [2].

Based on the notions of comprehensive score and compre-
hensively decreasing variable, we develop an SLS algorithm
called CScoreSAT (comprehensive score based SAT algo-
rithm) [2]. The SAT solver CScoreSAT2013 adopts WalkSAT
to solve random instances whose maximum clause length
(denoted by k) is greater than 3, and adopts CScoreSAT to
solve instances with k > 3.

II. MAIN TECHNIQUES

Main techniques in CScoreSAT include: configuration
checking [3], [4] and comprehensive score [2].

A. Configuration Checking

To avoid blind search, we utilize the configuration checking
(CC) strategy . The configuration checking (CC) strategy was
proposed to handle the revisiting problem in local search [5],
and has proved effective in SLS algorithms for SAT [4]. In the
context of SAT, the CC strategy forbids flipping a variable if
since its last flip, none of its neighboring variables has been
flipped. A variable is configuration changed if since its last
flip, at least one of its neighboring variables has been flipped.

B. Comprehensive Score and Comprehensively Decreasing
Variables

We consider the number of true literals in a clause, which
can be regarded as the degree of being satisfied of the clause.
The more true literals a clause contains, the less likely it would
become unsatisfied in the following flips.

Definition 1: Given a CNF formula F and an assignment
α to its variables, the satisfaction degree of a clause C, is
defined as the number of true literals in C under α. A clause
with a satisfaction degree of δ is said to be a δ-satisfied clause.

Among satisfied clauses, 1-satisfied clauses are the most
unstable, as they can become unsatisfied by flipping only one
variable. It is beneficial for SLS algorithms to take into account
the transformations between 1-satisfied and 2-satisfied clauses.

Based on the above considerations, the variable property
subscore is defined as follows.

Definition 2: For a variable x, subscore(x) is defined as
submake(x) minus subbreak(x), where submake(x) is the
number of 1-satisfied clauses that would become 2-satisfied
by flipping x, and subbreak(x) is the number of 2-satisfied
clauses that would become 1-satisfied by flipping x.

When considering clause weights in DLS algorithms,
submake(x) measures the total weight of the 1-satisfied
clauses that would become 2-satisfied by flipping x, and
subbreak(x) does that of the 2-satisfied clauses that would
become 1-satisfied by flipping x.

Based on the above considerations, By combining score and
subscore, we design a scoring function named comprehensive
score, which is formally defined as follows.

Definition 3: For a CNF formula F , the comprehensive
score function, denoted by cscore, is a function for variables
such that cscore(x) = score(x) + bsubscore(x)/dc, where d
is a positive integer parameter.

In the following, we define a new type of “deceasing”
variables based on the cscore function.

Definition 4: Given a CNF formula F and its cscore
function, a variable x is comprehensively decreasing if and
only if score(x) ≥ 0 and cscore(x) > 0.

Comprehensively decreasing variables are considered to
be the flip candidates in the greedy search phases of our
algorithm. We utilize the configuration checking (CC) strategy
to identify the “good” comprehensively decreasing variables
which are configuration changed. For convenience, such vari-
ables are further referred to as CDCC (Comprehensively
Decreasing and Configuration Changed) variables.

III. THE CSCORESAT ALGORITHM

This section presents the CScoreSAT algorithm, which
utilizes two key notions: comprehensive score and compre-
hensively decreasing variable.

For the sake of diversification, CScoreSAT also employs
the PAWS clause weighting scheme [6]. All clause weights
are initiated as 1. When a local optimum is reached, with
probability sp, for each satisfied clause whose weight is larger
than one, its weight is decreased by one; with probability (1−
sp), the weights of all unsatisfied clauses are increased by one.
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We first introduce the two scoring functions used in
CScoreSAT. For the greedy search, CScoreSAT adopts the
cscore function. When reaching a local optimum, CScoreSAT
makes use of a hybrid scoring function (denoted by hscore),
which combines cscore with the diversification property age:
hscore(x) = cscore(x)+bage(x)/βc, where β is a (relatively
large) positive integer parameter.

Algorithm 1: CScoreSAT
Input: CNF-formula F , maxSteps
Output: A satisfying assignment α of F , or “unknown”
begin1

α := randomly generated truth assignment;2
for step := 1 to maxSteps do3

if α satisfies F then return α;4
if ∃ CDCC variables then5

v := the CDCC variable with the greatest cscore,6
breaking ties in favor of the oldest one;

else7
update clause weights according to PAWS;8
pick a random unsatisfied clause C;9
v := the variable in C with the greatest hscore,10
breaking ties in favor of the oldest one;

α := α with v flipped;11

return “unknown”;12
end13

CScoreSAT works in two modes, i.e., the greedy mode
or the diversification mode. If there exist CDCC variables,
CScoreSAT works in the greedy mode. It picks the CDCC
variable with the greatest cscore value to flip, breaking ties
by preferring the oldest one. If no CDCC variable is present,
which means a local optimum is identified, then CScoreSAT
switches to the diversification mode. It first updates clause
weights according to the PAWS scheme. Then it randomly
selects an unsatisfied clause C, and picks the variable from C
with the greatest hscore value to flip, breaking ties by favoring
the oldest one.

IV. MAIN PARAMETERS

We combine the WalkSAT and CScoreSAT algorithms,
leading to an SLS solver also called CScoreSAT2013, which
adopts WalkSAT to solve instances with k ≤ 3, and adopts
CScoreSAT to solve instances with k > 3.

WalkSAT has one parameter, namely the noise parameter
wp. In CScoreSAT2013, wp is set to 0.567 when r ≤ 4.22,
0.777-0.05r when r ∈ (4.22, 4.23], 1.553-0.23r when r ∈
(4.23, 4.26) and 2.261-0.4r when r ≥ 4.26, where r is the
clause-to-variable ratio.

CScoreSAT has three parameters, namely d, β and sp.
Fortunately, d is simply defined as 13−k, and β is a constant
(2000) for any instance. The sp parameter for PAWS is set to
0.62 for k = 4, 0.045r − 0.29 for k = 5, 0.9 for k = 6, and
0.92 for k > 6.

V. IMPLEMENTATION DETAILS

CScoreSAT2013 is implemented in C++. The CScore-
SAT algorithm is implemented based on the codes of

CCASat solver [7], which can be downloaded from
www.shaoweicai.net/research.html, while the WalkSAT algo-
rithm is implemented from scratch.

VI. SAT COMPETITION 2013 SPECIFIES

CScoreSAT2013 is submitted to “Core solvers, Sequential,
Random SAT” and “Core solvers, Parallel, Random SAT”
tracks. It is compiled by g++ with the ’O2’ optimization
option. It is a 32-bit binary.

Its running command is:
CScoreSAT2013 <instance file name> <random seed>.
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CSHC is a portfolio solver based on cost-sensitive hierarchical
clustering as described in [7]. Like most state-of-the-art port-
folio solvers, it dynamically selects and schedules baseline
solvers depending on the input instance. CSHC version 1.0
participated in the sequential industrial 2-core-solver track of
the SAT Competition 2013, and is built upon exactly two
complete SAT solvers as describe in a subsequent section.

I. SOLVING TECHNIQUES

In the execution phase, CSHC first computes features of the
given problem instance. In particular, CSHC uses two sets of
features which are subsets of the base 125 features as provided
by Xu et al. [10]:

• 115 features: Based on computing features using the pa-
rameters ’-base -sp -dia -cl -ls -lobjois’ and
removing all time related features.

• 32 features: Only computes basic features (see [5]).
When feature computation of the 115 exceeds 400 seconds, we
compute the 32 basic features and the portfolio switches to this
feature representation. If basic feature computation exceeds
100 seconds, we fall back to a default solver.
CSHC generates a cost-sensitive hierarchical clustering

model for subsets of features. There exist multiple models that
predict the solver for a given instance. The different classifi-
cation related information is aggregated based on penalized
average runtime (PAR-10). Since we only have two solvers
available, a static schedule as presented in [4] is not applied.
Instead the solver that was not selected is executed for 10%
of the total available time.

For more detailed information on the internals of CSHC,
please refer to [7].

II. IMPLEMENTATION DETAILS

The main launcher script of CSHC is written in Python 2.6.
This script orchestrates launching of solvers and preprocessors,
conversion of solutions of the simplified formulae back to
the solutions of the original formulae, etc. The solver se-
lector/scheduler program, called ‘chcsrun’, is written in C++
and compiled with options “-O3 -fexpensive-optimizations -
static”. The preprocessor SatELite [3] was modified to not map
variables numbers and to explicitly append unit clauses, when
possible, for variables it would have eliminated otherwise.

The individual baseline solvers scheduled by CSHC were
themselves written mainly in C/C++, and are listed below.

2-Core Baseline Solvers: The portfolio CSHC submitted
to the sequential industrial 2-core track is composed of the
following 2 baseline solvers:

1) Lingeling 587 [2]
2) CryptoMinisat 3.1 [1]

We chose CryptoMinisat 3.1 as the default solver that is
invoked when we encounter issues in the algorithm selection
process (e.g., when feature computation takes too long).

Training Instances: We selected 4, 259 instances from
all SAT Competitions and Races during 2002 and 2012 [8],
whereby we discarded all instances that cannot be solved by
any of the aforementioned solvers within a time limit of 5, 000
seconds (on the hardware used for training).

III. SAT CHALLENGE 2013 SPECIFIC DETAILS

The command line used to launch CSHC using Lingeling

587 and CryptoMinisat 3.1 in the industrial 2-core track
of the SAT Competition 2013 was:

python algport.py –tmpdir TMPDIR CSHCapplLG
BENCHNAME
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the tremendous advancements that could be achieved over the
past two decades in our ability to solve SAT formulae in
practice. We hereby express our sincere thanks and honest
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CSHC is a portfolio solver based on cost-sensitive hierarchical
clustering as described in [7]. Like most state-of-the-art port-
folio solvers, it dynamically selects and schedules baseline
solvers depending on the input instance. CSHC version 1.0
participated in the sequential industrial 2-core-solver track of
the SAT Competition 2013, and is built upon exactly two
complete SAT solvers as describe in a subsequent section.

I. SOLVING TECHNIQUES

In the execution phase, CSHC first computes features of the
given problem instance. In particular, CSHC uses two sets of
features which are subsets of the base 125 features as provided
by Xu et al. [10]:

• 115 features: Based on computing features using the pa-
rameters ’-base -sp -dia -cl -ls -lobjois’ and
removing all time related features.

• 32 features: Only computes basic features (see [5]).
When feature computation of the 115 exceeds 400 seconds, we
compute the 32 basic features and the portfolio switches to this
feature representation. If basic feature computation exceeds
100 seconds, we fall back to a default solver.
CSHC generates a cost-sensitive hierarchical clustering

model for subsets of features. There exist multiple models that
predict the solver for a given instance. The different classifi-
cation related information is aggregated based on penalized
average runtime (PAR-10). Since we only have two solvers
available, a static schedule as presented in [4] is not applied.
Instead the solver that was not selected is executed for 10%
of the total available time.

For more detailed information on the internals of CSHC,
please refer to [7].

II. IMPLEMENTATION DETAILS

The main launcher script of CSHC is written in Python 2.6.
This script orchestrates launching of solvers and preprocessors,
conversion of solutions of the simplified formulae back to
the solutions of the original formulae, etc. The solver se-
lector/scheduler program, called ‘chcsrun’, is written in C++
and compiled with options “-O3 -fexpensive-optimizations -
static”. The preprocessor SatELite [3] was modified to not map
variables numbers and to explicitly append unit clauses, when
possible, for variables it would have eliminated otherwise.
The individual baseline solvers scheduled by CSHC were
themselves written mainly in C/C++, and are listed below.

2-Core Baseline Solvers: The portfolio CSHC submitted
to the sequential industrial 2-core track is composed of the
following 2 baseline solvers:

1) Lingeling 587 [2]
2) Glucose 2.1 [1]

We chose Glucose 2.1 as the default solver that is invoked
when we encounter issues in the algorithm selection process
(e.g., when feature computation takes too long).

Training Instances: We selected 4, 259 instances from
all SAT Competitions and Races during 2002 and 2012 [8],
whereby we discarded all instances that cannot be solved by
any of the aforementioned solvers within a time limit of 5, 000
seconds (on the hardware used for training).

III. SAT CHALLENGE 2013 SPECIFIC DETAILS

The command line used to launch CSHC using Lingeling

587 and Glucose 2.1 in the industrial 2-core track of the
SAT Competition 2013 was:

python algport.py –tmpdir TMPDIR CSHCapplLG
BENCHNAME
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CSHC is a portfolio solver based on cost-sensitive hierarchical
clustering as described in [7]. Like most state-of-the-art port-
folio solvers, it dynamically selects and schedules baseline
solvers depending on the input instance. CSHC version 1.0
participated in the sequential industrial 2-core-solver track of
the SAT Competition 2013, and is built upon exactly two
complete SAT solvers as describe in a subsequent section.

I. SOLVING TECHNIQUES

In the execution phase, CSHC first computes features of the
given problem instance. In particular, CSHC uses two sets of
features which are subsets of the base 125 features as provided
by Xu et al. [10]:

• 115 features: Based on computing features using the pa-
rameters ’-base -sp -dia -cl -ls -lobjois’ and
removing all time related features.

• 32 features: Only computes basic features (see [5]).
When feature computation of the 115 exceeds 400 seconds, we
compute the 32 basic features and the portfolio switches to this
feature representation. If basic feature computation exceeds
100 seconds, we fall back to a default solver.
CSHC generates a cost-sensitive hierarchical clustering

model for subsets of features. There exist multiple models that
predict the solver for a given instance. The different classifi-
cation related information is aggregated based on penalized
average runtime (PAR-10). Since we only have two solvers
available, a static schedule as presented in [3] is not applied.
Instead the solver that was not selected is executed for 10%
of the total available time.

For more detailed information on the internals of CSHC,
please refer to [7].

II. IMPLEMENTATION DETAILS

The main launcher script of CSHC is written in Python 2.6.
This script orchestrates launching of solvers and preprocessors,
conversion of solutions of the simplified formulae back to
the solutions of the original formulae, etc. The solver se-
lector/scheduler program, called ‘chcsrun’, is written in C++
and compiled with options “-O3 -fexpensive-optimizations -
static”. The preprocessor SatELite [2] was modified to not map
variables numbers and to explicitly append unit clauses, when
possible, for variables it would have eliminated otherwise.
The individual baseline solvers scheduled by CSHC were
themselves written mainly in C/C++, and are listed below.

2-Core Baseline Solvers: The portfolio CSHC submitted
to the sequential industrial 2-core track is composed of the
following 2 baseline solvers:

1) Clasp 2.1.1 [4]
2) Sattime 2011 [1]

We chose Clasp 2.1.1 as the default solver that is invoked
when we encounter issues in the algorithm selection process
(e.g., when feature computation takes too long).

Training Instances: We selected 4, 259 instances from
all SAT Competitions and Races during 2002 and 2012 [8],
whereby we discarded all instances that cannot be solved by
any of the aforementioned solvers within a time limit of 5, 000
seconds (on the hardware used for training).

III. SAT CHALLENGE 2013 SPECIFIC DETAILS

The command line used to launch CSHC using Clasp

2.1.1 and Sattime 2011 in the industrial 2-core track of
the SAT Competition 2013 was:

python algport.py –tmpdir TMPDIR CSHCapplLG
BENCHNAME
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For the 8-core parallel portfolio track of the SAT Competition
2013 the following combined approach was submitted:

1) Lingeling 587 [2] on 4 cores.
2) CCASat [1] on 1 core.
3) CSHC trained on industrial/crafted/random category and

executed on 1 core each.
CSHC is a portfolio solver based on cost-sensitive hierarchi-
cal clustering as described in [7]. Like most state-of-the-
art portfolio solvers, it dynamically selects and schedules
baseline solvers depending on the input instance. CSHC version
1.0 participated in the parallel portfolio track of the SAT
Competition 2013, and is built upon 27 solvers as stated in
a subsequent section.

I. CSHC SOLVING TECHNIQUES

Here we describe the general methodology underlying
CSHC. Each instance of CSHC is trained for the indus-
trial/crafted/random category as mentioned in a subsequent
section. This version of CSHC is invoked sequentially and is
not composed of parallel base solvers.

In the execution phase, CSHC first computes features of the
given problem instance. In particular, CSHC uses two sets of
features which are subsets of the base 125 features as provided
by Xu et al. [10]:

• 115 features: Based on computing features using the pa-
rameters ’-base -sp -dia -cl -ls -lobjois’ and
removing all time related features.

• 32 features: Only computes basic features (see [5]).
When feature computation of the 115 exceeds 400 seconds, we
compute the 32 basic features and the portfolio switches to this
feature representation. If basic feature computation exceeds
100 seconds, we fall back to a default solver.
CSHC generates a cost-sensitive hierarchical clustering

model for subsets of features. There exist multiple models
that predict the solver for a given instance. The different clas-
sification related information is aggregated based on penalized
average runtime (PAR-10). CSHC first runs a fixed schedule of
solvers for 10% of the time limit and then runs the selected
solver for the remaining 90% of the available time (cf. [4]
for details). Similar to the motivation presented in [6], CSHC
also employs a recourse action (e.g., more time is allocated
to the solver schedule) when some measures indicate a low
confidence in its own algorithm selection.

For more detailed information on the internals of CSHC,
please refer to [7].

II. IMPLEMENTATION DETAILS

The main launcher script of this combined approach is
written in Python 2.6. This script invokes Lingeling 587 on
4 cores and CCASat on 1 core. Then it invoked each version of
CSHC specialized on either industrial/crafted/random category
on 1 core each. The first approach to first successfully solve
the instance at hand caused the script to verify the solution (if
satisfiable) and terminate all other approaches.

The launcher script of each CSHC is also written in Python
2.6. This script orchestrates launching of solvers and prepro-
cessors, conversion of solutions of the simplified formulae
back to the solutions of the original formulae, etc. The solver
selector/scheduler program, called ‘chcsrun’, is written in C++
and compiled with options “-O3 -fexpensive-optimizations -
static”. The preprocessor SatELite [3] was modified to not map
variables numbers and to explicitly append unit clauses, when
possible, for variables it would have eliminated otherwise.
The individual baseline solvers scheduled by CSHC were
themselves written mainly in C/C++, and are listed below.

Baseline Solvers: The portfolio CSHC is composed of
the following 27 baseline solvers with additional parameters
shown if default parameters have been changed (proper refer-
ences omitted due to lack of space):

1) Clasp-2.1.1 jumpy, –configuration=jumpy
2) Clasp-2.1.1 trendy, –configuration=trendy
3) Ebminisat
4) Glueminisat
5) Lrglshr
6) Picosat
7) Restartsat, -rfirst=1 -var-decay=0.95
8) Circminisat
9) Clasp1, –sat-p=20,25,150 –hParam=0,512

10) Cryptominisat 2011
11) Eagleup
12) Gnoveltyp2
13) March rw
14) MphaseSAT
15) MphaseSATm
16) Precosat
17) Qutersat
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18) Sapperlot
19) Sat4j-2.3.2
20) Sattimep
21) Sparrow
22) TNM
23) Cryptominisat295
24) MinisatPSM
25) Sattime2011
26) Glucose 2.1
27) Glucose 2.1, changed restart strategy

Note that neither Lingeling 587 nor CCASat are a baseline
solver for CSHC, since they are already executed in parallel in
any case.

We chose the following default solvers in each benchmark
category when we encounter issues in the algorithm selection
process (e.g., when feature computation takes too long).:

• Industrial: Glucose 2.1

• Crafted: Clasp 2.1.1

• Random: March RW

Training Instances: We selected 4, 259 instances from
all SAT Competitions and Races during 2002 and 2012 [8],
whereby we discarded all instances that cannot be solved by
any of the aforementioned solvers within a time limit of 5, 000
seconds (on the hardware used for training). For each category,
we trained a version of CSHC, whereby we had the following
distribution of training instances among each category:

• Industrial: 1155 instances
• Crafted: 772 instances
• Random: 2389 instances

Note that the sum of the instances used in each category
exceeds the total number of instances, since some instances
appear in multiple categories (e.g., random and crafted).

III. SAT COMPETITION 2013 SPECIFIC DETAILS

The command line used to launch the combined approach of
Lingeling 587 CCASat and CSHC in the parallel portfolio
track of the SAT Competition 2013 was:

python parlaunch.py –tmpdir TMPDIR BENCHNAME
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CSHC is a portfolio solver based on cost-sensitive hierarchical
clustering as described in [8]. Like most state-of-the-art port-
folio solvers, it dynamically selects and schedules baseline
solvers depending on the input instance. CSHC version 1.0
participated in the sequential industrial 2-core-solver track of
the SAT Competition 2013, and is built upon exactly two
complete SAT solvers as describe in a subsequent section.

I. SOLVING TECHNIQUES

In the execution phase, CSHC first computes features of the
given problem instance. In particular, CSHC uses two sets of
features which are subsets of the base 125 features as provided
by Xu et al. [11]:

• 115 features: Based on computing features using the pa-
rameters ’-base -sp -dia -cl -ls -lobjois’ and
removing all time related features.

• 32 features: Only computes basic features (see [6]).
When feature computation of the 115 exceeds 400 seconds, we
compute the 32 basic features and the portfolio switches to this
feature representation. If basic feature computation exceeds
100 seconds, we fall back to a default solver.
CSHC generates a cost-sensitive hierarchical clustering

model for subsets of features. There exist multiple models that
predict the solver for a given instance. The different classifi-
cation related information is aggregated based on penalized
average runtime (PAR-10). Since we only have two solvers
available, a static schedule as presented in [4] is not applied.
Instead the solver that was not selected is executed for 10%
of the total available time.

For more detailed information on the internals of CSHC,
please refer to [8].

II. IMPLEMENTATION DETAILS

The main launcher script of CSHC is written in Python 2.6.
This script orchestrates launching of solvers and preprocessors,
conversion of solutions of the simplified formulae back to
the solutions of the original formulae, etc. The solver se-
lector/scheduler program, called ‘chcsrun’, is written in C++
and compiled with options “-O3 -fexpensive-optimizations -
static”. The preprocessor SatELite [2] was modified to not map
variables numbers and to explicitly append unit clauses, when
possible, for variables it would have eliminated otherwise.
The individual baseline solvers scheduled by CSHC were
themselves written mainly in C/C++, and are listed below.

2-Core Baseline Solvers: The portfolio CSHC submitted
to the sequential industrial 2-core track is composed of the
following 2 baseline solvers:

1) CCASat [1]
2) March_rw [3]

We chose CCASat as the default solver that is invoked when
we encounter issues in the algorithm selection process (e.g.,
when feature computation takes too long).

Training Instances: We selected 4, 259 instances from
all SAT Competitions and Races during 2002 and 2012 [9],
whereby we discarded all instances that cannot be solved by
any of the aforementioned solvers within a time limit of 5, 000
seconds (on the hardware used for training).

III. SAT CHALLENGE 2013 SPECIFIC DETAILS

The command line used to launch CSHC using CCASat

and March_rw in the industrial 2-core track of the SAT
Competition 2013 was:

python algport.py –tmpdir TMPDIR CSHCapplLG
BENCHNAME
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Abstract—This document describes the DimetheusMPS SAT
solver, which is an SLS-based MID solver. This solver uses
the Message Passing (MP) heuristic ρσPMPi, which is a newly
developed and very flexible MP heuristic described in [1]. The
SLS search is done by a ProbSAT SLS solver as described in [2].

Index Terms—MP, SLS, ρσPMPi.

I. INTRODUCTION

The Dimetheus solver is a SAT solver framework1 that
allows to rapidly develop new SAT solver that may be based
on several preprocessing, in-processing, and search paradigms.
The current DimetheusMPS uses this framework to realize
an SLS-based Message Passing Inspired Decimation (MID)
solver that uses the MP heuristic ρσPMPi (see [1] for details
on MID and the MP heuristic).

The general approach of this solver is to first perform
light-weight preprocessing by applying pure literal elimina-
tion (PLE), subsumption elimination (SE), and failed literal
detection (FLD). After that, the solver starts its search by
performing MP based on ρσPMPi. This heuristic provides
variable biases that are used for assigning the variables us-
ing unit propagation (UP). This realizes the standard MID
approach as described in [1]. As soon as MID runs into a
conflict all the variable assignments are undone but saved in
the variable phases. After that, a set of assignment suggestions
is available. Then, the SLS module takes over. It will initialize
its starting assignment by following the variable phases. Then,
it performs stochastic local search based on the ProbSAT
flipping heuristic (see [2] for details). The SLS solver will
flip until the timeout is reached or a satisfying assignment
has been found. This approach is incomplete (meaning that it
cannot detect unsatisfiability).

The general idea behind this approach is to use MID in
order to provide a good starting assignment for the SLS. This
follows the intuition that the SLS solver will be able to find
a satisfying assignment faster if its starting assignment is as
close as possible to the next solution in terms of the Hamming-
distance.

In summary, the DimetheusMPS solver can be character-
ized as a sequential (non-parallel) SLS core solver.

II. MAIN PARAMETERS

The solver uses only three main parameters in the com-
petition. The first parameter is the formula that is to be

1See https://www.gableske.net/dimetheus

solved (-formula followed by the name of the formula
containing the problem in DIMACS CNF input format). The
second parameter is the seed for the random number generator
(-seed followed by a natural number). The third parameter
is the guide (-guide followed by a natural number, in this
case 5). The guide basically tells the solver what type of SAT
solver is supposed to be realized. Guide number 5 tells the
solver to perform SLS-based MID.

Internally, the search modules that participate in this guide
are MP and SLS. The MP module uses two parameters called
ρ and σ that influence the MP behavior of ρσPMPi (see [1] for
details). The SLS module uses one parameter for the ProbSAT
break value called cb. Depending on the instance properties
(clause length k, number of variables n, clauses-to-variables
ratio r), the solver will pick reasonable settings for these
five parameters to ensure that the modules perform as best
as possible.

Furthermore, MID requires a parameter that controls how
often biases are re-computed. This parameter is called p (see
[1] for details on p). Again, the solver will check on the
properties of the formula to determine a reasonable setting
for p.

All together, the solver uses the following external com-
mand line parameters (the order in which these parameters
are provided is irrelevant, but there must be a space between
the name of the parameter and the value of the parameter, e.g.
-formula test.cnf).

• -formula (naming the formula to be solved)
• -seed (the seed for the random number generator)
• -guide (telling the solver what type of search is to be

done)
Furthermore, the solver uses one internal parameter that is
related to the MID approach.

• p (that controls how often biases are re-computed)
Additionally, the solver uses two internal parameters related
to the ρσPMPi heuristic.

• ρ (that controls the carefulness of the MP heuristic)
• σ (that controls how much the MP heuristic enforces

convergence)
Finally, the solver uses one internal parameter for the ProbSAT
SLS flipping heurisitc.

• cb (that controls the probability distribution for picking
a specific variable for flipping in a randomly selected
unsatisfied clause)
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Basically, all the internal parameters have been tuned using
the EDACC/AAC framework (see [3] and [4]) using unfiltered
uniform random k-CNF formulas. The authors did their best
to find reasonable parameter settings for 3-SAT to 7-SAT,
and even though the settings found for 3-SAT and 4-SAT are
working well, the settings for 5-SAT to 7-SAT are mostly edu-
cated guesses. The reason for not providing detailed parameter
settings for these cases was the lack of time to conduct further
tuning experiments. Conducting these experiments to provide
the missing parameter settings is a matter of future work.

III. IMPLEMENTATION DETAILS

The DimetheusMPS solver was implemented from scratch
in the programming language C. The author followed the C99
standard. The solver provides substantial help by calling it
with --help.

IV. SAT COMPETITION 2013 SPECIFICS

The solver was submitted to the SAT Competition 2013
Random SAT track. The compiler that is used is GCC 4.4.
The optimization flags for GCC that are used are as follows.

• -std=c99
• -O3
• -static
• -march=native
• -fexpensive-optimizations
• -Wall
• -pedantic

The solver can be compiled as 32-bit or 64-bit application
(depending on the operating system used). No further modifi-
cations to the source or the make-file are necessary, because
the solver was implemented with robustness in mind (it uses
the operating system specific definitions for variable types like
integer or float). The solver version that runs during the
SAT Competition 2013 is 64-bit. The version of the solver that
runs during the competition is 1.700.

V. AVAILABILITY

The whole solver is open source and all sources as well as
the solver description will be published on the authors website2

as soon as the SAT Competition 2013 starts. The license is
GPL 3 (as provided in the sources).
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INTRO

This program is part of a series of “SAT-solvers” that I’m
putting together for my own education as I prepare to write
Section 7.2.2.2 of The Art of Computer Programming [1]. My
intent is to have a variety of compatible programs on which I
can run experiments to learn how different approaches work in
practice. This description is part of the SAT11 source code1.

RELATION TO OTHER IMPLEMENTATIONS

Many of the previous implementations in this series—SAT0,
SAT3, SAT4, SAT5, and SAT10—were based on a natural
backtracking approach that has come to be known in the SAT
community as the DPLL paradigm, honoring the pioneering
work of Davis, Putnam, Logemann, and Loveland [2], [3].
Several decades of experience with that paradigm have led to
an extremely efficient class of programs now called lookahead
solvers [4], which devote considerable time to choosing the
variables on which to branch. The extra work of making that
choice might cost us a factor of a thousand, say, at every
branch node; yet we might also decrease the number of nodes
by a factor of a million, thus making a net thousand-fold
gain. Somewhat to my surprise, this rosy prediction (contrary
to what I had believed for many years) actually does work
in practice: There are many SAT problems (especially those
based on combinatorial tasks, as well as the academic yet
appealing cases of unsatisfiable random 3SAT) for which
judicious lookaheads outperform any other known method.

SAT11

Consequently SAT11 is intended to represent a modern
lookahead solver. I’ve based it largely on Marijn Heule’s
MARCH [5], which has been regularly classed with the
world’s best lookahead solvers for the last decade or so.
I expect SAT11 to be the most ambitious program of this
series, because it combines many advanced ideas that I wish
to understand and to explain to the readers of TAOCP. On the
other hand, I have not included all of the bells and whistles of
MARCH; in particular, I’ve omitted the separate treatment of
clause sets that represent linear equations mod 2, as well as
the “limited discrepancy search” technique by which branches
of the search tree are explored in a nonstandard order.

This basic SAT11 program, like the earliest versions of
MARCH, is intended for 3SAT problems only: All clauses

1SAT11 as well as several other SAT solver implementations are available
at http://www-cs-faculty.stanford.edu/∼knuth/programs/. To obtain the full
documentation of SAT11, download sat11.w and compile it using cweave
sat11 and tex sat11.

must have size 3 or less. However, a changefile converts
this program to SAT11K, which has no such restriction. A
good understanding of the 3SAT version presented below will
make it easier to understand the modifications by which the
algorithms can be adapted to handle clauses of any length.

The running time in “mems” is also reported, together with
the approximate number of bytes needed for data storage. One
“mem” essentially means a memory access to a 64-bit word.
(These totals don’t include the time or space needed to parse
the input or to format the output.)

A lookahead solver explores a binary tree of possibilities
by choosing, at every decision node, a variable x for which
the node’s subtrees correspond to asserting x or x̄. Several
more-or-less independent activities are part of this process:

1) Preselection. At each decision node we choose a subset
P of the unassigned variables, based on our best guess
as to which of them might be good candidates for further
exploration.

2) Selection. We look ahead at the immediate consequences
of asserting the truth and falsity of each variable in P .
Then we choose the variable that appears to reduce the
problem most efficiently.

3) Propagation. We update the current state of the problem
by incorporating all consequences of a new assertion.

4) Backtracking. When a contradiction arises in some
branch, we must undo the effects of propagation and
move to an unexplored branch of the tree.

More details of SAT11 and SAT11K can be found in the
source code1.
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Abstract—We present a new preprocessing technique utilizing
subspace averages to perform a reduction by fixing truth as-
signments. We use the Walsh transform to efficiently compute
the average evaluation of solutions in subspaces of the search
space that we refer to as hyperplanes. A hyperplane contains
all solutions that have the same truth assignments over some
subset of the n variables in the given formula. We use the
hyperplane averages as a heuristic for determining the quality
of solutions contained in the hyperplane. We use this heuristic to
select a promising hyperplane and reduce the original formula
by eliminating clauses satsified by the variables with consistent
truth assignments across all solutions in the hyperplane. We then
run the unmodified MiniSAT complete solver on this reduced
instance.

I. I NTRODUCTION

A strategy that has performed well in previous competi-
tions is to incorporate the use of a preprocessor, typically
SatELite [2], to reduce both the number of variables and
clauses of the original formula. This reduction has been shown
to make the task of finding a satisfying solution easier on
many problems [2]. In our submission, we use unmodified
versions of MiniSAT and SatELite. For our solver, we use
the standard MiniSAT [1] solver available from the MiniSAT
web page1. We also employ the SatELite [2] preprocessor. Our
contribution is the introduction of an additional preprocessing
step that we call hyperplane-guided reduction.

For all k-bounded pseudo-Boolean optimization (PBO)
problems, we can convert the evaluation functions into a
polynomial form in O(n) time. This allows us to quickly
and exactly compute low order hyperplane averages. We refer
to a hyperplaneas a maximal set of solutions that share the
same truth assignment over some subset ofn variables. The
hyperplane averageis the average evaluation of all solutions
in the hyperplane. Using our technique to efficiently compute
hyperplane averages, we can then explicitly determine which
combination of variable assignments will lead to the highest
overall combined hyperplane average.

We find the hyperplane averages of the hyperplanes cor-
responding to each possible assignment of the ten variables
that appear most often in the reduced formula produced by
SatELite. We then reduce the formula further by first removing
the clauses satisfied by the partial assignment over the ten
variables that corresponds to the highest average hyperplane.
We next remove the ten variables from the remaining clauses
they appear in. The resulting formula is then passed to
MiniSAT [1].

1http://minisat.se/Main.html

The SAT space is known to be deceptive [3]. In other
words, we know that the hyperplane with the best average
may not contain a globally optimal solution. It is therefore
possible that our reduced problem may be unsatisfiable even
though the original formula is satisfiable. To allow for this
possibility, we limit the run-time of MiniSAT to 10 minutes on
the hyperplane reduced formula. If this upper limit is reached,
or MiniSAT finds the formula to be unsatisfiable before the
time limit, MiniSAT runs on the SatELite reduced formula
until it terminates (either by deciding the satisfiability of the
problem or reaching some maximum time limit).

II. COMPUTING HYPERPLANEAVERAGES

A discrete functionf : {0, 1}n 7→ R can be decomposed
into an orthogonal basis

f(x) =

2n−1∑

i=0

wiψi(x)

wherewi is a real-valued weight known as aWalsh coefficient
andψi is a Walsh function. The indexi and vectorx can be
represented as binary strings, and standard binary operations
can be applied. The Walsh function

ψi(x) = −1iT x(−1)bitcount(i∧x)

generates a sign: ifiT x is oddψi(x) = −1 and if iT x is even
ψi(x) = 1.

The MAXSAT objective function is given by

f(x) =
m∑

j=1

fj(x,maskj)

where each subfunctionfj corresponds to a clause andmaskj

selects the bits used byfj . Since MAXSAT is a linear combi-
nation of subfunctions, we can apply the Walsh transform to
each clause:

w =

m∑

j=1

Wfj

where w is a vector of polynomial coefficients andW is
a discrete Fourier transform known as the Walsh transform.
This generates the Walsh coefficients associated with each
clause, and then adds them together as needed. We will use
the Walsh transform without normalization, since this results
in all of the Walsh coefficients being integer values. Rana et
al. [3] show that we can dispense with matrixW and directly
compute the Walsh coefficient associated with each clause.
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Each subfunctionfj contributes at most2k nonzero Walsh
coefficients to vectorw.

The Walsh coefficients can be used to efficiently compute
the average evaluation of solutions contained in any(n − j)-
dimensional hyperplane [3] [4]. Leth denote a(n − j)
dimensional hyperplane wherej variables have preassigned bit
values. Letα(h) be a mask with 1 bits marking the locations
where thej variables appear in the problem encoding, and 0
bits elsewhere. Let solutionx assign values to thej variables.
Let β(h) = α(h) ∧ x. This meansβ(h) has value 0 in all
of the positions where thej bits do not appear, and has the
assigned values of the relevantj bits in the appropriate bit
locations. Then the average fitness of hyperplaneh is

Avg(h) = favg +
∑

∀b,b⊆α(h)

wbψb(β(h))

wherefavg = wo is the average over the entire SAT search
space, i.e.favg = (2k − 1)/(2k) ∗ m.

For our preprocessor, we use thej = 10 variables that
correspond to the 10 variables that appear most frequently in
the given formula. We then computeAvg(h) over all possible
truth assignments to thej variables. The assignment yielding
the highest average is then chosen and the problem is reduced
by first eliminating the clauses satisfied by the assignment and
then removing thej variables from the remaining clauses. The
reduction is then passed off to MiniSAT.

The major drawback of this method is that the partial
assignment may not correspond to a model for the original
formula. However, in our experiments we find that the best
hyperplane often does contain a satisfying solution. When
the hyperplane does contain a satisfying solution, it is found
quickly by MiniSAT. We therefore allow MiniSAT 10 minutes
on the hyperplane reduction, if it is found unsatisfiable or
reaches the time limit before finding a satisfying solution,the
remaining time is spent by MiniSAT running on the original
problem.

We note that this may not be the ideal method of integrating
the hyperplane information into a complete solver given the
fact that we cannot guarantee the reduction is satisfiable
if the original problem is satisfiable. Nevertheless, it does
demonstrate that there are instances where this information
can benefit a complete solver. Future work will lie in explor-
ing alternative ways of guiding the solver using hyperplane
information, e.g. biasing assumptions or activity scoring.

III. M AIN PARAMETERS

We use unmodified MiniSAT [1] as a complete solver and
use the default parameters. Our contribution is a hyperplane
reduction preprocessing step. The only parameter to our reduc-
tion is the number of bits to fix. We use 10 bits as this setting
gave us the most consistent results in our empirical tests. It
is possible that the number of bits is instance dependant and
some characteristics may be used to determine the optimal
number, but we leave this for future work.

IV. I MPLEMENTATION DETAILS

We used C to implement the calculation of Walsh coeffi-
cients and the hyperplane averages. Our C code also performs
the reduction of the problem based on the truth assignments
determined by the hyperplane averages as described above.
We used GCC 4.7.2 to test our code using theO3 compiler
flag to create an optimized 64-bit binary.

A BASH script wrapper is used to perform the reduction
and call SatELite and MiniSAT on the reduced problem. If a
satisfiable solution is found in the reduced problem, we add the
truth assignments fixed by our reduction code to the satisfying
solution provided by MiniSAT and report this solution to the
original problem.

V. SAT COMPETITION 2013 SPECIFICS

We have submitted our solver to the crafted SAT and
industrial SAT tracks of the competition. Although MiniSAT
can determine if a hyperplane reduced instance is unsatisfiable,
it does not necessarily mean that the original problem is
unsatisfiable. Therefore we only submitted our entry to the
SAT tracks.

We chose the crafted and industrial tracks because we con-
jecture that there is more variance in the hyperplane averages
in structured instances than random instances. We believe that
this structure allows our algorithm to be more effective on
these types of problems.

VI. AVAILABILITY

Our hyperplane reduction code along with the wrapper
script for calling MiniSAT and SatELite can be downloaded
from the following url: http://www.cs.colostate.edu/∼dhains/
hyperplaneminisat.tar.gz
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I. Introduction

This paper presents the defining features of the conflict-
driven clause-learning SAT solver forl. forl aims to be
a modern SAT Solver that unifies the ideas present in
SatELite [1], PrecoSat [2], glucose [3] and MiniSat [4] with
some ideas of the author.

II. Primary features

A. Binary implication graphs

An implication cache mechanism is employed that stores
the binary implication graph similarly to stamps [5].
Stamps are also used, as they have been found to aid
along with the cache.

B. Clause cleaning

Clauses are cleaned regularly, but neither activities nor
glues are used in the cleaning. Instead, the number of
times a clause helped to propagate or caused a conflict is
used as a measure of the effectiveness. This measure is
reset after every cleaning, so clauses have to regularly prove
themselves effective to stay in the database.

C. Implicit Clauses

Binary and tertiary clauses are stored and handled im-
plicitly. This greatly eases their subsumption and strength-
ening. Further, it reduces the cost of creating occurrence
lists out of these clauses. Implicit clauses are never cleaned.

D. Statistics

forl gathers large amounts of running statistics. Unfor-
tunately they are not yet used to direct search. However,
they can be gathered into MySQL and displayed in a web
browser. Importing statistics into the database incurs setup
costs and about 10% running cost and so is disabled by
default.

E. Time limiting

For average problems inprocessing techniques tend to
work well. However, in case of strange problems (such
as problems with billions of binary clauses) they some-
times misbehave. This has been solved with more precise
time measurements (measuring effort, not actual time) and
sometimes complicated time-out checks.

F. Memory usage

Memory usage has been greatly improved with precise
tracking of where memory is being used. Although memory
leaks are not generally an issue given the programming tech-
niques used, temporary allocation of large data structures

was a problem. These issues have been fixed through algo-
rithmic means: e.g. through the use of circular swapping
for variable renumbering.

G. Hyper-binary resolution and transitive reduction

On-the-fly hyper-binary resolution [6] and transitive re-
duction has been implemented in both DFS and BFS prob-
ing for both irreducible and reducible binaries. This helps
on instances with generally acceptable number of binary
clauses. For problems with too many binary clauses, tran-
sitive reduction can take too much time. Such cases are
detected and transitive reduction is turned off.

H. Certified UNSAT

The DRUP system for certified UNSAT was implemented
into forl. The current implementation turns on all optimisa-
tions except for XOR-manipulation during certificate gener-
ation. However, for stamping and implied literal caching to
work, binary clauses must never be DRUP-deleted during
variable elimination. This trade-off is questionable, as it
might considerably slow down proof checking. As such,
there are two versions submitted, one with these options
turned on, and one with these options turned off.

I. Disjoint component finding

Disjoint components are searched for on a regular basis
during solving. These disjoint components are solved with
a separate solver instance, renumbering the component’s
variables such as to minimise the startup time of the sub-
solver. On certain problems, forl can find&solve thousands
of disjoint components within a matter of seconds.

III. Miscellaneous optimisations

Hand-rolled memory manager for large clauses, clause
offsets instead of pointers, blocking literals, occurrence
lists in watchlists, clause abstraction stored in occurrence
lists, glue-based and geometric restart selection based on
literal polarities, xor detection and manipulation, gate de-
tection and manipulation, variable elimination [1], sub-
sumption, strengthening, on-the-fly subsumption [7], re-
cursive conflict clause minimisation [8] (and automatic
disabling in case of bad performance), minimisation with
stamps&cache&binary clauses (and automatic disabling
in case of bad performance), blocking of long clauses [9],
equivalent literal replacement, variable renumbering, literal
dominator branching thanks to stamps/cache, dominator
probing, polarity caching [10], vivification [11] of long and
implicit clauses, watchlist sorting for quasi- prioritised im-
plicit clause propagation, regular cleaning of false literals
of all clauses, detection of long trail and consequent restart
blocking in case of satisfiable problems, MiniSat-type vari-
able activities, glue-based extra variable activity bumping,
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prefetching of watchlists on literal enqueue, optional UIP
conflict [12] graph generation, probing (with automatic
tuning based on past performance), clause subsumption
through irreducible stamps and cache, clause strengthen-
ing through reducible&irreducible stamps and cache, pre-
cise elimination cost prediction for better elimination or-
der, gradual variable elimination, variable elimination with
searching for subsumed&subsuming product clauses.
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Abstract—This document describes the SAT solver
“FrwCB2013”, a new local search solver for the satisfiability
problem (SAT).

I. INTRODUCTION

Heuristics in SLS algorithms for SAT can be divided into
three categories: GSAT, focused random walk (FRW) and
dynamic local search (DLS). FRW algorithms conduct the
search by always selecting a variable to flip from an unsatisfied
clause chosen randomly in each step.

In this work, we propose a new heuristic for FRW, called
CCBM, which combines the configuration checking (CC)
strategy [1] and the break minimum (BM) strategy effectively
in a subtle way. The BM strategy prefers to pick the vari-
able which brings fewest number of clauses from satisfied
to unsatisfied, and is a commonly used strategy in FRW
algorithms, such as WalkSAT [2]. Originally proposed in [3],
the CC strategy reduces the cycling problem by checking the
circumstance information. It has been successfully used in
non-FRW algorithms, leading to several state-of-the-art SLS
solvers such as CCASat [4].

Based on the CCBM heuristic, we develop our solver called
FrwCB2013, which cooperates CCBM with two breaking ties
strategies well, for SAT.

II. PRELIMINARIES

In this section, we introduce some basic notations and
definitions used in this document. We use V (F ) to denote the
set of all variables appearing in the formula F . Two different
variables are neighbors when they appear in at least one
clause, and N(x) = {y | y ∈ V (F ), y and x are neighbors}
is the set of all neighbors of variable x. We also denote
CL(x) = {c | c is a clause which x appears in}.

A (possibly partial) mapping α : V (F ) → {True, False}
is called an assignment. If α maps all variables to a Boolean
value, it is complete. For local search algorithms for SAT, a
candidate solution is a complete assignment. Given a complete
assignment α, each clause has two possible states: satisfied or
unsatisfied: A clause is satisfied if at least one literal in that
clause is true under α; otherwise, it is unsatisfied.

The method of selecting the flipping variable in each step
is usually guided by a scoring function. In each step, the
flipping variable is selected usually based on its properties,
such as make, break and score. For a variable x, the property
make(x) is defined as the number of clauses that would be-
come satisfied if the variable is flipped; the property break(x)

is the number of clauses that would become unsatisfied if the
variable is flipped; the property score(x) is the increment in
the number of satisfied clauses if the variable is flipped, and
can be understood as make(x)− break(x).

III. MAIN TECHNIQUES

The FrwCB2013 solver is abased on the Stochastic Local
Search (SLS) algorithmic paradigm. Then we introduce the
main techniques used in the FrwCB2013 solver.

A. The CCBM Heuristic

The CCBM heuristic is based on the concept of con-
figuration changed configuration changed decreasing (CCD)
variable and break minimum (BM) variable in a clause. The
CCD variable is based on the concept of configuration. This
work uses the clause states based configuration proposed in
[5]. We also employ an integer array ConfT imes, whose
size equals the number of variables in the formula. For each
variable x, ConfT imes(x) measures the frequency (i.e., the
number of steps) that configuration(x) has been changed
since x’s last flip. We main ConfT imes(x) as follows.

• Rule 1: In the beginning, all the variables’ ConfT imes
are set to 1.

• Rule 2: Whenever a variable x is flipped, ConfT imes(x)
is reset to 0. Then we scan each clause c ∈ CL(x)
to check whether its state is changed by flipping x. If
this is the case, for each variable y in c (except for x),
confT imes(y) is increased by 1.

A variable x is configuration changed decreasing (CCD) if
score(x) > 0 and ConfT imes(x) > 0. For each clause c, a
variable x is break minimum (BM) in clause c if and only if
break(x) = min{break(y) | y appears in c}. In this work,
we use CCDVars(c) and BMVars(c) to denote the sets of all
CCD variables and BM variables in the clause c, respectively.

The main idea of the CCBM heuristic is the preference to
flipping CCD variables and BM variables. Flipping a CCD
variable brings down the amount of unsatisfied clauses, and
at the same time prevents the algorithm from revisiting the
scenario the algorithm recently faced with. Although previous
works such as [1], [4] also prefer to flip CCD variables, they
survey CCD variables globally, i.e., searching CCD variables
from all the variables. In contrast, the CCBM heuristic picks a
CCD variable from an unsatisfied clause. Whenever no CCD
variable is present, CCBM prefers to pick a BM variable
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(a variable with minimum break value) to flip, leading the
algorithm to search deeply.

B. The Multilevel Score

This work also adopts the multilevel score property, inspired
by [6]. Based on this concept, we design a scoring function
called linear score. We give some necessary definitions used
in linear score. A clause is τ -true if and only if it contains
exactly τ true literals under assignment α. For a variable x,
its τ -th level score, denoted by scoreτ (x), is increment in the
number of τ -true clauses if x is flipped. For each variable x,
lscore(x) = score(x) + score2(x).

IV. THE FRWCB2013 SOLVER

The FrwCB2013 solver is mainly based on the CCBM
heuristic, and uses ConfT imes(x) and lscore(x) to break
ties on solving random k-SAT instances. We denote the
specific breaking ties mechanism as BTM. For random 3-SAT
and 4-SAT instances, BTM is ConfT imes(x). For random
5-SAT, 6-SAT and 7-SAT instances, BTM is lscore(x). The
pseudo code of FrwCB2013 is outlined in Algorithm 1.

Algorithm 1: FrwCB2013
Input: CNF-formula F , maxSteps
Output: A satisfiable assignment α of F or Unknown
generate a random assignment α;1

initialize ConfT imes(x) as 1 for each variable x;2

for step← 1 to maxSteps do3

if α satisfies F then return α;4

c← an unsatisfied clause chosen randomly;5

if CCDVars(c) is not empty then6

v ← x with the greatest score(x) in CCDVars(c),7

breaking ties by BTM;
else if with the fixed probability p then8

v ← x with the greatest ConfT imes(x) in9

BMVars(c), breaking ties by BTM;
else10

v ← x with the greatest ConfT imes(x) in11

clause c, breaking ties by preferring the least
recently flipped one;

flip v and update ConfT imes;12

return Unknown;13

V. MAIN PARAMETERS

FrwCB2013 is involved in only one parameter, i.e., the
probability p. For 3-SAT instances, p is set to 0.6 (ratio<0.6)
and 0.63 (ratio≥0.63). For 4-SAT instances, p is set to 0.65
(ratio<9.63) and 0.7 (ratio≥9.63). For 5-SAT instances, p
is set to 0.53 (ratio<20.2) and 0.6 (ratio≥20.2). For 6-SAT
instances, p is set to 0.67 (ratio<43.0) and 0.69 (ratio≥43.0).
For k-SAT instances with k ≥ 7, p is set to 0.73 (ratio<86.0)
and 0.78 (ratio≥86.0). For other instances, p is set to 0.95.

VI. IMPLEMENTATION DETAILS AND SAT COMPETITION
2013 SPECIFICS

The FrwCB2013 solver is implemented in program lan-
guage C, and compiled with ‘-O3’, ‘-static’ and ‘-m64’ options
by gcc. The FrwCB2013 solve is open source. We submit the
FrwCB2013 solver to the Core solvers, Sequential, Random
SAT track and Core solvers, Parallel, Random SAT Track in
SAT Competition 2013.

FrwCB2013 is a 64-bit binary. The command line of
FrwCB2013 is described as follows.

./FrwCB2013 <instance> <seed>
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Abstract—This document describes “Glucans”, a family of
parallel SAT solvers based on existing CDCL solvers. Glucans
run GLUCOSE and/or GLUEMINISAT in parallel, exchanging
learnt clauses limited by their LBDs. The base solvers incorporate
the ideas of two minisat-hack-solvers: Contrasat and CIRMinisat.

I. OVERVIEW

Glucans are a family of parallel SAT solvers based on GLU-
COSE. These solvers run GLUCOSE [1] and/or GLUEMI-
NISAT [3] in parallel using Pthreads, letting them exchange
learnt clauses [4] selected based on Literal Block Distance
[2](LBD) in multiple phases. Based on experimental results,
the learnt clauses whose LBDs are not greater than 5 will
be sent to other threads. The base solvers also incorporate
the ideas of two minisat-hack solvers: Contrasat [5], which
improves the order of literals that are waiting to be propagated,
and CIRMinisat [6], which changes the VSIDS scores on each
restart. The base solvers can behave like these solvers by
using options. Since these minisat-hack solvers were strong
in the SAT instances of SAT Competition 2011, we expect
our modified solvers to perform well for such instances by
including them into the set of solvers.

II. SPECIAL ALGORITHMS, DATA STRUCTURES AND
FEATURES

Glucans exchange learnt clauses using queues whose ele-
ments are pointers to clauses. The exchanges are made with
the LBD values after each conflict or if the strict LBD[3] value
of a learnt changes to two during propagation.

Our experimental results show that the exchanging time
takes less than 1% of the total runtime. Different random seed
values are used for each thread, and some threads run in the
weak polarity mode.

Because of increasing the number of learnt clauses by ex-
changing, Glucans delete more useless learnt clauses evaluated
by strict LBD, always keeping learnts whose strict LBDs are
two or less.

III. IMPLEMENTATION DETAIL

We use GLUCOSE, GLUEMINISAT, Contrasat and
CIRMinisat as base solvers. The differences between our
solver and the original solvers are about two hundreds lines
in total.

Each thread autonomously shares the learnt clauses using
queues (implemented as linked lists) by the following steps.

1) Create a copy of the learnt clause when the state of
the thread is conflicting or the strict LBD of learnt is
changed to two on propagation.

2) Lock the tails of the queues of the other threads and
insert the pointers to the created copy.

3) Read its own queue and add received clauses to the
database, if this exchange is not on propagation.

IV. SAT COMPETITION 2013 SPECIFICS

This solver is submitted to the open track and the track
of Parallel Solvers – Application SAT+UNSAT and Hard-
combinatorial SAT+UNSAT. This solver needs gcc above 4.4
and is compiled with the -O2 -march=native flag. The solver
has the following command-line options.

1) -rnd-seed= : the initial seed of the first thread.
2) -nof-threads= : the number of threads to use.
3) -ex-size= : the maximum LBD for exchanging learnt

clauses.
4) -sendmore= : share the learnts aggressively by sending

them on propagation.
5) -mem-lim= : the memory limit to determine the best

number of threads.
6) -se-lim= : the cputime limit for preprocessing.

V. AVAILABILITY

Glucans will be available at our website,
http://www.ueda.info.waseda.ac.jp/sat/glucans .
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Abstract—This document describes the SAT solver Gluco-
Red as submitted the SAT Competition 2013. GlucoRed is
an implementation of the solver/reducer architecture based on
Glucose 2.1.

I. I NTRODUCTION

The solver GlucoRed discussed in this document imple-
ments the solver/reducer architecture [1], on top of the
solver Glucose 2.11 [2]. It uses two concurrently executing
threads, which are called theSOLVER and theREDUCER. The
SOLVER acts just like Glucose would, except for its interaction
with the REDUCER. The REDUCER’s sole task is to strengthen
the conflict clauses derived by theSOLVER. The interaction
between theSOLVER and theREDUCER is handled by passing
clauses through two shared-memory data structures called the
work set and theresult queue.

SOLVER REDUCER

work set

result queue

Fig. 1. The solver-reducer architecture

Whenever theSOLVER learns a clause it is pushed into the
work set. The work set has a limited capacity. If a clause is
pushed into the work set while it is full the new clause will
replace the oldest clause in the set. The task of theREDUCERis
to strengthen the clauses provided by theSOLVER through the
work set. The reducer always picks the “best” clause from the
work set as its next input. By setting the sorting metric for
the work set the user may define the “best” clause as either
the newest clause, the shortest clause or the clause with the
smallest LBD [2]. TheREDUCERtries to strengthen the clause
by an algorithm based on unit propagation and conflict clause
learning. If theREDUCERsuccessfully reduces the length of a
clause it places this new reduced clause in the result queue.

The SOLVER reads the clauses from the result queue, and
adds them to its learnt clause database. TheSOLVER can
decide to do this at any decision level, hence the introduction
of these “foreign” clauses may force the solver to backtrack.

II. RUNNING GLUCORED

The solver GlucoRed inherits all parameters and magic
constants from Glucose. Changing the value of any of these

1http://www.lri.fr/∼simon

parameters affects both theSOLVER and the REDUCER,
except for -ccmin which affects only theREDUCER. A
new parameter-solver-ccmin controls the conflict clause
minimization mode of theSOLVER. Both -ccmin and
-solver-ccmin have default value “2=deep”, which is
the same as in MiniSAT and Glucose. There are two other
new GlucoRed specific parameters. The first is the parameter
-work which is an integer> 1, and represents the capacity of
the work set. Its default value is the magic constant1000. The
second new parameter,-rsort, controls the sorting metric
used for the work set. Legal values are “0=off” (newest first),
“1=by size” (shortest first), “2=by LBD” (smallest LBD first).
The default value is2.

Although GlucoRed uses concurrency its performance re-
mains decent when it is run on a single physical CPU core.
This can be enforced for example by using the LINUX
commandtaskset. We therefore submit our solver to both
the sequential and parallel core solver tracks, for the bench-
marks Application SAT+UNSAT, and Hard-combinatorial
SAT+UNSAT.

III. I MPLEMENTATION DETAILS

GlucoRed is an extension of Glucose 2.1, which itself
is based on MiniSAT 2.2.02. All code is written in C++.
The code that is unique to GlucoRed uses POSIX threads.
The SOLVER and the REDUCER are both derived from
Glucose’s Solver class. GlucoRed was compiled to in-
clude MiniSAT’s internal simplifier as implemented in the
SimpSolver class. MiniSAT’s original Makefile was used
for compiling. Before submitting the code to the competition it
has been tested after compiling it for a 64-bit architectureusing
gcc versions 4.4.7 and 4.6.3. It should also work correctly
when compiled for a 32-bit architecture.

The version of GlucoRed submitted here differs from the
version used for the experiments in [1] by the addition of
MiniSAT’s simplifier, and a minor clean-up of the source code.

IV. GLUCORED-MULTI

GlucoRed-Multi is a simple multi-process portfolio of
multiple instances of GlucoRed. There is no clause sharing
between the different processes, but file parsing, initial iter-
ative unit propagation, and optional simplification are only
performed once. This is achieved by creating one instance of
the solver, parsing the input file and performing preprocessing,
and then forking the process multiple times.

2http://www.minisat.se
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Compared to GlucoRed the solver GlucoRed-Multi has two
extra parameters,-nc and-ns. The parameter-nc controls
the number of instances of GlucoRed to run directly on
the input formula. The parameter-ns controls the number
of instances of GlucoRed to run on the formula obtained
by simplification using MiniSAT’s internal simplifier. The
GlucoRed-Multi solver was submitted to the same parallel
core solver tracks as the basic GlucoRed solver, with parameter
settings-nc=1 and-ns=3. Given those settings and an input
formula GlucoRed-Multi will do the following:

1) Create an instance of the ’GlucoRed’ solver
2) Parse the input formula
3) Fork a copy of the process, run solver in child process.
4) Run the simplifier in the parent process.
5) Fork two copies of the parent process, run the solver in

the parent process and both children.
The solver instance running in the parent process uses all

the default GlucoRed settings. The solver instances running in
the child processes also use the default settings, except from
making2% of their branching decisions at random and having
a unique random seed based on their process id.

V. GLUCORED+MARCH

GlucoRed+March is our submission to theopen track. Even
though the ranking in the open track is based on wall clock
time this submission aims for a decent performance regarding
CPU time. This is an experimental submission to see how
simple heuristics compete with complex portfolios. It is not
meant to be a serious contender for any awards.

GlucoRed+March runs a single copy of the solver
march rw3 [3] if all clauses of the input formula have the same
length, or if the formula contains clauses of exactly two differ-
ent lengths and the diameter of the variable interaction graph
(VIG) is at most 4. In all other cases GlucoRed+March runs
a single copy of GlucoRed. Checking whether all clauses
have the same length is a cheap way of determining that the
formula is likely to be a randomk-SAT formula. The use of
the diameter of the VIG was inspired by [4].

VI. AVAILABILITY

The source code for all submitted solvers is available from
the author’s web page4. The sources for MiniRed, a Mini-
SAT based solver/reducer implementation, are also provided
through that same page. Both GlucoRed and MiniRed are
licensed under MiniSAT’s original non-restrictive license.
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Abstract—Glucose is a CDCL solver heavily based on Minisat,
with a special focus on removing useless clauses as soon as
possible. In this new 2.3 version we proposed to increase again the
aggressive nature of the deletion strategy of the previous version.
This short system description is the 2013 SAT Competition
companion paper for Glucose 2.3.

I. INTRODUCTION

In the design of efficient CDCL-based SAT solvers [1], [2], a
lot of effort has been put in efficient Boolean Constraint Prop-
agation (BCP), learning mechanisms, and branching heuristics,
their three main composants. In [3], a new simple measure-
ment of learnt clause usefulness was introduced, called LBD.
This measure was no more based on past clauses activities.
It was proved so efficient that, since 2009, Glucose and its
updated versions was always one of the award winning SAT
solvers in the corresponding competitive events. This year, we
proposed a minor revision of Glucose 2.2 (used in the SAT
2012 Challenge, see [4] for details) and increased its agressive
database cleanup strategy once again. The solver is particularly
well suited for UNSAT problems but can, thanks to the
techniques developed in the 2.2 version, still be competitive on
SAT problems too. This short paper (competition companion)
describes the main techniques used in Glucose 2.3 from a
technical point of view.

It is important to notice that, like Glucose 2.2, Glucose
2.3 is based on the version 2.2 of Minisat [2] (Glucose 1.0
was based on the previous version of Minisat). For a more
comprehensive description of Glucose, please refer to [3] and
our previous competition (2009,2012) reports. We focus here
on the novelties brought to Glucose since the 2012 version.

II. MAIN TECHNIQUES

During search, each decision is often followed by a large
number of unit propagations. We called the set of all literals of
the same level a “blocks” of literals. Intuitively, at the semantic
level, there is a chance that they are linked with each other by
direct dependencies. The underlying idea developed in [3] is
that a good learning schema should add explicit links between
independent blocks of propagated (or decision) literals. If the
solver stays in the same search space, such a clause will
probably help reducing the number of next decision levels in
the remaining computation. Staying in the same search space
is one of the recents behaviors of CDCL solvers, due to phase-
saving [5] and rapid restarts.

Let us just recall what is the Literals Blocks Distance
(LBD). Given a clause C, and a partition of its literals into
n subsets according to the current assignment, s.t. literals are
partitioned w.r.t their decision level. The LBD of C is exactly
n.

From a practical point of view, we compute and store
the LBD score of each learnt clause when it is produced.
Intuitively, it is easy to understand the importance of learnt
clauses of LBD 2: they only contain one variable of the last
decision level (they are FUIP), and, later, this variable will be
“glued” with the block of literals propagated above, no matter
the size of the clause. We suspect all those clauses to be very
important during search, and we give them a special name:
“Glue Clauses” (giving the name ”glucose”).

The LBD measure can be easily re-computed on the fly
when the clause is used during unit propagation. We keep here
the strategy used in Glucose 1.0: we change the LBD value of
a clause only if the new value becomes smaller. However, in
the 2.3 version this update is only performed during conflict
analysis, and not during propagation.

III. NOVELTIES OF GLUCOSE 2.3

Before Glucose 1.0, the state of the art was to let the clause
database size follow a geometric progression (with a small
common ratio of 1.1 for instance in Minisat). Each time the
limit is reached, the solver deleted at most half of the clauses,
depending on their score (note that binary and glue clauses are
never deleted). In Glucose 1.0, we already chose a very slow
increasing strategy. In this new version, we perform a more
accurate management of learnt clauses.

A. Dynamic threshold, revisited

As a basis, we used the 2.2 version of the cleaning process:
Every 4000+ 300× x, we removed at most half of the learnt
clause database , which this is much more aggressive than
the version 1.0 , i.e. 20000 + 500 × x). Of course, binary
clauses, glue clauses and locked clauses are always kept. A
locked clause is (1) used as a reason for unit propagation in
the current subtree or (2) locked (see [4]). However, in the
2.3 version, thanks to a more focused update of the interesting
clauses (propagated clauses LBD scores that are not seen in
any conflict are not updated), we were able to use the following
more aggressive strategy : the cleaning process is fired every
2000 + 300× x. This gives us clause database cleaning after
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2000, 4300, 6900, 9800, . . . conflicts, instead of 4000, 8300,
12900, 17800, . . . used in Glucose 2.2. This choice is also
related to the new technique described in the next subsection.

The dynamic nature of the threshold used to keep more or
less clauses at each cleaning process is kept intact (see version
2.2 description).

B. Starts with a wider search for proofs

The var_decay constant is 0.95 in Minisat, which was
a very good compromise for most of the benchmarks [6].
However, thanks to the work of [7], it was shown that fixing
it to the same value was not always a good choice. Thus,
we proposed to use it like some kind of temperature, starting
from 0.8 and increasing it by 0.01 every 5000 conflicts until
it reaches the 0.95 value (after 75000 conflicts). This idea
arose during one of the fruitful discussions we had with
George Katsirelos, Ashish Sabharwal and Horst Samulowitz
and thus the credits for this idea are clearly shared with them.
Adding this rule allowed us to make a small step in Glucose
performances (3 additional problems solved on the previous
SAT Challenge set of problems) but it may open the door for
further improvements.

One may notice that, after a few ten thousands conflicts,
the more agressive strategy used for clause database cleanings
(using the constant 2000 instead of 4000) tends to disappear,
because the strategy will be mostly dominated by the 300×x
part of the increasing variable. The meaning of that is that we
want to quickly drop “bad” (useless) clauses generated when
var_decay was still not properly set.

C. Other embedded techniques

Since the first versions of Glucose, we used the stand alone
simplifier ”Satelite”. In the 2.3 version, we used the built-in
”Simp” class of Minisat that simplify the formula in place.

The laziness of the LBD update mechanism is inspired by
the study of CDCL solvers proposed in the source code of the
work of Long Guo in www.cril.fr/˜guo.

IV. SUPPORT FOR UNSAT PROOF CHECKING

Thanks to the effort of Marijn Heule, who implemented the
support for DRUP (Delete Reverse Unit Propagation) proof
checker into Minisat and Glucose 2.2, it was trivial to port
his code into Glucose 2.3. Currently, there are two distinct
versions of Glucose (with or without DRUP support) but the
next release of Glucose will contain the support for UNSAT
proof checking as an argument. More information on the work
of Marijn Heule and the DRUP file format can be found at
www.cs.utexas.edu/˜marijn/drup.

V. MAIN PARAMETERS

Given the fact that auto-tuning of SAT solvers is a classical
technique for improving the performances and propose a
more scientific approach to fix the parameters, most of the
parameters are accessible via command line options. See the
description above for the specific parameters we used for
Glucose 2.3.

The main objective of Glucose was to target UNSAT
Applications problems. However, the blocking-restart strategy
introduced in Glucose 2.2 allows to keep a good score on SAT
problems too (see [4] for this).

VI. ALGORITHM AND IMPLEMENTATION DETAILS

Glucose uses a special data structure for binary clauses,
and a very limited self-subsumption reduction with binary
clauses, when the learnt clause is of interesting LBD. Glucose
is targeting Application problems.

The main page of Glucose is

http://www.lri.fr/˜simon/glucose.
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Abstract—To develop more efficient SAT solvers, recently we
proposed two new solving policies. One is called bit-encoding
phase selection policy, which aims at selecting more exactly the
polarity of a decision variable. Another is called a decision-depth-
sensitive restart policy, which determines when a restart begins,
depending on search depths. Based on the two new policies,
we developed a number of new SAT solvers, which are named
glue bit, minisat bit, gluebit lgl and gluebit clasp. This paper
describes briefly them.

I. INTRODUCTION

Most of modern solvers are based on Conflict Driven Clause
Learning (CDCL), which is a variant of DPLL procedure. In
general, CDCL-type solvers contain some important ingredi-
ents such as variable selection, phase ((also called polarity)
selection, restart, BCP (Boolean Constraint Propagation), con-
flict analysis, clause learning and its database maintenance
etc. Changing any ingredient has an impact on the whole
performance of solvers. This paper focuses on how to improve
the following two ingredients: restart and phase selection.
Recently, we proposed two new methods for optimizing a few
ingredients. One is called decision-depth-sensitive restart [1],
which is used to optimize the restart policy. Another is called
bit-encoding phase selection [2], which is used to improve the
quality of a polarity selection. Based on the two new policies,
we developed a few SAT solvers. Below we describe briefly
these new SAT solvers.

II. A BIT-ENCODING PHASE SELECTION POLICY

In [2], we introduced a new phase selection policy called
bit-encoding. The basic idea of this new policy is to let the
phase at each decision level correspond to a bit value of the
binary representation of an counter. Let n denote the value of
a counter, and the binary representation of n be

n = bk2
k + bk−12

k−1 + · · ·+ b12 + b0.
This phase selection policy stipulates that during the m-th
search period, the phase of a variable at the k-th decision
level is equal to bk. Every time a restart begins, the counter
n increases by one. Based on our experimental observation,
it is better to apply bit-encoding scheme on only the first 6
levels. In the detailed implementation, we use only the first 4
bits of the counter n, and let the phase of a variable at the
k-th decision level correspond to the (k modulo 4)-th bit of n,
where k < 6. When k ≥ 6, we use the phase selection policy
of Glucose [3]. Here is the C code of this phase selection.

// assume current decision level is k
if(k < 6 ) polarity[var]=(n >>(k %4))&1;
else polarity[var]=previous[var];

where previous[var] is used to save the previous phase and is
initially set to false. It is easy to see that the phase refresh
period of our policy is 16, while that of the other existing
policies are actually 1. The phase refresh period can be
considered as a metric to measure the diversity of a search
procedure. If the phase refresh period of a solver is two or
more, it is said to be diverse. Otherwise, it is said to be
non-diverse or uniform. So far, all the known phase selection
policies are uniform, whereas this new phase selection policy
is diverse.

III. A DECISION-DEPTH-SENSITIVE RESTART POLICY

Here we introduece a new notion called DDD(decision
depth decreasing). It is related to the Longest Decreasing
Subsequence (LDS). LDS may be defined as follows. Given
a sequence S, LDS(S) is the longest decreasing subsequence
with the following property: (1) it contains the first term of
S; (2) each term is strictly smaller than the one preceding
it. For example, assuming S={7, 11, 10, 9, 5, 6, 2}, then
LDS(S)={7, 5, 2}. In our solver, S is seen as a sequence
of conflict decision levels. The DDD of S is defined as the
number of terms in LDS(S), that is, DDD(S)=|LDS(S)|. For
the above example, DDD(S)=3. The larger the DDD value
is, the closer the goal is likely achieved. However, in many
cases, DDD=1. To get the larger DDD, we need to produce
many more conflicts. This is harmful to UNSAT instances.
Hence, for the restarts that are not postponed by Glucose
blocking strategy, we do not apply the DDD blocking strategy.
For the restart postponed by Glucose, if DDD<2, even if the
restart triggering condition is true, we continue to postpone
that restart. That is, our postponing interval is not smaller than
that of Glucose 2.1.

Another measure related to our new blocking strategy is the
average of maximal depths (denoted by AveMax D), which
may be defined as follows.

AveMax D =
1

8

9∑

i=2

max{conflict depths in i-th restart interval}
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the reason why the above formula removes the first maximum
is because the first maximum has a greater deviation from
its subsequent ones in many instances. In general, on the
instances with small AveMax D, say AveMax D < 250, we
do not apply any blocking strategy. On the instances with large
AveMax D, say AveMax D > 1500, we remove the DDD
blocking strategy.

In addition to the restart triggering condition of Glucose
2.1, we embed such additional conditions as the AveMax D
test and the DDD blocking test. Here is the C++ code of the
new restart triggering strategy.
K=AveMax D < 250 && freeVars > 2500 ? 0.82 : 0.8;

assume learnt clause is to c;

sumLBD+= c.lbd(); conflicts++;

queueLBD.push(c.lbd());

if(queueLBD.isFull() && queueLBD.avg()*K > sumLBD/conflicts)

if(AveMax D < 250 || AveMax D > 1500 || !blocked || DDD > 1) {
queueLBD.clear();

restart();

}

To remove the postponing strategy on some instances, we
add the parameter AveMax D to our postponing algorithm.
Here is C++ code for the new postponing algorithm.

R=AveMax D ≥ 250 && AveMax D ≤ 900 && conflicts < 1500000 ?
1.38 : 1.4;
if (AveMax D ≥ 250 && freeVars > 5000 ){

queueTrail.push(trail.size());
if(queueLBD.isFull() && queueTrail.isFull() &&

trail.size() > R*queueTrail.avg()) {
queueLBD.clear();
blocked=true;

}
}

IV. SYSTEM DESCRIPTION OF SAT SOLVERS

Using two new technologies mentioned above, we devel-
oped a few new SAT solvers. Below we describe briefly them.

A. glue bit

glue bit is built on top of Glucose 2.1, but incorporates two
new policies given in previous two sections. It is a sequential
single-engine CDCL SAT solver, which runs SatElite as a
preprocessor. In glue bit, the bit-encoding phase selection
policy is used to enhance the ability of solving UNSAT
instances, whereas the decision-depth-sensitive restart policy
is used to enhance the ability of solving SAT instances. For
big instances, glue bit uses still the same as the solving
strategies of Glucose 2.1. This solver is submitted to the
sequential, application SAT+UNSAT and SAT track of the
SAT Competition 2013.

B. minisat bit{ u}
Minisat bit{ u} is a hack version of MiniSAT [5]. Except

for the pickBranchLit procedure, Minisat bit is the same

as MiniSAT 2.2.0. In the pickBranchLit procedure, Min-
isat bit{ u} adds the bit-encoding phase selection policy men-
tioned above. The phase selection policy of Minisat bit{ u}
is a little bit different from that of glue bit. In glue bit, the
decision level applying the bit-encoding scheme is limited
to 6, while in minisat bit, the decision level applying the
bit-encoding scheme is limited to 12. Furthermore, min-
isat bit{ u} has a bit-encoding sub-scheme. Every 4 levels
corresponds to a bit-encoding sub-scheme. When the decision
level is greater than 12, We use the same phase selection
policy as MiniSAT to select a polarity of decision variables.
Minisat bit is submitted to the sequential, MiniSAT hack-track
and application of the SAT Competition 2013. Minisat bit u
is submitted to certified UNSAT track.

C. gluebit lgl

gluebit lgl can be regarded as a hybrid solver or an interact-
ing solver using two SAT solving engines. It combines glue bit
and Lingeling 587 [4] that participated in SAT Competition
2011. Its main framework is based on glue bit. For big
instances, this solver switches to glue bit to solve them. For
other instances, glue bit and Lingeling run specified search
steps in turn, and exchanges intermediate results each other.
If a solver performs better than another solver, the subsequent
solving will be done by that solver with the better perfor-
mance. This solver is submitted to the sequential, application
SAT+UNSAT and SAT track of the SAT Competition 2013.

D. gluebit clasp

gluebit clasp is a hybrid solver combining glue bit and
clasp 2.0-R4092 (Gold Non-portfolio in SAT Competition
2011 crafted track). At the initial stage, we use glue bit to
solve an instance. This is similar to the role of a preprocessor.
Once glue bit has found the instance not suitable for it, it
aborts to solve and is switched to clasp. In some cases,
clasp is switched also to glue bit. This solver is submitted to
sequential, hard-combinatorial SAT+UNSAT and SAT track of
the SAT Competition 2013.

V. CONCLUSION

All the SAT solvers given in this paper are based on two new
policies. For glue bit, we conducted sufficient experiments,
while for the other new solvers, we did only a few experiments.
The results from the experiment on glue bit show that the
performance of glue bit was surprisingly good. We believe
that the other solvers containing glue bit will perform well.
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Abstract—GLUEM INI SAT is a SAT solver based onM INI SAT 2.2
and the LBD-based evaluation criteria of learned clauses. The
new features of the version 2.2.7 are (1) on-the-fly lazy sim-
plification techniques based on binary resolvents, (2) probing-
based preprocessing, (3) a new restart strategy based on conflict-
generation speed, (4) a variant of blocked restart strategy and
(5) a minor modification of the evaluation criteria of learned
clauses.

I. I NTRODUCTION

GLUEM INI SAT is a SAT solver based on MINI SAT 2.2 [1]
and the LBD-based evaluation criteria of learned clauses [2].
GLUEM INI SAT shows good performance for unsatisfiable
SAT instances. The previous version 2.2.5 [3] took the first
and second places for UNSAT and SAT+UNSAT classes in
CPU time evaluation at SAT 2011 competition, respectively.

To enhance the UNSAT performance, we have introduced
some new features to GLUEM INI SAT: (1) on-the-fly lazy sim-
plification techniques based on binary resolvents, (2) probing-
based preprocessing [4], [5], (2) a new restart strategy based
on conflict-generation speed, (4) a variant of blocked restart
strategy [6] and (5) a minor modification of the LBD-based
evaluation criteria of learned clauses.

II. M AIN TECHNIQUES

Simplification of a given CNF formula is one of important
techniques to decide the satisfiability of the formula efficiently.
The simplification techniques are used both before and during
the search process. GLUEM INI SAT has the both simplification
techniques. For preprocessing, we have implemented probing-
based techniques which consist of false-literal probing, neces-
sary assignment probing, equivalent variable probing [4] and
binary clause probing [5], besides variable and subsumption
elimination [7] which are implemented in MINI SAT 2.2.

For in-processing, GLUEM INI SAT executes the above prob-
ing techniques on-the-fly. To reduce the checking cost, we uti-
lize binary resolvents extracted from unit propagation process.
For example, letϕ = {x → y, x → z, y ∧ z → v, v ∧ w → u}
and w is assigned as true. Ifx is selected as a decision
variable and assigned as true, theny, z, v, u are propagated.
The cause of the propagation ofy, z, v is x. This means
ϕ |= (x → y) ∧ (x → z) ∧ (x → v). However,u is not
propagated fromx only. It requiresx andw as premise literals.
The checking of whether a propagated literal has a single
cause or not can be done with a constant order at the unit
propagation process. Hence, we can extract a large number
of binary resolvents with very low overhead. This extraction
approach is similar to the dominator detection algorithm in

[8]. Our algorithm detects the earliest dominator (decision
literal), whereas [8] uses immediate dominators. The earliest
dominator can be detected with O(1), whereas the computation
of the immediate dominator sometimes requires linear search
between two nodes in a implication graph.

For each literal, GLUEM INI SAT holds onlyoneof premise
literals. We prepare an array namedpremise. Each entry of
the array is indexed by each literal. The value ofpremise[x]
is a literal which denotes one of premise literals ofx, that is,
ϕ |= premise[x] → x. Initially, premise[x] = x. The value of
premise[x] is updated whenx is propagated andx has a single
cause of the propagation.

We can execute probing techniques with a constant or-
der by using the arraypremise. For example, the necessary
assignment probing can be represented as follows: suppose
that ϕ is a formula andx, y are literals. If ϕ |= x → y
and ϕ |= ¬x → y, then ϕ |= y. This probing technique
requires two premise literals ofy. We can get two premise
literals of y, that is, the old value ofpremise[y] before
updating of it and the new value of it. We denote the old
and new values asoldpremisey andnewpremisey, respectively.
Then, we can execute the necessary assignment probing as
follows: if oldpremisey = ¬newpremisey, thenϕ |= y holds.
The checking cost isO(1). Other probing techniques can be
executed in the same way. GLUEM INI SAT executes these on-
the-fly probing techniques when an entry of the arraypremise
is changed. The arraypremise represents a set of binary
resolvents. These binary resolvents are also used to shrink
clauses by self-subsumption checking.

We hold only one premise literal for each literal. However,
the value of premise[y] often changes since CDCL solver
execute unit propagations very frequently. This variation of
premise literals contributes the realization of effective and low
cost simplification techniques.

III. OTHER TECHNIQUES

GLUEM INI SAT uses an aggressive restart strategy. If one of
the following conditions is satisfied, then the solver restarts:

1) an average ofLBDs over the last 50 conflicts is greater
than the global average× 0.8.

2) an average of the number of decisions per a conflict
from the last restart is greater than the global average×
0.95.

The former condition is same as GLUEM INI SAT 2.2.5 and
GLUCOSE2.1. The latter one is a new condition which intends
to generate conflicts quickly. The parameters 0.8 and 0.95 were
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TABLE I
THE NUMBER OF SOLVED INSTANCES

Solver
#Solved

(SAT + UNSAT)
GLUEM INI SAT 2.2.5 199 (81 + 118)
GLUEM INI SAT 2.2.7 220 (94 + 126)
GLUCOSE 2.1 216 (94 + 122)

determined by experiments on benchmark instances of past
SAT competitions.

Even if either above restart condition is satisfied, the restart
is blocked when the local trail size per a conflict is exceedingly
greater than the global one [6]. This strategy helps to catch a
chance of making satisfying assignment. In GLUEM INI SAT,
when an average of the number of propagated literals per a
conflict from the last restart is greater than the global average
× 2.0, the restart is blocked.

The literal blocks distance (LBD) [2] is an evaluation
criteria to predict learnt clauses quality in CDCL solvers.
The effectiveness of LBD was shown at past competitions by
GLUCOSE and GLUEM INI SAT. The LBD value of a clause is
computed when the learned clause is produced from a conflict,
and re-computed when the clause is used for unit propagations.
In the re-computation, GLUEM INI SAT 2.2.7 ignores literals
whose values are fixed at the decision level 0. As the results,
the LBD values may become less than the original ones. In
2.2.7, we never remove learned clauses whose updated LBD
value isone, that is, a learned clause is never removed when
every literal of the clause are assigned at the same level once.

IV. EXPERIMENTAL RESULTS

We evaluated 3 solvers for 300 instances in the application
category of SAT 2011 competition. The solvers are GLUEM I-
NISAT 2.2.5, 2.2.7 and GLUCOSE2.1 which took the first place
as a sequential solver at SAT Challenge 2012. The experiments
were conducted on a Core i7 (2GHz) with 8GB memory. We
set a timeout for each instance to 5000 CPU seconds. Table I is
the experimental results and Fig 1 is cactus plots of the results.
For SAT instances, the performance of GLUEM INI SAT 2.2.7
is greatly improved from 2.2.5, and it is almost same as
GLUCOSE 2.1. For UNSAT instances, GLUEM INI SAT 2.2.5
solves more number of instances than 2.2.5 and GLUCOSE2.1.

V. SAT COMPETITION 2013 SPECIFICS

GLUEM INI SAT uses the option-compe for the com-
petition. This option suppresses log messages. For certi-
fied UNSAT tracks, some techniques in GLUEM INI SATare
disabled because of the implementation issue of RUP out-
put. The execution script for certified UNSAT tracks is
binary/glueminisat-cert-unsat.sh , in which bi-
nary self-subsumption checking based on thepremise array
is disabled.

VI. AVAILABILITY

GLUEM INI SAT is developed based on MINI SAT 2.2. Per-
missions and copyrights of GLUEM INI SAT are exactly the
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Fig. 1. A cactus plot for application category of SAT 2011 competition

same as MINI SAT. GLUEM INI SAT can be downloaded at
http://glueminisat.nabelab.org/.
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Abstract—This document describes the SAT solver ”gluH”
submitted to SAT Competition 2013, a modification of glucose
2.1, whose main feature is an addition of the generational
management of learnt clauses.

I. INTRODUCTION

gluH is a modified version of glucose [1], which is in turn
based on the well-known MiniSat [2], a typical CDCL solver
renowned for its compactness yet decent performance. The
main addition of gluH is its generational management of learnt
clauses, which periodically relegates dormant learnt clauses
to the second class, separating them from first-class learnts
recently created or actively participating in unit propagation.
The aim is to reduce the size of the database of the first-class
learnts to facilitate rapid propagations, and the idea is based on
the observation that often, clauses that have not been involved
at all in unit propagation for a long time have a fair chance
that they will be rarely useful for a while, if at all.

II. MAIN TECHNIQUES

The major difference between gluH and glucose is the
addition of the generational management of learnt clauses,
despite the implementation and its evaluation being still in
a primitive stage.

Aside from the normal learnt clause management, clauses
inactive for a long period of time are further classified as
dormants and demoted into the second class where they receive
less attention from propagation. Note that only dormant learnts
can ever be demoted; gluH still discards learnts immediately
and permanently during the regular reduction.

Basically, clauses classified as dormants are not always
inspected for possible unit propagation or conflict but on a
random basis. However, if they become involved in propa-
gation or conflict, they are promoted back to the first class
promptly.

As one can expect, the database of dormant learnts will
grow over time, and gluH uses the exact same logic to reduce
its size, i.e., based mainly on LBD [1] values.

III. MAIN PARAMETERS

The ratio of discarding learnts when performing database
reduction in original glucose, as is the case with MiniSat, is
roughly half. gluH reduces this ratio to prevent removing too
many useful clauses, since a considerable portion of learnts
will be relegated and excluded as dormants. For the dormant
learnt database, the ratio is half.

The criterion for classification of a dormant clause is
whether it has ever been involved in propagation or conflict

within a fixed number of last conflicts; the number is static
throughout the entire execution.

IV. IMPLEMENTATION DETAILS

Separate watcher lists are maintained for dormant learnts.
The normal watcher lists are accessed whenever a variable is
assigned, as usual, whereas the watcher lists for dormants are
accessed with a relatively small and fixed probability.

The task of classifying dormants is carried out periodically,
in synchronization with the regular database reduction. For the
purpose of classifying dormants, each learnt clause is assigned
a timestamp when created, which will be updated if the clause
is involved in unit propagation or conflict; the timestamp is the
accumulated number of conflicts so far.

If a clause is deemed to be dormant according to the above-
mentioned criterion, it is detached from the normal watcher
lists and added to the dormant lists.

V. SAT COMPETITION 2013 SPECIFICS

Two instances with different configurations have been sub-
mitted to SAT Competition 2013.

1) Using SatELite [3] as a front-end CNF preprocessor,
ratio of normal learnt reduction: 1/4, probability of
checking dormant watcher lists: 0.25, dormant learnt
criterion: silent for 20000 conflicts

2) Based on ”simp” version of MiniSat, ratio of normal
learnt reduction: 1/4, probability of checking dormant
watcher lists: 0.20, dormant learnt criterion: silent for
30000 conflicts

VI. AVAILABILITY

gluH adds no additional license to that of glucose.
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I. INTRODUCTION

Clause Weighting is an efficient scheme for stochastic local
search (SLS) for Satisfiability (SAT) [3], [4], [5]. A clause
weight records no-good information about how often that
clause has been unsatisfied at local minima. Similarly, a
variable weight stores no-good information about how often
a variable has been flipped. That variable property is reported
to improve SLS diversification. This work is motivated by the
desire to investigate the use of weighting-based enhancement
in the diversification phases. Firstly, we use clause weights to
select clauses in the trap escaping phases. Secondly, we use
variable weights to break ties in the scoring function.

II. WEIGHT-ENHANCED DIVERSIFICATION

To our best knowledge, clause-weghting SLS used clause
weights in computing scoring function for selecting variables
in greedy phases. Most of SLS solvers selects false clauses ran-
domly at local minima escaping phases. Our algorithm stems
from the idea of taking advantages of clause-weighting scheme
at clause selection procedures [6]. Our algorithm performs a
greedy selection on clauses instead of random selection as the
conventional trap escaping strategy. The greedy selection is
controlled by a probability noise named β. Within probability
noise β, the maximum weighted clause is selected; otherwise
a random unsatisfied clause is selected. At greedy phases, we
employ variable weights as tie-breaking criteria.

A. Conventional clause-weighting score

A popular non-weighted scoring function is based on the
simple count of currently unsatisfied clauses.

score(v) =
∑

c

(Cls(c)− Clsv(c))

where Cls(c) indicates whether a clause c is unsatisfied or not
under the current assignment. In order words, Cls(c) = 1 if c is
currently unsatisfied, otherwise Cls(c) = 0. Similarly, Clsv(c)
shows whether clause c remains unsatisfied if variable v is
flipped. Clearly, the score of flipping a variable v is defined
as the decrease in the number of unsatisfied clauses after v is
flipped.

Under a weighted scheme, a scoring function is defined as

wscore(v) =
∑

c

Wgh(c)× (Cls(c)− Clsv(c))

where Wgh(c) is the weight of a clause c.

Algorithm 1: NoveltyGC(β, p)
if within probability β then1

c = randomly select an unsatisfied clause;2
else c = select an unsatisfied clause with the highest clause weight Wgh(c);3
for all variables in clause c do4

find the best and second best variables based on wscore, breaking ties5
based on a diversification criterion;

end6
if within probability p then7

return the second best variable;8
else return the best variable;9

Algorithm 2: gNovelty+GC(Θ, β, sp)
Input : Formula Θ, diversification probability β, smoothing probability sp
Output: Solution α (if found) or TIMEOUT

randomly generate a candidate solution α;1
initiate all clause weights Wgh(c) = 1;2
while not timetout do3

if α satisfies the formula Θ then return α ;4
if within the random walk probability wp = 0.01 then5

perform a Random Walk;6
else7

if there exits promising variables then8
select a variable v with the highest wscore(v), breaking ties9
based on a diversification criterion;

else10
perform NoveltyGC(β, p) and adjust its noise p;11
update and smooth (with the probability sp) clause weights;12

end13
end14
update the candidate solution α;15

end16
return TIMEOUT;17

B. Clause-Weighting Enhancement

In the diversification phases, our new heuristic greedily
selects an unsatisfied clause based on the clause weights.
With probability β, it selects an unsatisfied clauses randomly.
Otherwise, with probability (1-β), it selects an unsatisfied
clause with the maximum clause weight. The aim of selecting
a clause with the highest weight is to make an attempt to
satisfy the clause that is most often unsatisfied at local minima.
Satisfying such a clause may help the search escape from the
current trap. The positive aspect of using the diversification
noise β is the flexibility in switching back and forth between
greediness and randomness. This allows the solver to occa-
sionally move away from being too greedy.

The new NoveltyGC is outlined in Algorithm 1. Once the
false clause c is selected, the algorithm will compute the
wscore(v) to find the best and second best variables w.r.t. the
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score. In the next section, we will describe other diversification
criteria to break such ties (Line 5 in Algorithm 1).

C. Variable-Weighting Enhancement

Novelty uses variable ages as its diversification criterion [1].
A variable age is computed as the number of flips since that
variable was last flipped. In other words, the older the variable,
the more likely it will be selected. Many SLS solvers use
variable ages to break ties in their diversification phase. In this
study, we use variable weights as an alternative diversification
criterion. In this case, ties are broken by selecting the variable
v with less weight, which records the number of times v
has been flipped. By doing so, the algorithm prefers to
direct the search to the area that involves the least frequently
flipped variables. We also investigate the use of both variable
weights and variable ages in a combined fashion: break ties
by selecting the variable with smaller variable weight, then
break further ties by preferring the older variables.

III. IMPLEMENTATION

The new weight-enhanced heuristics is integrated into
gNovelty+. The new algorithm gNovelty+GC (where GC
stands for ’greedy clause selection’) is illustrated in Algo-
rithm 2. It will break ties in the intensification phases using
the same diversification criterion as NoveltyGC does in the
diversification phases. There are two different diversification
criteria: variable ages and the combination of variable ages and
variable weights. In order to distinguish the two variants of
gNovelty+GC, we name them respectively as gNovelty+GCa,
and gNovelty+GCwa based on the diversification criterion
being used.

For SAT 2013 Competition, parameter settings are presented
in the following table.

Solvers β sp
gNovelty+GCv 15 40

gNovelty+GCwa 0 40
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Abstract—This paper serves as solver description for our SAT
solver Lingeling and its two parallel variants Treengeling and
Plingeling entering the SAT Competition 2013. We only list
important differences to the version of these solvers used in the
SAT Challenge 2012. For further information we refer to the
solver description [1] of the SAT Challenge 2012 or source code.

LINGELING

The differences on the search side, that is during the
CDCL loop, are as follows. The inner-outer scheme for reduce
scheduling is not enabled by default, but only enabled dynam-
ically, if the number of remaining variables drops below 1000.
It also turned out that the previous VMTF decision scheduler,
though faster to compute, is less robust, and occasionally leads
to time-outs on otherwise easy to satisfy instances. Thus we
went back to the exponential VSIDS scheme of MiniSAT.
Costly recursive clause minimization [2] is only attempted
for clauses with small glucose level (LBD) [3]. Local clause
minimization is tried for somewhat higher glucose levels. For
even higher glucose levels and if in addition the 1st-UIP clause
is rather long then a decision-only clause is learned instead of
the (minimized) 1st-UIP clause (proposed by Donald Knuth
in private communication). The decision-only clause contains
the negations of all decisions required to generate the conflict,
except for the last decision, which is replaced by the 1st-UIP
literal (if different). The variable scores are updated based on
the generated but discarded 1st-UIP clause.

Lingeling uses various inprocessing algorithms [4], which
not only simplify the formula initially and in this case act as
preprocessors, but also in regular intervals between calls to
the CDCL search loop. All inprocessors are running as part
of one single simplification phase. The number of conflicts is
used as metric to measure the effort spent in search and if a
conflict limit is reached, the solver switches to simplification.

In principle, the conflict interval for simplification is in-
creased geometrically. However, depending on the amount of
reduction achieved in the last simplification phase, measured
in terms of the percentage of removed variables, the increment
of the simplification interval is reduced. The more variables are
removed the sooner the next simplification phase is scheduled.
Furthermore, each inprocessing algorithm monitors its effec-
tiveness individually. If an inprocessor was unsuccessful in the
previous simplification phase, the inprocessor is skipped in the

Supported by FWF, NFN Grant S11408-N23 (RiSE).

next simplification phase. If unsuccessful again, it is skipped
twice etc. Various more advanced inprocessors are delayed
until either blocked clause elimination or bounded variable
elimination is completed at least once.

Regarding changes in individual inprocessors we note the
following. Tree-based look-ahead already mentioned in [1] has
been published [5]. Bounded variable elimination is now much
more restricted. It only tries to eliminate variables with few
occurrences and thus terminates resp. runs to completion much
earlier than in previous versions.

We further realized that during literal probing, which occurs
as part of various preprocessors, clauses satisfied during prob-
ing which contain the negation of the probed literal are under
certain restrictions asymmetric tautologies [6] and can be
removed. Actually, in general, short (binary or ternary) clauses
determined to be redundant, such as these basic asymmetric
tautologies, but also blocked clauses or covered clauses, are
“moved”, i.e. they are marked as redundant resp. learned
clauses to preserve BCP as discussed in [4].

As also discussed in [4] we generate and add binary blocked
clauses. To avoid full occurrence lists for large redundant
resp. learned clauses, we only add blocked clauses with
a blocking literal, which does not occur negated in large
redundant clauses at all. Blocked clause addition is disabled
in the parallel solvers Plingeling and Treengeling.

Finally, we added a simple form of cardinality constraint
reasoning, which is similar to our previously added Gaussian
elimination procedure [1]. We first extract trivially encoded
at-most-one and at-most-two constraints by a simple and
incomplete syntactic procedure. All clauses, which contain
a literal occurring in an extracted cardinality constraint are
added as cardinality constraint too, e.g. as at-most-k constraint,
where l = k + 1 is the length of the clause. For this set of
cardinality constraints we perform a simple form of variable
elimination, as in the Fourier-Motzkin elimination procedure.
This technique allows to derive an inconsistent constraint for
large pigeon-hole formulas in a fraction of a second. Otherwise
the procedure exports derived units and binary clauses.

For the certified UNSAT track we had to disable blocked
clause addition, Gaussian elimination and cardinality con-
straint reasoning, since they can not be simulated by resolution
(polynomially). Furthermore, equivalent literal substitution
(ELS) turned out to be hard to map to (D)RUP and thus we
had to disable all inprocessors which rely on ELS.

Appears in A. Balint, A. Belov, M.J.H. Heule, and M. Järvisalo (eds.), Proceedings of SAT Competition 2013: Solver and Benchmark Descriptions,
volume B-2013-1 of Department of Computer Science Series of Publications B, University of Helsinki 2013. ISBN 978-952-10-8991-6.

51



PLINGELING

The first version of Plingeling only shared units, while more
recent versions also share equivalences. In this new version we
also share short clauses with small glucose level, i.e. clauses
with at most 40 literals and glucose level of at most 8. In
contrast to [7] all exported clauses are imported unless they
contain a “melted” literal, such as those eliminated or used
as blocking literal in blocked or covered clause elimination
during inprocessing. The same restriction was already required
for importing equivalences.

Clauses are exported to the master and copied to a global
stack. Each slave solver thread imports clauses from this global
stack in regular intervals during the CDCL loop, oldest clauses
first. Thus this global clause stack actually acts as a queue. The
procedure for importing clauses triggers garbage collection of
global clauses already imported (consumed) by all solvers in
regular intervals.

TREENGELING

Treengeling is a parallel solver based on Cube & Con-
quer [8], [9], which tries to combine the strengths of look-
ahead solving with CDCL solving and in the case of Treen-
geling also with inprocessing. The basic architecture of Treen-
geling was already described in [1].

In this new version we essentially added three improve-
ments. First, and most important, we flipped the policy for
changing the conflict limit for each search node in order to
match the original motivation for Cube & Conquer. If more
nodes are closed by a combination of CDCL and inprocessing
we double the global conflict limit. Otherwise if the number
of closed nodes is smaller than the number of added nodes
then the conflict limit is decreased with a rate of 90%. This
actually only happens if at least one node was closed and
otherwise, if no node was closed, the conflict limit is even
decreased by 50%. If the soft memory limit is hit nodes are
not split and we end up in the first case (doubling the limit).
Further there is a minimum conflict limit of 1,000 conflicts, an
initial conflict limit of 10,000 and a maximum conflict limit
of 100,000 conflicts. This limit is applied to the search phase
of one node in one round (which also includes inprocessing).

The second improvement consists of disabling full tree-
based look-ahead [5] if look-ahead alone removes less than 2%
of the remaining variables. There is a similar penalty scheme
as for inprocessors in Lingeling though. In this situation the
next full look-ahead will be skipped and only a cheap to
compute static heuristics is used instead.

Finally, Treengeling combines part of the infrastructure of
Plingeling with Cube & Conquer by using one core for running
an additional solver thread, which exports units to the worker
threads in Cube & Conquer. Thus on an 8 core machine, 7
cores are allocated to Cube & Conquer worker threads, which
work on 8 times more, thus 56 active nodes. On our 12 core
machine with hyper threading, thus 24 virtual cores, the solver
will use at most 184 = 8 ∗ 23 active nodes in parallel.

LICENSE

For the competition version of our solvers we use a new
license scheme. It only allows the use of the software for
academic and research purposes and further prohibits the use
of the software in other competitions or similar events without
explicit written permission. Please refer to the actual license,
which comes with the source code, for more details.
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INTRODUCTION

The march br SAT solver is the latest version of the
successful march solvers: march hi, march ks, march dl,
march eq, and march rw won several awards at the SAT
2004, 2005, 2007, 2009, and 2011 competitions. For the
detailed descriptions, we refer to [1], [2], [3], [4]. Like its
predecessors, march br integrates equivalence reasoning into a
DPLL architecture and uses look-ahead heuristics to determine
the branch variable in all nodes of the DPLL search-tree. The
main change in march br is the possibility to emit a refutation.

PROOF LOGGING

Unsatisfiability proofs of march br are in the branch reverse
unit propagation format (BRUP). The BRUP format was
developed to express refutations of lookahead SAT solvers
efficiently. The format contains three types of lines: 1) new
branch decisions, 2) locally learned unit clauses (mostly failed
literals) and binary clauses (mostly hyper binary resolvents),
and 3) termination of a branch. A new branch is a line with a
b prefix followed by the branch literal. Locally learned clauses
are expressed in the DIMACS format (a list of integers ending
with a zero). A terminated branch is expressed as a line with
only a zero. Proofs in the BRUP format can easily be converted
into DRUP (delete reverse unit propagation) proofs.

PARTIAL LOOKAHEAD

The most important aspect of march br is the
PARTIALLOOKAHEAD procedure. The pseudo-code of
this procedure is shown in Algorithm 1.

Algorithm 1 PARTIALLOOKAHEAD( )
1: Let F ′ and F ′′ be two copies of F
2: for each variable xi in P do
3: F ′ := ITERATIVEUNITPROPAGATION(F ∪ {xi})
4: F ′′ := ITERATIVEUNITPROPAGATION(F ∪ {¬xi})
5: if empty clause ∈ F ′ and empty clause ∈ F ′′ then
6: return “unsatisfiable”
7: else if empty clause ∈ F ′ then
8: F := F ′′

9: else if empty clause ∈ F ′′ then
10: F := F ′

11: else
12: H(xi) = 1024 × DIFF(F , F ′) × DIFF(F , F ′′) + DIFF(F , F ′) +

DIFF(F , F ′′)
13: end if
14: end for
15: return xi with greatest H(xi) to branch on

ADDITIONAL FEATURES

• Prohibit equivalent variables from both occurring in P:
Equivalent variables will have the same DIFF, so only
one of them is required in P .

• Timestamps: A timestamp structure in the lookahead
phase makes it possible to perform PARTIALLOOKA-
HEAD without backtracking.

• Cache optimisations: Two alternative data-structures are
used for storing the binary and ternary clauses. Both are
designed to decrease the number of cache misses in the
PARTIALLOOKAHEAD procedure.

• Tree-based lookahead: Before the actual lookahead oper-
ations are performed, various implication trees are built
of the binary clauses of which both literals occur in P .
These implications trees are used to decrease the number
of unit propagations.

• Necessary assignments: If both xi → xj and ¬xi → xj
are detected during the lookahead on xi and ¬xi, xj is
assigned to true because it is a necessary assignment.

• Resolvents: Several binary resolvents are added during
the solving phase. Those resolvents that are added have
the property that they are easily detected during the
lookahead phase and that they could increase the number
of detected failed literals.

• Restructuring: Before calling procedure PARTIAL-
LOOKAHEAD, all satisfied ternary clauses of the prior
node are removed from the active data-structure to speed-
up the lookahead.
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Abstract—In general, SAT solvers based on a DPLL procedure
are a complete, systematic depth-first search engine, and superior
on application and crafted instances, while SAT solvers based on
stochastic local search (SLS) process are an incomplete search
engine, and superior on satisfiable random instances. Here we
combines complete and incomplete search engines to build a few
new SAT solvers. These new solvers are christened clasp vflip,
march vflip and interact open. This paper introduces briefly
them.

I. INTRODUCTION

Modern SAT solvers can be divided into two categories:
complete and incomplete. Complete solvers can solve not only
unsatisfiable problems, but also satisfiable problems, whereas
incomplete solvers can solve only satisfiable problems, but
not solve any unsatisfiable problem. Complete solvers can be
divided further into Conflict Driven Clause Learning (CDCL)
and look-ahead. Among the most typical CDCL solvers are
Glucose [1], Lingeling [2], CryptoMiniSat [3] and clasp [4]
etc. Except for clasp, these solvers are good at application
instances. Clasp is very strong on combinatorial instances.
Among the most typical look-ahead solvers are kcnfs, OK-
solver and March [5] etc. This type of solvers is strong on
unsatisfiable random and combinatorial instances. In general,
most of incomplete solvers are based on stochastic local
search (SLS) process. Among the most typical SLS solvers
are sparrow [6], CCASat [7] and Sattime [8] etc. This type of
solvers is strong on satisfiable random instances. We make a
better use of the feature of various solvers to develop a number
of new solvers. This paper introduces briefly the new solvers.

II. SYSTEM DESCRIPTION OF SAT SOLVERS

A. clasp vflip

clasp vflip is a hybrid solver combining clasp and vflip-
num [9]. This solver is submitted to the sequential, hard-
combinatorial SAT track and SAT+UNSAT track of the SAT
Competition 2013. vflipnum is a new SLS solver that is
built on top of Sparrow [6]. Some combinatorial instances
are suited for a SLS solver. So we use vflipnum to solve a
part of combinatorial satisfiable instances. The characteristic
of clasp vflip is that at the first stage clasp and vflipnum
run specified search steps in turn. At the second stage, we
invoke mainly clasp, but run vflipnum using very short time
after a longer time interval. In clasp vflip, the clasp version
used here is 2.0-R4092. But we made a slight modification

on clasp as follows. The value of parameter rlimit.maxConf
used in clasp vflip is half that of the original clasp. The other
parameters are the same as clasp.

B. march vflip

march vflip is a hybrid solver combining March [5] and
vflipnum [9]. March is good at unsatisfiable random instances.
So we hope that March is dedicated to solving unsatisfiable
random instances. However, the problem is how to predict
whether an instance is unsatisfiable random instances or not in
advance. To do this, march vflip is to determine the property
of an instance by running March a few steps and computing
the search depth in it. If the search depth in March is less
than 18, we continue to run March until a solution is found.
Otherwise, we switch to vflipnum and let vflipnum solve that
instance. This solver is submitted to the sequential, random
SAT+UNSAT track of the SAT Competition 2013.

C. interact open

interact open is a sequential interacting solver that inte-
grates many solving engines. It inherits many properties of
interactSAT [10] that participated in SAT Challenge 2012. It
is built on top of an interacting framework. The interacting
framework used here is similar to that used in interactSAT,
which may be described briefly as follows.

(1) Run simultaneously m solving engines. Each solving
engine runs at most n conflicts to solve the instance at
a time. In general, the value of n is not necessarily fixed,
but in most cases initially n = 10000.

(2) Pass the intermediate solution of the i-th engine to the
k-th (k = (i+1) mod m) engine (i.e., the next engine),
where 1 ≤ i ≤ m.

(3) If a solution has been found, the solving process termi-
nates.

(4) Modify the maximum number n of conflicts for a
solving engine to run. If a solving engine is better than
the other solving engines, the corresponding n increases.
Otherwise, the corresponding n decreases. Repeat steps
(1)–(4).

In total, we here use the follow 6 solving engines: Crypto-
MiniSat [3], Lingeling [2], clasp [4], glue bit, March and
vflipnum. glue bit is a solver we developed recently, which
is built on top of Glucose, and use the two new policies: a
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bit-encoding phase selection policy [11] and a decision-depth-
densitive restart policy [12]. In the real interacting process, not
all the 6 solving engines run always. Some solving engines can
be regarded as a preprocessor, for example, CryptoMiniSat,
March and vflipnum etc. These preprocessors play the role of
a filter. That is, they solve only the instances suited for them,
and give up the instances not suited for them. At the interacting
phase, We have two interacting modes. The first mode uses
3 solving engines: Lingeling and two variants of glue bit.
This mode is used mainly to solve application instances. The
second mode uses 2 solving engines: clasp and glue bit. It is
used mainly to solve combinatorial instances. Using a filtering
technique, we let March and vflipnum solve random instances.
This solver is submitted to open track of the SAT Competition
2013.

III. CONCLUSION

Here we presented three solvers, each containing an incom-
plete SLS engine, although they all are a complete, systematic
search engine. Combining various solving engines is only our
first attempt. Without any portfolio technique, how to combine
a number of the solving engines that are good at a type
of instances into a solver that are good at all the types of
instances will be a challenging problem, since there are too
many combination ways.
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Abstract—MINIGOLF is a small modification of Minisat to
learn all unit clauses per conflict – if the first UIP clause would
be is a unit clause.

I. INTRODUCTION

The SAT solver MINIGOLF is a modification of the CDCL
SAT solver MINISAT 2.2 [1] (SAT Competition Patch), with
a slightly changed clause learning procedure.

II. MAIN TECHNIQUES

The main difference in MINIGOLF is a modification in
clause learning, called all-units-learning: if a unit clause is
learned, the procedure tests whether by continuing resolution
more unit clauses can be learned as well. The process is
stopped as soon as a larger (intermediate) clause would be
learned. If the initially learned clause is not a unit, the solver
proceeds with its usual minimization routine.

The modification is motivated by the preprocessing tech-
nique probing [2], where usually a decision l is made, and in
case of a conflict the unit clause l (called last UIP) is added
to the formula. However, learning a first UIP clause [3] might
be more beneficial. It is interesting to see that there exists
cases where neither the last UIP implies the first UIP and vice
versa (by unit propagation). Therefore, adding both clauses is
a first extension. Since there exists the chance of intermediate
UIPs as well, all UIPs on level 1 should be learned during
preprocessing.

In the search of a SAT solver, unit clauses are also learned
at other levels. Still, it could be the case that there is a chain
of implications, which led to this learned clause, and which
contains further UIPs that correspond to a learned unit clause.
As it might be beneficial for preprocessing, these additional
unit clauses could also be helpful for the search process.
Therefore, we collect all unit learned clauses per conflict.

III. MAIN PARAMETERS

The learning modification all-units-learning is always active.

IV. SPECIAL ALGORITHMS, DATA STRUCTURES, AND
OTHER FEATURES

To find learned unit clauses, a flag is added which indicates
whether the current learned clause, or any previously learned
clause generated from the current conflict is still a unit clause.
The abort criterion of the clause resolution method in the
analyze function is modified, so that it continues learning until
a non-unit clause is learned, or until all literals of the current
level are resolved.

V. IMPLEMENTATION DETAILS

The modifications are implemented directly into the source
code of MINISAT – however, to meet the criterion to enter the
hack track, tricks of the C++language have been used to reach
a diff size of 1000 non-space symbols.

VI. SAT COMPETITION 2013 SPECIFICS

This solver was submitted to the Minisat Hack Track only.
The version prefetch prefetches the watch list of a literal that
has been enqueued to the propagation queue in this moment.
All other details of this version are unchanged.

VII. AVAILABILITY

MINIGOLF will be provided at tools.computational-logic.
org as source code under the GPL licence.
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Abstract—This document is a description of the sat solver — 

minipure of SAT competition 2013. The implementation 

embedded the pure literal detection in MINISAT which is a well 

known conflict based solver.  

I. INSTRUCTION OF MINIPURE 

This is first version of MINIPURE. If a literal b is not in 
CNF formula   while b' is then b is called pure literal, and the 
clause contain b' can be eliminated for we can set b=False. 
Iteratively, we can eliminate all the pure literal thus reduce the 
number of clauses and variable of  . But Chaff [1] and other 
kinds of conflict based solver sacrifice this heuristic for the       
efficiency of unit propagation. MINIPURE is the 
implementation of combining pure literal implication and unit 
propagation together to get better performance. 

The solver is choose to embedded this idea in is MINISAT 
[2] for its simplicity and one of most well known conflict based 
solvers. The version of the MINISAT embedded is 2.2.0 . The 
implementation detail would be introduced later. 

II. MAIN TECHNIQUES 

The algorithms paradigm based on is CDCL.The further 

solving techniques used are: preprocessing, restart, phase 

saving , learning by conflict clauses. The above are common 

technique used in CDCL. Here are special techniques for 

MINIPURE: pure literal detection and pure literal learning (in 

part 4). 

III. MAIN PARAMETERS 

  Beside the parameters used by MINISAT [2],there three 

parameters used for MINIPURE to tune. 

1) additionan three paramters: 

   A .  freq_pure : this paramters decide after how many 

retarts we can do pure literal detection again after restart 

level of stop_pure. 

B. stop_pure: when the restart level is is bigger than the 

stop_pure stop the pure literal detection and learning.  

C. slowdown_pure: after which restart level should 

minipure slow down the pure literal detection. This 

number should be smaller than the stop_pure. 

For example, if slowdown_pure=2, stop_pure=3 and 

freq_pure=5, then at restart level 0~2 MINIPURE would do 

pure literal detection and learning and level 3 it would slow 

down the pure literal detection and after level 3 only level 

8,13,...,3+5n would do pure literal detection again.  

 

 

2) The paramters MINIPURE use for sat2013 competition is 

slowdown=0, stop_pure=1 and freq_pure=2. These three 

parameters are choose by the experiment result(t uned by 

hand) ,they have good performance on average. But for 

some special case these paramters should be changed. 

Other parameters are the same as the default value of 

MINISAT.  

                           

IV. SPECIAL ALGORITHMS, DATASTRUCTURES, AND OTHER 

FETURES 

The procedure and data structure explained below assumes the 

reader knowing about algorithms of Chaff and implementation 

of MINISAT. For more detail about the complete algorithm 

about Chaff and MINISAT please refer to [1] and [2].  

1) Data Structure and initialize : 

A. After parsing and preprocessing, MINIPURE of the   

original clauses. For each clauses, we assign an varible 

representing the clauses,e.g.  =(a+b+..)(a'+b+..).., 

then    represent (a+b+..),   represent(a+b+..).    is 

true iff at least one of literal is true, unassign iff    is 

not true and the literals in it are not all false.    is false 

means conflict happens need backtrack. Call them 

clause-variable. 

  Like procedure of assigning variable, if    is true push it 

into the vector clause_trail and for each decision level 

remember the size of clause_trail vector in another vector 

clause_trail_lim. 

B. For each variable of positive and negative phase 

contruct a new vector that contains the 

clause-variable in positive phase if the the literal is 

contains in that clause,e.g.               

      =(a+b')(a'+b')(a+c)(a'+d).. then  

 And there is a vector called lit_cla collect pointer to these 

kinds of vector storing the clause-variable. 

C. For each literal MINIPURE, add one watch for it (in 

Chaff and MINISAT for each clause add two watches 

for unit propagation) ,the adding literal is 

clause-variable literal which is the first place of the 

vector descirbed in B. for literal a,     is added , for 

literal a',    is added. 

Then watch(c1) returns a, b' while watch(c2) returns a' in the 

example of B. Here MINIPURE only do one clause-variable 

literal watch  for clause-variable literal only has two state true 

a :  

      
 

a':  
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or unassigned. If c1 is assigned true check watch(c1) would 

get a, b' then check lit_cla[a] if c1=c3=true and a is unassigned 

implied by pure literal a' is true. 

2) Algorithms: 

A. Pure literal detection:                                 

  During the process of unit propagation, assume now 

propagating c' , after c' is propagated the original of MINISAT 

is to propagate the next literal in the unchecked queue if there 

is no conflict. Here MINIPURE change to see which 

clause-variable literal is assigned to be true after c' is true 

according to the vector lit_cla[c']. 

  For those clause-variable in lit_cla[c'] check whether it is 

unassigned or not, if unassigned set it to be true and push it 

into clause_trail , e.g. c': c1,c2,c3 and c1 is unassigned push it 

into clause_trail then check watch(c1) .Assume the 

propagation order is a,b,c' ,and watch(c1)=c',b,d only d is 

unassigned now check lit_cla[d]=(c1,c4,c5). For the clause- 

variable literals c4 and c5 if both are true , then by pure literal 

implication d' should be put into the uncheck queue, else 

without losing generality assume that c4 is unassigned, 

MINIPURE remove d from watch(c1) and push d into    

watch(c4). 

 

  Note that the implication of pure literal should only be done 

when it's unassigned otherwise some SAT problem would be 

UNSAT. If  =(a+b')(a'+b) , then in decision level 1 push a in 

uncheck queue. a->c1->a', here c1->a' is implied by pure 

literal detection without checking whether variable is assigned 

or not which turns a SAT problem into UNSAT. 

 

B. Pure literal clause learninig 

  When the conflict happens ,we need to backtrack and add a 

learning clause. In implication graph the clause-variable is 

implied to be true when one of its literal in their corresponding 

clause is true. This is a little different from the traditional unit 

propagation. However, these wouldn't affect the construction 

of implication just replaced the clause-variable literal with the 

original literal which implied it to be true. Literal b' is implied 

by c1,c2,c3 where b is contained by all of corresponding 

clauses c1,c2,c3 while c1 is put to clause_trail by literal x set 

true ,and c2 by y,c3 by z ,then fig.1 shows how it's reduced. 

 

   After construction the implication graph, MINIPURE can 

know which level to backtrack to. The remain problem is to 

unassign the clause-variable according to clause_trail_lim.  

 

C. Detect Pure literal lazily  

    Since after restart again and again the variable order 

would change greatly, and MINIPURE wouldn't do pure literal 

detection all the time for the algorithm above should be done 

once every time a literal propagating. As a result, after restart 

for certain times(defined by user), MINIPURE would stop the 

pure literal detection. Also, restart the pure literal detection 

from time to time(defined by user) leaving the learnt clauses in 

the database to help us implied the pure literal while the pure 

literal detection mode is closed. 

 

 

 

 

 

 

 

 
Fig 1  

 

V. IMPLEMENTATION DETAILS 

1) The solver implement in language of C++. 

2) The solver is modified from MINISAT 2.2.0 . 

VI. SAT COMPETITION 2013 SPECIFICS 

1) The solver participate in SAT2013 competition of track 

1,3,4,6,7,9,13, this solver is not joining MINISAT hack track 

for the difference is more than 1000 non-space characters. 

2) The compiler is GCC4.5.2 with O3 optimization flag , 

32bit. 

3) Command line option: ./minipure <cnf file> 

-freq_pure=2 -stop_pure=0 -slowdown_pure=1 , and for other 

parameters the values are as default of MINISAT. Note that 

"=" must be placed. 

VII. AVAILABILITY 

   The code of MINIPURE is open and free for any who use 

for research and educational purpose. The license and code 

(including the license of  MINISAT2.2.0) is available in [3]. 
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Universidad Carlos III de Madrid
28911 Leganés (Madrid), Spain

Email: dborrajo@ia.uc3m.es

Carlos Linares López
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Abstract—In this document we describe the technique used to
configure the sequential portfolios submitted to the 2013 SAT
Competition. We have submitted eight portfolios to the core
solvers and sequential (SAT and SAT+UNSAT) tracks and one to
the open track accounting for nine different portfolios in total.

I. MIPSAT

MIPSAT portfolios have been generated using Mixed-
Integer Programming (MIP), which computes the portfolio
with the best achievable performance with respect to a se-
lection of training SAT problem instances [1]. The resulting
portfolio is a linear combination of candidate SAT solvers
defined as a sorted set of pairs <solver, time>. Originally,
our MIP model was applied to the generation of sequential
portfolios for solving automated planning tasks. It considered
an objective function that maximizes a weighted sum of
different parameters including: memory usage, overall running
time and coverage. In MIPSAT we only consider running time
and coverage.

Given that we consider two different criteria (time and
coverage), it could be viewed and solved as a multi-objective
maximization problem. Instead, we solve two MIP tasks in
sequence while preserving the cost of the objective function
from the solution of the first MIP. Specifically, we first run the
MIP task to optimize only coverage —i. e., total number of
solved instances. If a solution exists, then a second execution
of the MIP model is performed to find the combination of
candidate solvers that achieves the same coverage (denoted
as C) while minimizing the overall running time. To enforce
a solution with the same coverage an additional constraint is
added:

∑n
i=0 coveragei ≥ C−ε, where ε is just any small real

value used to avoid floating-point errors. Clearly, a solution
is guaranteed to exist here, since a first solution was already
found in the previous step. Pseudocode 1 shows the steps
followed to generate all submitted portfolios where coverage
was maximized first, and then running time was minimized
among the combinations that achieved the optimal coverage.
In our experiments, ε = 0.001.

The MIP task used in this work does not specify any
particular order to execute the solvers. It only assigns an
execution time to each solver, which is either zero or a positive
amount of time. The definition of the execution sequence is
arbitrary and it is based just on the order in which the solvers
were initially specified.

As a matter of fact, it was empirically found that the MIP
solver usually distributes all the available time among the
candidate solvers selected to be part of the portfolio. Running

Algorithm 1 Build a portfolio optimizing coverage and time
set weights to optimize only coverage
portfolio1 := solve the MIP task
C := the resulting value of the objective function
if a solution exists then

add constraint
∑n

i=0 coveragei ≥ C − 0.001
set weights to optimize only overall running time
portfolio2 := solve the MIP task
return portfolio2

else
exit with no solution

end if

the procedure depicted in Pseudocode 1, the solution of the
second MIP step could result in a sum of the times assigned
to each SAT solver that is less than the available time in the
competition. Thus, it is possible to have some slack time which
could be distributed uniformly among the selected solvers.
Besides, we can use this slack time to scripting tasks like
checking if the current solver has solved the current problem
or printing the solution found by the portfolio in the standard
output.

II. CORE SOLVERS AND SEQUENTIAL TRACKS

The rules for core solvers and sequential tracks of the 2013
SAT Competition1 only allow participants to use solvers that
employ at most two different SAT solving engines for all runs
and at any time in one track. To meet this requirement, we
have added an extra constraint to the original MIP model so
that the configuration of the generated portfolios are composed
of at most two candidate solvers.

The sequential pure UNSAT tracks of the 2013 SAT
Competition for core solvers require certification. Thus, the
participant solvers are required to emit an unsatisfiability
proof. However, we used solvers from the preceding SAT
Competition2, where this certification was not required. Hence,
we have only focused on the SAT and SAT+UNSAT tracks.

Input data was generated for the MIP model to compute
the configuration of each submitted portfolio. This data has
been generated using the results of all single engine solvers
from the preceding SAT Competition. For instance, the input
data for the Application SAT track has been generated using
only the SAT solutions of all the Application track problems

1http://www.satcompetition.org/2013/rules.shtml
2http://www.satcompetition.org/2011
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TABLE I. SEQUENTIAL PORTFOLIOS SUBMITTED TO CORE SOLVERS AND SEQUENTIAL TRACKS

Portfolio Solver Allotted time Computation time - step 1 Computation time - step 2 Performance
Precosat 236 3616MIPSAT APPLICATION SAT 1 CryptoMiniSat 2.9.6 1379 394.15 3446.45 104/107

Precosat 576 3616MIPSAT APPLICATION SAT 2 CryptoMiniSat 2.9.6 1379 394.15 3446.54 104/107

CryptoMiniSat 2.9.6 1125MIPSAT APPLICATION SAT+UNSAT Glucose 2 3870 29851.91 63941.28 223/227

Sattime 2011 3832MIPSAT HARD-COMBINATORIAL SAT Sol 2011 1163 12.85 229.01 125/140

Sattime+ 2011 982MIPSAT HARD-COMBINATORIAL SAT+UNSAT 1 Clasp 2.0-R4092 4013 22056.04 1295.57 181/209

Sattime+ 2011 982MIPSAT HARD-COMBINATORIAL SAT+UNSAT 2 Clasp 2.1.1 4013 22056.04 1295.57 181/209

Sparrow 2011 ubcsat 1.2 4160MIPSAT RANDOM SAT EagleUP 1.565.350 834 21.81 104.97 365/366

Sparrow 2011 ubcsat 1.2 2505MIPSAT RANDOM SAT+UNSAT March rw 2011 2490 47.05 680.28 473/475

from the 2011 SAT Competition. We have not run any solver
to generate the input data.

We have had some problems with the source code of
CryptoMiniSat Strange Night 2 st version. Thus, we have used
the newest version of CryptoMiniSat in those cases where
the MIP task selected the Strange Night 2 st version as a
component solver. Additionally, we have submitted an extra
portfolio with the newest version of the selected solvers. These
are shown in Table I with “2” appended at the end.

As we said before, the MIP task does not specify the
execution sequence of the generated portfolios. However, since
ties will be broken by CPU time in sequential tracks of the
2013 SAT Competition, we have sorted the execution sequence
of the submitted portfolios in increasing order of the average
CPU time.

Table I shows the configuration of submitted portfolios.
The columns “Computation time” show the time required
(in seconds) to solve the MIP task in each step: first, when
maximizing coverage and then, when minimizing the overall
running time. The last column shows the coverage of each
portfolio in the training set and the best coverage achievable
with a linear combination of solvers (without the core solvers
constraint) for the same set of training instances.

III. OPEN TRACK

As mentioned above, our MIP model serves to derive
sequential portfolios [1]. However, there are eight cores (of
a cluster node) and 5000 seconds wall-clock time available
for each participant in the open track. In spite of that, we have
used the same technique to configure the submitted portfolios.

As in the previous case, input data for the MIP model
has been generated using data from the preceding SAT Com-
petition. In this track, all instances (application, crafted and
random) and all participant solvers (including parallel solvers
and portfolios in the set of candidate solvers) were considered.

The execution sequence of portfolios generated by the MIP
task is arbitrary. However, ties are broken in ascending order
of the average wall-clock time in the open track of the 2013
SAT Competition.

Table II shows the configuration of the submitted portfolio
to the open track. The time required to solve the MIP tasks

was 1295.7 seconds in the first step and 1809.1 seconds in the
second one.

TABLE II. SEQUENTIAL PORTFOLIO SUBMITTED TO THE OPEN TRACK.

Solver Allotted time
Sattime+ 2011 7
Sattime 2011 10
Precosat 236 22
Adaptg2wsat2011 37
Sol 2011 49
MPhaseSAT64 61
MPhaseSAT 66
Sparrow 2011 ubcsat 1.2 645
CryptoMiniSat 2.9.6 659
Ppfolio par 3399
Total Time 4955

As in the other track, the latest version of CryptoMiniSat
was used instead of the version submitted to the previous
competition.

IV. SAT COMPETITION 2013 SPECIFICS

We have used the optimization flags, command-line options
and other parameters provided by the authors of the SAT
solvers shown in Tables I and II. We also provide the random
seed to be used: 12061986. To compile and run each submitted
portfolio just run build.sh and /binary/solve <instance file
name> -tmp <temporary directory name>.
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Abstract—This document describes the local search SAT solver
Ncca+ based on the CCASat solver and Novelty+ like heuristic.

I. MAJOR SOLVING TECHNIQUES

Ncca+ is based on CCASat which is described in [1].
CCASat is the winner of last SAT Challenge 20121 on the
random SAT track. The evolutions introduced by Ncca+ are:

1) For 3-SAT random instances: when selecting a
CCD (Configuration Changed Decreasing) variable [2],
CCASat breaks ties in the favor of the oldest variable
in the case of equal score of the candidate variables.
In Ncca+, the breaking ties is done according to the
number of occurrences of the CCD variables on the
falsified clauses.

2) For k-SAT (k > 3) random instances: the number of
occurrences of the variables on the falsified clauses is
also considered when selecting a variable among the
CCD and SD (Significant Decreasing) variables [2]. In
this case, Ncca+ works as follows:

• If the set of CCD variables is not empty, select
the one with the highest score, breaking ties in the
favor of the oldest one then in the favor of the one
occurring the most in the falsified clauses.

• If the SD variable set is not empty, then select
a variable which has its configuration changed,
breaking ties in the favor of the oldest one then
in the favor of the one occurring the most in the
falsified clauses.

• In other cases, update clause weights and with prob-
ability wp do as Novelty(p) and with probability
1 − wp choose a variable in a randomly selected
variable as done in CCASat and by considering the
number of occurrences of a variable in falsified
clauses. The values of p and wp are adaptively
adjusted during the search [3], [4].

The rest of the solver is similar to CCASat regarding to
the smoothing scheme of the weight clauses.

1http://baldur.iti.kit.edu/SAT-Challenge-2012

II. PARAMETER DESCRIPTION

The parameters of Ncca+ are similar to those of CCASat.
The adaptive noise settings (p and wp values) are based on
the ones used in [5] with φ = 5 and θ = 2.

III. SPECIAL ALGORITHMS, DATA STRUCTURES AND
FEATURES

The code of Ncca+ is based on CCASat code2. There is no
additional data structure.

IV. IMPLEMENTATION DETAIL

1) The programming language used is C++
2) The solver is based on CCASat with the additional

features explained above.

V. SAT CHALLENGE 2012 SPECIFICS

1) The solver is submitted in ”Core Solvers, Sequential,
Random SAT” track.

2) The used compiler is g++
3) The optimization and compilation flags used are ”-O3

-static”.

VI. AVAILABILITY

Our solver will be publicly available after the SAT compe-
tition 2013.
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Abstract—This document describes the SAT solver Nigma,
which is a MiniSat-based solver with a partial backtracking
strategy.

I. INTRODUCTION

An important aspect of backtracking is to decide which
level the solver backtracks to after a conflict is identified and
analyzed at the current level dlcurr. Currently, the majority of
solvers choose to backtrack to the assertion level dlasrt, which
is the second highest decision level among the literals in the
learnt clause. (We do not consider the case when the solver
learns a unit clause.) As observed in [1], if restart happens
frequently, similar assignments are made after each restart. We
observed the same phenomenon in backtracking, especially
for the solvers using VSIDS [2] and phase saving [3]. Due
to the fact that the activities of most variables change little
after one backtracking, similar decisions will be made and the
corresponding unit propagation will be repeated.

In our SAT solver Nigma, we implemented a partial back-
tracking strategy that allows the solver to unwind to a decision
level dlback between dlasrt and dlcurr so that the propagation
effort made between dlasrt and dlback will be partially saved.
(Greedily, we always choose dlback = dlcurr − 1, but in
fact any dlback : dlasrt ≤ dlback < dlcurr is fine.) After
backtracking to dlback, the conflicting variable is still assigned
at dlasrt, and the variable assignments between dlback and
dlasrt are amended for the sake of consistency.

II. MAIN TECHNIQUES

We highlight the following properties of Nigma’s partial
backtracking strategy.

1) Variables can be assigned at any existing levels. The
conflicting variable is assigned at dlasrt, not at the new
current level dlback. As a result, new implications be-
tween dlback and dlasrt may be induced. Nigma allows
the variables to be assigned at any existing levels so that
these new implications can be propagated correctly. This
is a major difference between Nigma and other solvers.

2) New conflicts need to be resolved. The amendment for
assignments between dlback and dlasrt may result in
new conflicts. There are two kinds of conflicts: virtual
conflicts and actual conflicts. Virtual conflicts means that
the two most recently falsified literals in the conflicting
clause were not assigned at the same level. Actual
conflicts are just the opposite. Virtual conflicts can be
simply resolved by further backtracking without learning

any new clause and by generating new implications. In
the worst case, a sequence of continued backtracking
leads the solver back to dlasrt, just as in the classic
strategy. Actual conflicts are resolved by standard con-
flict resolving algorithm.

3) Decision levels of some assigned variables may be mod-
ified. For example, consider a clause x1 ∨ x2. Initially,
x1 is assigned to TRUE at level 18. Suppose at level
20, a conflict is identified and we have dlasrt = 5
and dlback = 19. By (1), assignment amendment may
induce new implications between dlasrt and dlback.
Further suppose the solver assigns x2 to FALSE at level
15. Consequently, the decision level of x1 should be
changed to 15. Nigma backtracks to level 15 to complete
such a modification.

4) A variant algorithm for using watched literals is imple-
mented. During unit propagation, if a clause becomes
unit, its watched literals are then necessarily assigned
at the highest decision level among all the literals. This
condition may be violated during a partial backtracking.
Nigma solves this problem by choosing literals with
highest levels to watch.

5) A more aggressive restart strategy is adopted. Partial
backtracking essentially reduces the restart frequency.
For example, if dlasrt is far from dlcurr (e.g., dlasrt = 5
and dlcurr = 100), the classic backtracking to dlasrt is
almost equivalent to a restart. In contrast, Nigma only
backtracks to somewhere in between, and hence it is
more likely being trapped in a local search. So we adopt
a more aggressive restart strategy to compensate the
reduced restart frequency.

III. MAIN PARAMETERS

When a conflict happens, Nigma initiates a partial back-
tracking only if the distance between dlcurr and dlasrt is
longer than 10; otherwise it falls back to the classic backtrack-
ing. This is because that the effort to save propagation work
is worthwhile only when the solver is going to backtrack a
long distance. Currently, we are investigating if the number
of assigned variables between dlcurr and dlasrt is a better
triggering condition.

IV. SPECIAL ALGORITHMS, DATA STRUCTURES, AND
OTHER FEATURES

When a partial backtracking occurs, a special propagation
procedure will propagate the assignment of the conflicting
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variable. Different from the standard propagation, this pro-
cedure is able to propagate the assignments that are not at the
current level and deal with the issues mentioned in the Main
Techniques section.

Additional features in Nigma are LBD-based clause dele-
tion [4], dynamic restart [5], and a simple implementation of
SatElite-like preprocessing [6].

V. IMPLEMENTATION DETAILS

Besides the previously mentioned features, Nigma is a
reimplementation of MiniSat 2.2 in C++.

VI. SAT COMPETITION 2013 SPECIFICS

We submit two versions of Nigma, one with partial back-
tracking enabled and one without. Both versions are submitted
to the track for Core solvers, Sequential, Application SAT, the
track for Core solvers, Sequential, Application UNSAT and the
track for Core solvers, Sequential, Application SAT+UNSAT.
Both versions are compiled by GCC in 64-bit mode with -O3
flag.

VII. AVAILABILITY

Nigma is an open-source SAT solver under MIT li-
cence. The description and source code can be found at
http://verification.cs.iastate.edu/nigma.
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Abstract—The SAT solver PCASSO is a parallel SAT solver
based on partitioning the search space iteratively.

I. INTRODUCTION

PCASSO uses two main methods: creating partitions and
solving partitions. Partitions are created through partition
functions, where a partition function is a function φ such
that, given a formula F and a natural number n ∈ N+,
φ(F, n) := (F1, . . . , Fn), where F ≡ F1 ∨ . . . ∨ Fn and each
pair of partitions is disjoint: i 6= j ∈ [1, n], Fi ∧ Fj |= ⊥.
Without loss of generality we assume that partitions
F1, . . . , Fn are always of the form F ∧K1, . . . , F ∧Kn,
where K1, . . . ,Kn are sets of clauses, called partitioning
constraints. By iteratively applying the partition function to a
formula F , a partition tree is produced. Nodes in the partition
tree are tagged with their positions: the root node F is tagged
with the empty position ε; the i-th successor (from left to right)
of a node F p at position p is the node F pi (see Figure 1).
Please notice that, as positions are strings, the standard prefix
relation among strings (<) is defined for positions as well.

II. MAIN TECHNIQUES

The partition function used in PCASSO is tabu scatter-
ing, which is an extension of scattering [1]. The idea of
scattering is to define each partitioning constraint as con-
junctions of cubes [2], where a cube is a formula Q :=
{C1, . . . , Cn} such that |Ci| = 1, for each 1 ≤ i ≤ n.
Observe that the negation of a cube Q := {{l1}, . . . , {ln}}
is the clause {l1, . . . , ln}. More precisely, given a formula
F0 and an integer n, the n partitions F1, . . . , Fn are cre-
ated by using n − 1 cubes Q1, . . . , Qn−1 and applying
them according to the following schema: F1 := F0 ∧Q1;

Fm+1 := F0 ∧ (
m∧
i=1

Qi) ∧Qm+1(1 ≤ m < n− 1); and finally

Fn := F0 ∧
n−1∧
i=1

Qi. Tabu scattering adds the restriction

to scattering that a variable used in one cube must not be
used in the cubes for creating the remaining partitions. Using
tabu scattering, we diversify the search more. PCASSO uses
lookahead techniques [3] for choosing the literals (in cubes).
In particular it chooses variables with the maximum mixdiff
score [3]. The score mixdiff of a variable is the product of
the diff score of each polarity of the variable. We calculate
the diff score of the polarity of a variable by applying
lookahead, and use the following weighted sum: 0.3 times
the number of propagated literals plus 0.7 times the number
of newly created binary clauses. After choosing the variable

with the maximum mixdiff score, we choose the polarity of
the variable that has the lowest diff score for creating cubes.
We also use the following reasoning techniques: failed literals,
necessary assignments, pure literals, and add learned clauses to
the partition constraints. Techniques like constraint resolvent,
double lookahead, and adaptive pre-selection heuristics are
also used as proposed in the literature [3].

To describe the node-state of a node F p at a certain point
of execution we use a triple (F p, s, r) where s ∈ {>,⊥, ?}
(> indicates that an incarnation found a model for the node,
whereas ⊥ indicates that an incarnation proved unsatisfiability
of F p; finally, ? indicates that the node has not been solved
yet) and r ∈ {I,�} (indicating whether an incarnation is
running on F p or not, respectively). Given the notion of node-
state, PCASSO exploits the overlapped solving strategy if two
incarnations are allowed to run at the same time on nodes
F p, F q such that p ≤ q. In order to solve an unsatisfiable node
F p, either F p has to be directly solved by some incarnation
or each child node F pi has to be solved. There is no limit on
the solving time for each node.

Per variable, VSIDS activity and progress saving are shared
from parent to child nodes. When PCASSO starts solving, the
root node and the nodes at the partition tree level one start
at almost the same time. The nodes at partition tree level
greater than one are usually created after some time, so we
initialize their search process with the VSIDS and progress
saving information of their parent, because the child node
searches in the sub-search space of its parent and whatever is
learned by the parent search can help the solving child node
as well.

Learned clauses are shared between incarnations to intensify
the search. A learned clause is considered unsafe if it belongs
to partitioning constraints, or it is obtained by a resolution
derivation involving one or more unsafe clauses. A clause that
is not unsafe is called safe clause, and only safe clauses are
shared. A learned clause is shared in a sub-partition tree if
it is safe in that sub-partition tree. This information can be
calculated by tagging each clause with the position of the sub-
tree where the clause is valid (position-based tagging [4]).
We propose a dynamic learned clause sharing scheme, that
is based on LBD scores [5]. A learned clause is eligible for
sharing by an incarnation if the LBD score of this clause is
lower than a fraction δ of the global LBD average of the
incarnation. In PCASSO, we use δ = 0.5.

PCASSO uses different restart policy and different clause
cleaning policies for the nodes, depending whether the node
is root, leaf or middle (not root and not leaf).
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F, ?,I

F 2, ?,IF 1, ?,I F 3, ?,I

F 12, ?,IF 11, ?,I F 13, ?,I

Fig. 1. Visualization of a partition tree with clause sharing and overlapped solving: The dashed lines represent the possible communication when flag based
sharing is used, whereas the dotted and dashed lines together visualize the possible sharing with position based tagging.

PCASSO can have a scenario that there is only one unsolved
node at some partition level. We call this scenario the only
child scenario. Consider that if the only child scenario happens
at some level of the partition tree, then there are two cases:
i) the parent node is looking into the search space which
has been solved by one of its children already, ii) the parent
node is looking into the same search space where its unsolved
children are looking. In either case, we have the risk of doing
redundant work. We propose an approach to get out of this
scenario by reintroducing the solving limit in a node that has
only one unsolved child (AVOID). To be on safe side, we do
not apply this limit for the root node. The introduced limit
grows with the level of the node (level ∗ 4096 conflicts). Since
in the only child scenario all learned clauses can be shared
among the two participating nodes, we can also EXPLOIT this
situation, by enabling this sharing. In the extreme case, this
configuration is very similar to portfolio solvers, since then all
clauses can be shared without restrictions. When clauses are
tagged by position-based tagging [4], additional information
can be obtained by performing a conflict analysis on solved
unsatisfiable nodes. Consider a node (F p,⊥,�), and let {}q
be the empty clause derived by the incarnation that solved
F p. Then, from the main theorem in [4], we conclude that
{}q is the semantic consequence of the node of position q
in the partition tree. Observe that q is a prefix p: q ≤ p.
Consequently, not only the node at position p can be marked
as unsatisfiable, but also the node F q as well as all its child
nodes. As a result, more incarnations can be terminated and
start solving different partitions. We call this kind of technique
conflict driven node killing. A similar approach is reported
in [6].

III. MAIN PARAMETERS

The major parameters of the solver influence the number
of threads that should be used, the number of partitions that
should be created for each node, and how sharing should be
performed. For the competition, we use 8 threads, and produce
8 partitions. Furthermore, we share learned clauses according
to their LBD value. Finally, the treatment of the only-child
scenario can be influenced.

For each of these big parts of the solver, many small
parameters are provided, that control the special behavior of
the system. There are only minor magic constants that control
the run time of the look-ahead procedures during partitioning,
which are chosen according to the literature [3].

IV. SPECIAL ALGORITHMS, DATA STRUCTURES, AND
OTHER FEATURES

Each node in the partition tree is associated a pool of shared
clauses, where a pool is implemented as a vector of clauses.
This permits to decouple the life of a shared clause from
the life of the incarnation where the shared clause has been
learned. Instead of tagging each clause with a position, clauses
are tagged with integers representing a level in the partition
tree (root node has level zero). Each incarnation working over
a node F p can only access the pools placed at nodes of
positions q ≤ p. Concurrent access to pools is regulated by
standard POSIX Read-Write locks.

COPROCESSOR is used as preprocessor [7].

V. IMPLEMENTATION DETAILS

PCASSO is built on top of GLUCOSE 2.2.

VI. SAT COMPETITION 2013 SPECIFICS

PCASSO has been submitted to both the application and the
crafted parallel track.

VII. AVAILABILITY

The source code of PCASSO is available at tools.
computational-logic.org under the GPL license.
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Abstract—This paper provides a short system description of
our updated portfolio-based solver called PeneLoPe, based
on ManySat. Particularly, this solver focuses on collaboration
between threads, providing different policies for exporting and
importing learnt clauses between CDCL searches. Moreover,
different restart strategies are also available, together with a
deterministic mode.

I. OVERVIEW

PeneLoPe [2] is a portfolio parallel SAT solver that
uses the most effective techniques proposed in the sequential
framework: unit propagation, lazy data structures, activity-
based heuristics, progress saving for polarities, clause learning,
etc. As for most of existing solvers, a first preprocessing step
is achieved. For this step -which is typically sequential- we
have chosen to make use of SatElite [6].

In addition, PeneLoPe includes a recent technique for its
learnt clause database management. Roughly, this approach
follows this schema: each learnt clause c is periodically
evaluated with a so-called psm measure [3], which is equal
to the size of the set-theoretical intersection of the current
interpretation and c. Clauses that exhibit a low psm are
considered relevant. Indeed, the lower is a psm value, the more
likely the related clause is about to unit-propagate some literal,
or to be falsified. On the opposite, a clause with a large psm
value has a lot of chance to be satisfied by many literals,
making it irrelevant for the search in progress.

Thus, only clauses that exhibit a low psm are selected
and currently used by the solver, the other clauses being
frozen. When a clause is frozen, it is removed from the list
of the watched literals of the solver, in order to avoid the
computational over-cost of maintaining the data structure of
the solver for this useless clause. Nevertheless, a frozen clause
is not erased but it is kept in memory, since this clause may
be useful in the next future of the search. As the current
interpretation evolves, the set of learnt clauses actually used
by the solver evolves, too. In this respect, the psm value
is computed periodically, and sets of clauses are frozen or
unfrozen with respect to their freshly computed new value.

Let Pk be a sequence where P0 = 500 and Pi+1 =
Pi+500+100× i. A function ”updateDB” is called each time
the number of conflict reaches Pi conflicts (where i ∈ [0..∞[).
This function computes new psm values for every learnt
clauses (frozen or activated). A clause that has a psm value
less than a given limit l is activated in the next part of the
search. If its psm does not hold this condition, then it is frozen.

Moreover, a clause that is not activated after k (equal to 7 by
default) time steps is deleted. Similarly, a clause remaining
active more than k steps without participating to the search is
also permanently deleted (see [3] for more details).

Besides the psm technique, PeneLoPe also makes use of
the lbd value defined in [4]. lbd is used to estimate the quality
of a learnt clause. This new measure is based on the number
of different decision levels appearing in a learnt clause and is
computed when the clause is generated. Extensive experiments
demonstrates that clauses with small lbd values are used more
often than those with higher lbd ones. Note also that lbd
of clauses can be recomputed when they are used for unit
propagations, and updated if it becomes smaller. This update
process is important to get many good clauses.

Given these recently defined heuristic values, we present in
the next Section several strategies implemented in PeneLoPe.

II. DETAILLED FEATURES

PeneLoPe proposes a certain number of strategies regard-
ing importation and exportation of learnt clauses, restarts, and
the possibility of activating a deterministic mode.

Importing clause policy: When a clause is imported, we can
consider different cases, depending on the moment the clause
is attached for participating to the search.

• no-freeze: each imported clause is actually stored with the
current learnt database of the thread, and will be evaluated
(and possibly frozen) during the next call to updateDB

• freeze-all: each imported clause is frozen by default, and
is only used later by the solver if it is evaluated relevant
w.r.t. unfreezing conditions.

• freeze: each imported clause is evaluated as it would
have been if locally generated. If the clause is considered
relevant, it is added to the learnt clauses, otherwise it is
frozen

Exporting clause policy: Since PeneLoPe can freeze
clauses, each thread can import more clauses than it would
with a classical management of clauses, where all of them are
attached. Then, we propose different strategies, more or less
restrictive, to select which clauses have to be shared:

• unlimited: any generated clause is exported towards the
different threads.

• size limit: only clauses whose size is less than a given
value (8 in our experiments) are exported [8].

• lbd limit: a given clause c is exported to other threads if
its lbd value lbd(c) is less than a given limit value d (8
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by default). Let us also note that the lbd value can vary
over time, since it is computed with respect to the current
interpretation. Therefore, as soon as lbd(c) is less than d,
the clause is exported.

Restarts policy: Beside exchange policies, we define two
restart strategies.

• Luby: Let li be the ith term of the Luby serie. The ith

restart is achieved after li × α conflicts (α is set to 100
by default).

• LBD [4]: Let LBDg be the average value of the LBD of
each learnt clause since the beginning. Let LBD100 be
the same value computed only for the last 100 generated
learnt clause. With this policy, a restart is achieved as
soon as LBD100×α > LBDg (α is set to 0.7 by default).
In addition, the VSIDS score of variables that are unit-
propagated thank for a learnt clause whose lbd is equal
to 2 are increased, as detailled in [4].

Furthermore, we have implemented in PeneLoPe a deter-
ministic mode which ensures full reproducibility of the results
for both runtime and reported solutions (model or refutation
proof). Large experiments show that such mecanism does not
affect significantly the solving process of portfolio solvers
[7]. Quite obviously, this mode can also be unactivated in
PeneLoPe.

III. FINE TUNING PARAMETERS OF PENELOPE

PeneLoPe is designed to be fine-tuned in an easy way,
namely without having to modify its source code. To this
end, a configuration file (called configuration.ini, an
example is provided in Figure 1) is proposed to describe the
default behavior of each thread. This file actually contains
numerous parameters that can be modified by the user before
running the solver. For instance, besides export, import and
restart strategies, one can choose the number of threads that
the solver uses, the α factor if the Luby techniques is activated
for the restart strategy, etc. Each policy and/or value can
obviouly differ from one thread to the other, in order to ensure
diversification. In the next Section, we present the actual
configuration file submitted at the SAT challenge.

IV. UPDATE

A few changes were made compared to the previous version
[1]. Two new restart heuristics are available. The first is
the one proposed by Armin Biere in [5] and the second is
the geometric serie proposed in [9]. Moreover, the glucose
restart policy has been updated to match the one proposed in
Glucose2.1 [4].
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1 ncores = 8
2 d e t e r m i n i s t i c = f a l s e
3 ; t h i s i s t h e d e f a u l t b e h a v i o r o f each
4 ; t h r e a d , can be m o d i f i e d o r s p e c i f i e d
5 ; a f t e r each [ s o l v e r X ] i t em
6 [ d e f a u l t ]
7 ; i f s e t t o t r u e , t h e n psm i s used
8 usePsm = t r u e
9 ; a l l o w e d v a l u e s : avgLBD , lub y

10 r e s t a r t P o l i c y = avgLBD
11 ; a l l o w e d v a l u e s : lbd , u n l i m i t e d , s i z e
12 e x p o r t P o l i c y = l b d
13 ; a l l o w e d v a l u e s :
14 ; f r e e z e , no−f r e e z e , f r e e z e−a l l
15 i m p o r t P o l i c y = f r e e z e
16 ; number o f f r e e z e b e f o r e t h e c l a u s e
17 ; i s d e l e t e d
18 maxFreeze = 7
19 ; i n i t i a l # c o n f l i c t b e f o r e t h e f i r s t
20 ; updateDB
21 i n i t i a l N b C o n f l i c t B e f o r e R e d u c e = 500
22 ; i n c r e m e n t a l f a c t o r f o r updateDB
23 nbConf l ic tBeforeReduceIncrement = 100
24 ; maximum l b d v a l u e f o r exchanged c l a u s e s
25 maxLBDExchange = 8
26 [ s o l v e r 0 ]
27 i m p o r t P o l i c y = no−f r e e z e
28 [ s o l v e r 1 ]
29 i n i t i a l N b C o n f l i c t B e f o r e R e d u c e = 5000
30 nbConf l ic tBeforeReduceIncrement = 1000
31 [ s o l v e r 2 ]
32 maxFreeze = 8
33 ; s o l v e r 3 i s t h e d e f a u l t s o l v e r
34 [ s o l v e r 3 ]
35 [ s o l v e r 4 ]
36 r e s t a r t P o l i c y = l u by
37 lubyFactor = 100
38 [ s o l v e r 5 ]
39 e x p o r t P o l i c y = s i z e
40 [ s o l v e r 6 ]
41 maxFreeze = 4
42 [ s o l v e r 7 ]
43 i m p o r t P o l i c y = f r e e z e−a l l

Fig. 1. Configuration.ini file
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Abstract—This document describes the SAT solver PMCSAT,
a conflict-driven clause learning (CDCL) portfolio solver that
launches multiple instances of the same basic solver using differ-
ent heuristic strategies, for search-space exploiting and problem
analysis, which share information and cooperate towards the
solution of a given problem.

I. INTRODUCTION

PMCSAT is a portfolio-based multi-threaded, multi-core
SAT solver, built on top of MINISAT [1]. The general strategy
pursued in this solver is to launch multiple instances of the
same solver, with different parameter configurations, which
cooperate to a certain degree by sharing relevant information
when searching for a solution. This approach has the advan-
tage of minimizing the dependence of current SAT solvers
on specific parameter configurations chosen to regulate their
heuristic behavior, namely the decision process on the choice
of variables, on when and how to restart, on how to backtrack,
etc.

II. MAIN TECHNIQUES

The solver uses multiple threads (eight currently), which
explore the search space independently, following different
paths, due to the way each thread is configured.

In order to ensure that each thread follows divergent search
paths, we defined distinct priority assignment schemes, one for
each thread of PMCSAT. Note that the priority of a variable
will determine its relative assignment order.

Below are described the different priority schemes that were
used.

• Thread #0/#1 - All the variables have the same priority,
therefore this thread mimics the original VSIDS heuristic.

• Thread #2 - The first half of the variables read from the
file have higher priority than the second half.

• Thread #3 - The first half of the variables read from the
file have lower priority than the second half.

• Thread #4 - The priority is sequentially decreased as the
variables are read from the file.

• Thread #5 - The priority is increased according to its
number of occurences in the file.

• Thread #6 - The priority is decreased according to its
number of occurences in the file.

• Thread #7 - The priority is decreased according to
the number of variables that have the same number of
common variables.

Threads #0 and #1 use the same priority-scheme, however
they have different learnt clause deletion methods.

In [2] the authors show that using a more agressive clause
deletion strategy could lead to good results in a CDCL SAT
solver, as a result of the overhead reduced in propagation on
learnt clauses. Threfore, thread #1 uses a more agressive dele-
tion strategy, while all the other threads follow the MINISAT
deletion scheme.

Although each PMCSAT thread exploits independently the
search space, this is not just a purely competitive solver. All
the threads cooperate by sharing the learnt clauses resulting
from conflict analysis, leading to a larger pruning of the search
space.

To reduce the communication overhead introduced by clause
sharing, and its overall impact in performance, we designed
data structures that eliminate the need for read and write locks.
These structures are stored in shared memory, which is shared
among all threads.

Each thread owns a queue, where the clauses to be shared
are inserted. Associated to this queue is a pointer, which marks
the last inserted clause, manipulated by the source thread,
while every other targed thread owns a pointer that indicates
last read clause from the queue. This way, this data structure
eliminates the need for a locking mechanism.

A more detailed explanation of the techniques used in this
solver can be found in [3].

III. MAIN PARAMETERS

The internal parameters of PMCSAT are the same as in
MINISAT, with the addition of the following:

1) The learnt clauses size condition to be exported. For the
SAT competition the clause size limit was set to 8, i. e.,
only learnt clauses with less than 8 literals are exported
and shared with other threads.

2) The threshold for the thread’s learnt clause database to
be reduced. The initial condition defined for thread #1
is 4000 learnt clauses, with a increment value of 300,
as in GLUCOSE 2.1.

IV. IMPLEMENTATION DETAILS

1) The programming language used is C++, using pthread
for parallel computing.

2) The solver was implemented on top of MINISAT V2.2.0.

V. SAT COMPETITION 2013 SPECIFICS

1) The solver was submitted to all Parallel Tracks: Appli-
cation SAT+UNSAT, Hard-Combinatorial SAT+UNSAT,
Random SAT and Open Track.
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2) The used compiler is g++.
3) The optimization flag used is ”-O3”. The compilation

options are the same as the used existing solver.
4) 64-bit binary.
5) The only command-line parameter is the input file

VI. AVAILABILITY

More information about the PMCSAT solver, including its
source code, can be found on the ALGOS research group
publicily available website:

http://algos.inesc-id.pt/algos/software.php
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Abstract—We describe some details about the SLS solver
probSAT, a simple and elegant SLS solver based on probabil-
ity distributions, a heuristic first presented in the SLS solver
Sparrow [3], which won the Random SAT track from the SAT
Competition 2011.

I. INTRODUCTION

The probSAT solver is an efficient implementation of the
probSAT algorithm presented in [2] with slightly different
parameterization.

II. MAIN TECHNIQUES

probSAT is a pure stochastic local search solver based on
the following algorithm:

Algorithm 1: ProbSAT
Input : Formula F , maxTries, maxFlips
Output: satisfying assignment a or UNKNOWN

1 for i = 1 to maxTries do
2 a← randomly generated assignment
3 for j = 1 to maxFlips do
4 if (a is model for F ) then
5 return a
6 Cu ← randomly selected unsat clause
7 for x in Cu do
8 compute f(x, a)
9 var ← random variable x according to

probability f(x,a)∑
z∈Cu

f(z,a)

10 flip(var)

11 return UNKNOWN;

ProbSAT uses only the make and the break values of a
variable in the probability functions f(x, a), which can have
an exponential or a polynomial shape as listed below.

f(x,a) =
(cm)make(x,a)

(cb)break(x,a)

f(x,a) =
(make(x,a))cm

(ε+ break(x,a))cb

III. PARAMETER SETTINGS

ProbSAT has four important parameters: (1) fct ∈ {0, 1}
shape of the function, (2) cb ∈ R, (3) cm ∈ R which is set
to 1 and (4) epsilon ∈ R, which are set according to the next
table:

k fct cb ε
3 0 2.06 0.9
4 1 2.85 -
5 1 3.7 -
6 1 5.1 -
≥ 7 1 5.4 -

where k is the size of the longest clause found in the
problem during parsing The parameters of probSAT have been
found using automated tunning procedures included in the
EDACC framework [1].

IV. FURTHER DETAILS

ProbSAT is implemented in C.
The solver is submitted to the Core solvers, Sequential

Random SAT track. It is compiled with the Intel compiler
version 12.0 using the following compiler flags: -O3 -xhost
-static -unroll-aggressive -opt-prefetch -fast

The solver will be available online1

ACKNOWLEDGMENT

We would like to thank the BWGrid [4] project for pro-
viding the computational resources. This project was funded
by the Deutsche Forschungsgemeinschaft (DFG) under the
number SCHO 302/9-1.

REFERENCES

[1] Balint, A. et al: EDACC - An advanced Platform for the Experiment
Design, Administration and Analysis of Empirical Algorithms In: Pro-
ceedings of LION5, pages 586–599.
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Université de Picardie Jules Verne
Rue de l’Orée du Bois
80000 Amiens (France)
chu-min.li@u-picardie.fr

Abstract—This document describes the SAT solver relback
which is a CDLC-like solver with a hybrid backtracking scheme.

I. MAIN TECHNIQUES

The following description concerns the submitted solver:
relback. This solver is based on an existing implementation of
a CDLC-like solver.

Indeed, relback is implemented under the glucose solver
(with SatElite formula simplification [1]).

In glucose [2] and as any other Minisat-like solver, when
a conflict is reached, during the propagation phase of the
enqueued literals, the First UIP [3] is used in order to learn a
clause and define a backjumping level.

The main purpose of our solver is to modify, under some
conditions, this backjumping mechanism. Indeed, we define
a new backtracking scheme based on the distance between
the current empty clause and the decisions involved by this
conflict.

Accordingly, the nearest one is selected and the correspond-
ing level is defined as a backjumping one.

II. MAIN PARAMETERS

We give here the use of the new backtracking scheme in the
submitted solver: in relback, when a conflict is reached, the
solver backtracks according the to nearest decision variable.

Such backtracks are applied twice at each restart achieved
by the solver.

Also, each time the weight of the variables are reinitial-
ized, the solver authorizes a new (twice) application of our
backtracking scheme.

Finally, we apply the progress saving for polarity variable
selection.

III. SPECIAL ALGORITHMS, DATA STRUCTURES AND
FEATURES

Before handling an instance, this last one is simplified with
SatElite [1].

The data structures used in relback are strictly similar to
the existing ones in glucose 2.0. We have added the necessary
ones to deal with our backtracking scheme.

IV. IMPLEMENTATION DETAILS

1) The programming language used is C++
2) The solver is based on glucose 2.0 with the additional

features explained above.

V. SAT COMPETITION 2013 SPECIFICS

1) The solver is submitted in ”Core solvers, Sequential, Ap-
plication SAT+UNSAT track”, ”Core solvers, Sequen-
tial, Hard-combinatorial SAT+UNSAT track”, ”Core
solvers, Sequential, Application SAT track” and ”Core
solvers, Sequential, Hard-combinatorial SAT track”.

2) The used compiler is g++
3) The optimization flag used is ”-O3”. The remaining

compilation options are the same as the used ones in
glucose 2.0 and SatElite.

VI. AVAILABILITY

Our solver will be publicly available after the SAT compe-
tition 2013.
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Abstract—The solver RISS3G combines the improved Minisat-
style solving engine of GLUCOSE 2.2 with a state-of-the-art
preprocessor COPROCESSOR and adds further modifications to
the search process.

I. INTRODUCTION

The CDCL solver RISS3G is the third generation of the
SAT solver RISS. The most dramatic change is the exchange
of its search engine, moving from a modular based flexible
search engine that has been used for resource utilization anal-
ysis [1] to the widely used MINISAT search engine [2], more
specifically to the extensions combined in GLUCOSE 2.2 [3],
[4]. RISS3G is equipped with a strong preprocessor CO-
PROCESSOR(CP3) [5], that implements most of the recently
published formula simplification techniques, ready to be used
as inprocessing as well.

II. MAIN TECHNIQUES

In combination with CP3, RISS3G is a CDCL solver that
can also use look-ahead [6] during its search, and which can
furthermore use an SLS search during preprocessing - since
CP3 ships with a simple walksat [7].

RISS3G uses GLUCOSE 2.2 as main search engine, but
enhances it with some modifications. First, if a learned clause
is a unit clause, RISS3G tries to learn more unit clauses by
continuing clause learning (called all-units-learning). Next,
RISS3G provides the opportunity to update a reason clause
of an implied literal, if the new reason has a better score,
where score can be chosen to be the size of the clause, or the
current LBD value of the clause. Then, since GLUCOSE 2.2
postpones restarts if it seems to be close to finding a model,
we still trigger a restart after 20000 conflicts, and increase
this limit by ten percent for the next interval. This way it is
ensured that the solver still restarts sometimes – even if its
internal heuristic would avoid restarts. Finally, once decision
level 0 is reached, RISS3G can perform a look-ahead step
based on five literals (the first five decision literals are used).
From this look-ahead, the necessary assignments are added
as unit clauses to the formula. Several scheduling heuristics
to perform this look-ahead have been added, because always
performing this procedure on decision level 0 usually slows
down the search process. RISS3G is able to output proofs for
unsatisfiable formulas in the DRUP format [8], [9], also when
look-ahead or the all-units-learning modifications are enabled
– however, CP3 does not support this format at the moment,
so that the internal preprocessor should be used when a proof
is necessary.

The built-in preprocessor CP3 has been ported from CO-
PROCESSOR 2 and supports the following simplification tech-
niques: Unit Propagation, Subsumption, Strengthening (also
called self-subsuming resolution) – where for small clauses
all subsuming resolvents can be produced, (Bounded) Variable
Elimination (BVE) [10] combined with Blocked Clause Elim-
ination (BCE) [11], (Bounded) Variable Addition (BVA) [12],
Probing [13], Covered Clause Elimination [14], Hidden Tau-
tology Elimination [15], Equivalent Literal Elimination [16],
Unhiding (Unhide) [17], Add Binary Resolvents [18], at-most-
one rewriting [19], [20], a 2SAT algorithm [21], and a walksat
implementation [7]. The preprocessor furthermore supports
parallel subsumption, strengthening and variable elimination,
which is described in [22].

III. MAIN PARAMETERS

The main parameters control whether the preprocessor CP3
should be used as preprocessor or during search as inprocess-
ing. Furthermore, the modifications to GLUCOSE 2.2 can be
enabled, turning RISS3G into GLUCOSE 2.2, and vice versa.

The configuration of CP3 has been tuned for GLUCOSE 2.2
in [23] and the SAT Challenge 2012 application benchmark.
The final setup for the tracks that contain both satisfiable and
unsatisfiable instances uses the following techniques:

UP, SUB+STR (producing all resolvents for ternary
clauses), Unhide without hidden literal elimination [17] and 5
iterations, BVE without on the fly BCE and BVA with a small
number of 120000 steps.

Furthermore, the search is extended with the following mod-
ifications: The solver performs 4096 look-ahead steps during
search as described above, and then disables this feature. Note,
that for the certified tracks, CP3 has been exchanged with the
internal preprocessor of GLUCOSE 2.2.

IV. SPECIAL ALGORITHMS, DATA STRUCTURES, AND
OTHER FEATURES

The implementation of the level 5 look-ahead is based on
2 bit assignments per variable. 32 of these assignments fit
exactly into a 64 bit integer, so that for the look-ahead itself
only an array of 64 bit integers is necessary.

The implementation of the preprocessor extends the infor-
mation in the header of a clause. For the following three kinds
of information, extra flags have been added to the clause: (i)
being locked, (ii) being able to subsume other clauses, and (iii)
being able to strengthen other clauses. When new clauses are
added to the formula, the latter two are only an approximation.
Furthermore, spin locks for each variable are introduced. The
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parallelization of the preprocessor is achieved by a thread pool
in the background, hidden behind a simple interface.

V. IMPLEMENTATION DETAILS

The solver RISS3G is build on top of MINISAT 2.2 and
GLUCOSE 2.2. Furthermore, we integrated COPROCESSOR
into the system, allowing inprocessing techniques to be exe-
cuted during search. RISS3G has been compiled with the GCC
C++compiler as a 64 bit binary.

VI. AVAILABILITY

The source code of RISS3G is available at tools.
computational-logic.org for research purposes.
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[2] N. Eén and N. Sörensson, “An extensible sat-solver,” in SAT, ser. Lecture
Notes in Computer Science, E. Giunchiglia and A. Tacchella, Eds., vol.
2919. Springer, 2003, pp. 502–518.

[3] G. Audemard and L. Simon, “Predicting learnt clauses quality in modern
SAT solvers,” in Proc. 21st Int. Joint Conf. on Artifical Intelligence
(IJCAI ’09). Morgan Kaufmann, 2009, pp. 399–404.

[4] ——, “Refining restarts strategies for sat and unsat,” in Proceedings
of the 18th international conference on Principles and Practice of
Constraint Programming, ser. CP’12. Berlin, Heidelberg: Springer-
Verlag, 2012, pp. 118–126. [Online]. Available: http://dx.doi.org/10.
1007/978-3-642-33558-7 11

[5] N. Manthey, “Coprocessor 2.0: a flexible cnf simplifier,” in Proceedings
of the 15th international conference on Theory and Applications of
Satisfiability Testing, ser. SAT’12. Berlin, Heidelberg: Springer-Verlag,
2012, pp. 436–441. [Online]. Available: http://dx.doi.org/10.1007/
978-3-642-31612-8 34

[6] M. J. H. Heule and H. van Maaren, Look-Ahead Based SAT Solvers,
ser. Frontiers in Artificial Intelligence and Applications. IOS Press,
February 2009, vol. 185, ch. 5, pp. 155–184.

[7] B. Selman, H. A. Kautz, and B. Cohen, “Noise strategies for improving
local search,” in AAAI, B. Hayes-Roth and R. E. Korf, Eds. AAAI
Press / The MIT Press, 1994, pp. 337–343.

[8] E. Goldberg and Y. Novikov, “Verification of proofs of unsatisfiability
for cnf formulas,” in Proceedings of the conference on Design,
Automation and Test in Europe - Volume 1, ser. DATE ’03.
Washington, DC, USA: IEEE Computer Society, 2003, pp. 10 886–.
[Online]. Available: http://dl.acm.org/citation.cfm?id=789083.1022836

[9] M. Heule, “Drup checker,” http://www.cs.utexas.edu/∼marijn/drup/.
[10] N. Eén and A. Biere, “Effective preprocessing in sat through variable

and clause elimination,” in Proceedings of the 8th international
conference on Theory and Applications of Satisfiability Testing,
ser. SAT’05. Berlin, Heidelberg: Springer-Verlag, 2005, pp. 61–75.
[Online]. Available: http://dx.doi.org/10.1007/11499107 5

[11] M. Järvisalo, A. Biere, and M. Heule, “Blocked clause elimination,”
in Proceedings of the 16th international conference on Tools and
Algorithms for the Construction and Analysis of Systems, ser.
TACAS’10. Berlin, Heidelberg: Springer-Verlag, 2010, pp. 129–144.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-12002-2 10

[12] N. Manthey, M. J. H. Heule, and A. Biere, “Automated reencoding
of boolean formulas,” in Proceedings of Haifa Verification Conference
2012, 2012.

[13] I. Lynce and J. Marques-Silva, “Probing-Based Preprocessing
Techniques for Propositional Satisfiability,” in Proceedings of the 15th
IEEE International Conference on Tools with Artificial Intelligence,
ser. ICTAI ’03. IEEE Computer Society, 2003, pp. 105–110. [Online].
Available: http://portal.acm.org/citation.cfm?id=951951.952290

[14] M. Heule, M. Järvisalo, and A. Biere, “Covered clause elimination,”
CoRR, vol. abs/1011.5202, 2010.

[15] M. Heule, M. Järvisalo, and A. Biere, “Clause elimination procedures
for cnf formulas,” in Proceedings of the 17th international conference
on Logic for programming, artificial intelligence, and reasoning, ser.
LPAR’10. Berlin, Heidelberg: Springer-Verlag, 2010, pp. 357–371.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1928380.1928406

[16] A. V. Gelder, “Toward leaner binary-clause reasoning in a satisfiability
solver,” Ann. Math. Artif. Intell., vol. 43, no. 1, pp. 239–253, 2005.

[17] M. J. H. Heule, M. Järvisalo, and A. Biere, “Efficient cnf simplification
based on binary implication graphs,” in Proceedings of the 14th
international conference on Theory and application of satisfiability
testing, ser. SAT’11. Berlin, Heidelberg: Springer-Verlag, 2011,
pp. 201–215. [Online]. Available: http://dl.acm.org/citation.cfm?id=
2023474.2023497

[18] W. Wei and B. Selman, “Accelerating random walks,” in Proceedings
of the 8th International Conference on Principles and Practice of
Constraint Programming, ser. CP ’02. London, UK, UK: Springer-
Verlag, 2002, pp. 216–232. [Online]. Available: http://dl.acm.org/
citation.cfm?id=647489.727142

[19] N. Manthey and P. Steinke, “Quadratic Direct Encoding vs. Linear Order
Encoding,” in First International Workshop on the Cross-Fertilization
Between CSP and SAT(CSPSAT’11), 2011.

[20] M. N. V. Van Hau Nguyen and S. Hölldobler, “Application of hierarchi-
cal hybrid encoding to efficient translation of a csp to sat,” Knowledge
Representation and Reasoning Group, Technische Universität Dresden,
01062 Dresden, Germany, Tech. Rep., 2013.

[21] A. del Val, “On 2-sat and renamable horn,” in AAAI/IAAI, H. A. Kautz
and B. W. Porter, Eds. AAAI Press / The MIT Press, 2000, pp. 279–
284.

[22] K. Gebhardt and N. Manthey, “Parallel Variable Elimination on CNF
Formulas,” in Pragmatics of SAT, 2013.

[23] A. Balint and N. Manthey, “Boosting the Performance of SLS and CDCL
Solvers by Preprocessor Tuning,” in Pragmatics of SAT, 2013.

[24] bwGRiD (http://www.bw grid.de/), “Member of the german d-grid ini-
tiative, funded by the ministry of education and research (bundesminis-
terium für bildung und forschung) and the ministry for science, research
and arts baden-wuerttemberg (ministerium für wissenschaft, forschung
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Abstract—This document describes the SAT solver RSeq, a
two-engine SAT solver based on Sattime2013 and Relback.

I. INTRODUCTION

RSeq is a two-engine SAT solver combining Sattime2013
with Relback. Sattime2013 is a Stochastic Local Search (SLS)
algorithm based on Sattime2012 [1]. In SAT challenge 2012,
Sattime2012 was the best local search solver in the crafted
(hard combinatorial problems) category and the second best
mono-core solver in the random category [2]. Relback is a
CDCL-based solver due to D. Habet and C.M. LI, which is
implemented by modifying the backtracking of the Glucose 2.0
solver of G. Audemard and L. Simon [3]. In SAT challenge
2012, Relback was one of the best single-engine solvers in
Hard Combinatorial SAT+UNSAT category [2].

We believe that each solver has its own superiority in
solving different problems. Sattime and Relback should be
complementary to solve different problems. In order to solve
an instance, RSeq calls Sattime and Relback sequentially:
Sattime is started first with a time limit. If the time limit is
exceeded and a solution is not found, Sattime will be killed,
then Relback is started to continue solving the instance. The
starting process is controlled by a unix shell script.

II. MAIN PARAMETERS

Sattime2013 is a new version of Sattime. Please see the
description of Sattime2013 in this book. Sattime2013 uses the
following parameters: -cutoff a, -tries b, -seed c, -nbsol d,
allowing to run b times Sattime2013 for at most a steps each
time, the random seed of the first run being c, to search for
d solutions of the input instance. In the version submitted to
the competition, a=2000000000, b=1000, and d=1.

Relback is the same version as in Sat challenge 2012. See
the description of Relback in this book.

III. SAT COMPETITION 2013 SPECIFICS

RSeq is submitted to the sequential SAT and SAT+UNSAT
category of Application and Hard-combinatorial instances.
Sattime2013 is compiled using the icc compiler using the ”-
O3 -static” flag. Relback is compiled using g++ with the opti-
mization flag ”-O3”. RSeq should be called in the competition
using:

./Rseq.sh INSTANCE -s SEED cutofftime
where ”cutofftime” is the time limit within which Sattime can
run. In the competition, cutofftime is equal to 2500 seconds.
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Abstract—The version of Sat4j submitted to the SAT Com-
petition 2013 is a specific version of Sat4j 2.3.4 with minor
modifications to meet the SAT competition 2013 requirements.

I. INTRODUCTION

Sat4j (http://www.sat4j.org/) is an open source library of
boolean satisfaction and optimization engines which aims
at allowing Java programmers to access cross-platform SAT
technology. Sat4j is more than a solver, it is a whole li-
brary dedicated to SAT technology: it contains SAT, Pseudo-
Boolean, MAXSAT and MUS solvers and many utility classes
to simplify the creation of constraints and provide efficient
CNF translations for some non clausal constraints.

II. MAIN TECHNIQUES

The generic and flexible SAT engine available in Sat4j is
based on the original Minisat 1.x implementation [1]: the
generic conflict driven clause learning engine and the variable
activity scheme have not changed. Most of the key components
of the solver have been made configurable. See [2] for details.
The default configuration of Sat4j is as follows.

The dynamic restarts strategy and the learned clause
database management are the ones proposed by Gilles Au-
demard and Laurent Simon in Glucose 2.1 [3].

The conflict clause minimization of Minisat 1.14 (so called
Expensive Simplification)[4] is used at the end of the conflict
analysis. Note that our implementation is a generalized version
of the original minimization procedure from minisat: it works
for other data structures than clauses with watched literals. As
such, it is slightly less efficient than the original one.

When the solver selects a variable to branch on, it uses a
phase selection strategy implementing the lightweight caching
scheme of RSAT[5].

Note that unlike most other SAT solvers, Sat4j does not use
any preprocessor.

Sat4j allows to build ManySAT like parallel solvers with
sharing of unit clauses, as in plingeling (new in Sat4j 2.3.4).

III. MAIN PARAMETERS

The solver only contains two parameters:
java [-DUNSATPROOF=filename]
-jar sat4j2013.jar [Parallel] file.cnf.

1) -DUNSATPROOF=fileproofname allows the solver
to produce an unsat proof in a specific file.

2) Parallel is the name of a predefined parallel solver
in the library.

IV. IMPLEMENTATION DETAILS

Sat4j 2.3.4 release allows solvers running in parallel to
share derived unit clauses (as in plingeling). Those unit
clauses are imported each time the solver restarts (not
when the decision level is zero). As such, agile solvers are
more likely to import new units than ones making few restarts.

Sat4j 2.3.4 also allows to produce RUP proofs, by means of
a specific “listener” : most events in the CDCL engine can be
hooked so a listener simply writes down in a file all clauses
derived by the solver.

V. SAT COMPETITION 2013 SPECIFICS

Sat4j is submitted to all non random tracks of the SAT
Competition 2013. Specific memory parameters for Oracle
JVM are required to use the 16GB of memory. We set the
JVM to use 5GB of stack size for the sequential tracks and
12GB of stack size for the parallel tracks. Note that the exact
total amount of memory used by the JVM can hardly be
predicted, and may change depending on the version of the
JVM used, the host operating system or its architecture (32
or 64 bits).

The following configurations are used by Sat4j ( Base =
Expensive clause minimization from Minisat 1.14 + RSAT
phase saving + Glucose 2.0 LBD based aggressive clause
deletion strategy) :

DefaultGlucose 2.1 like solver (Glucose 2.1 dynamic
restarts).

Luby Luby style restarts with factor 100.
Unsat Minisat geometric restarts, no phase saving (always

branch on the negative phase first).
Unsat’ Unsat + keep learnt clauses as much as possible (until

memory gets low).
LS Restarts every 1000 conflicts, heuristics with random

walk of 0.1
LS2 Restarts every 500 conflicts, pick randomly an unas-

signed variable and the phase to branch on.
Luby’ Luby + keep learnt clauses as much as possible (until

memory gets low).
Biere In/Out restart strategy found in Picosat [6].
The Default solver is used in the sequential tracks, the

Unsat solver is used in the certified unsat tracks while the
height above solvers are running in parallel with exchange of
derived unit clauses in the parallel tracks.
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The solver submitted to the competition is thus launched
that way:

1) java -Xms5g -Xmx5g -jar sat4j2013.jar
file.cnf for sequential tracks

2) java -DUNSATPROOF=TEMPDIR/proof.txt
-Xms5g -Xmx5g -jar sat4j2013.jar Unsat
file.cnf for certified unsat tracks

3) java -Xms12g -Xmx12g -jar sat4j2013.jar
Parallel file.cnf for parallel tracks

VI. AVAILABILITY

Sat4j is developed using both Java and open source stan-
dards: the project is supported by the OW2 consortium in-
frastructure and is released under both the EPL and the GNU
LGPL licenses. It is available from http://www.sat4j.org/

ACKNOWLEDGMENT

Part of this work was supported by Ministry of Higher
Education and Research, Nord-Pas de Calais Regional Council
and FEDER through the ’Contrat de Projets Etat Region
(CPER) 2007-2013’.

REFERENCES
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[4] N. Sörensson and A. Biere, “Minimizing learned clauses,” in SAT,
ser. Lecture Notes in Computer Science, O. Kullmann, Ed., vol. 5584.
Springer, 2009, pp. 237–243.

[5] K. Pipatsrisawat and A. Darwiche, “A lightweight component caching
scheme for satisfiability solvers,” in SAT, ser. Lecture Notes in Computer
Science, J. Marques-Silva and K. A. Sakallah, Eds., vol. 4501. Springer,
2007, pp. 294–299.

[6] A. Biere, “Picosat essentials,” JSAT, vol. 4, no. 2-4, pp. 75–97, 2008.

76



Description of Sattime2013
Chu Min LI

Huazhong University of Science and Technology, China;
MIS, Universit de Picardie Jules Verne, France

Yu Li
Universit de Picardie Jules Verne, France

Abstract—This document describes the SAT solver “Sat-
time2013”, a stochastic local search algorithm for SAT exploiting
the satisfying history of the unsatisfied clauses during search to
select the next variable to flip in each step.

I. INTRODUCTION

In SAT challenge 2012, Sattime2012 was the best local
search solver in the crafted (hard combinatorial problems)
category and the second best mono-core solver in the random
category [1]. Sattime2013 is a new version of Sattime [2] that
enables more greediness than Sattime2012 by extending the
notion of promising decreasing variables [3].

II. MAIN TECHNIQUES

During local search, clauses may frequently be satisfied or
falsified. Modern SLS algorithms often exploit the falsifying
history of clauses to select a variable to flip, together with
variable properties such as score and age. The score of a
variable x refers to the decrease in the number of unsatisfied
clauses if x is flipped. The age of x refers to the number of
steps done since the last time when x was flipped.

Novelty [4] and Novelty based SLS algorithms such as
Novelty+ [5] and Novelty++ [3] consider the youngest
variable in a randomly chosen unsatisfied clause c, which is
necessarily the last falsifying variable of c whose flipping
made c from satisfied to unsatisfied. If the best variable
according to scores in c is not the last falsifying variable of c,
it is flipped, otherwise the second best variable is flipped with
probability p, and the best variable is flipped with probability
1-p. TNM [6], [7] extends Novelty by also considering the
second last falsification of c, the third last falsification of c, and
so on... If the best variable in c most recently and consecutively
falsified c several times, TNM considerably increases the
probability to flip the second best variable of c.

Another way to exploit the falsifying history of clauses is to
define the weight of a clause to be the number of local minima
in which the clause is unsatisfied, so that the objective function
is to reduce the total weight of unsatisfied clauses.

Sattime uses a new heuristic by considering the satisfying
history of clauses instead of their falsifying history, and by
modifying Novelty as follows: If the best variable in c is not
the most recent satisfying variable of c, flip it. Otherwise, flip
the second best variable with probability p, and flip the best
variable with probability 1-p. Here, the most recent satisfying
variable in c is the variable whose flipping most recently
made c from unsatisfied to satisfied. The intuition of the new

heuristic is to avoid repeatedly satisfying c using the same
variable.

Given a SAT instance φ to solve, Sattime2013 first generates
a random assignment and while the assignment does not satisfy
φ, it modifies the assignment as follows:

1) If there are promising decreasing variables, flip the
oldest one;

2) If there are enforced decreasing variables, flip the oldest
one;

3) Otherwise, randomly pick an unsatisfied clause c;
4) With probability wp, flip randomly a variable in c;

With probability 1-wp, sort the variables in c according
to their score and consider the best and second best
variables in c (breaking tie in favor of the least recently
flipped one). If the best variable is not the most recent
satisfying variable of c, then flip it. Otherwise, with
probability p, flip the second best variable, and with
probability 1-p, flip the best variable.

A satisfying variable of a clause is the variable whose flip-
ping made the clause from unsatisfied to satisfied. Probability
p is adapted according to the improvement in the number
of unsatisfied clauses during search according to [8], and
wp=p/10.

The notion of promising decreasing variable was defined
in [3], referring to those variables whose score is positive
and became positive not by flipping themselves. For example,
let x be a variable and score(x)<0, after flipping x, score(x)
becomes positive, i.e., decreasing, then x is not promising.
If score(x)≤0, but after flipping another variable y, score(x)
becomes positive, x is promising and will keep to be promising
as long as its score is positive. Promising decreasing variables
have the highest priority to be flipped.

In Sattime2013, we introduce another notion: if score(x)
is positive, and its score is increased after flipping another
variable, then x is called an enforced decreasing variable.
Note that an enforced decreasing variable may or may not be
promising. A decreasing variable x is enforced after another
variable y is flipped, either because a clause containing it
becomes falsified so that the make value of x is increased,
or a clause only satisfied by x now is also satisfied by y
so that the break value of y is decreased. One of enforced
decreasing variables (if any) is flipped if there is not any
promising decreasing variable.
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III. MAIN PARAMETERS

As Sattime2012, Sattime2013 uses Hoo’s adaptive noise
mechanism that uses two parameters, Φ and Θ. The perfor-
mance of Sattime2013 is not very sensitive to the variation
in the value of these parameters, In Sattime2013 as in Sat-
time2012, Φ=10 and Θ=5.

Other parameters include: -cutoff a, -tries b, -seed c, -nbsol
d allowing to run b times Sattime2013 for at most a steps each
time, the random seed of the first run being c to search for d
solutions of the input instance. In the version submitted to the
competition, a=2000000000, b=1000, and d=1.

IV. SPECIAL ALGORITHMS, DATA STRUCTURES, AND
OTHER FEATURES

Sattime2013 uses the same data structures as Satz [9], [10].
It uses a preprocessing inherited from Satz to simplify the
input formula by propagating all unit clauses and detecting
all failed literals in the input formula, which may prove the
unsatisfiability of the input instance.

V. IMPLEMENTATION DETAILS

Sattime2013 is implemented in C and is based on g2wsat
[3].

VI. SAT COMPETITION 2013 SPECIFICS

Sattime2013 is an single engine solver and is submitted to
all the sequential tracks on Application, Hard-combinatorial,
and Random instances. Because of the preprocessing, Sat-
time2013 may prove the unsatisfiability of an instance.

Sattime2013 is compiled as 64-bit binary using the intel
compiler as follows:

icc sattime2013.c -O3 -static -o sattime2013

Sattime2013 should be called in the competition using

sattime2013 INSTANCE -seed SEED -nbsol 1

to solve the input instance INSTANCE, where SEED can
be any positive integer. If ”-seed SEED” is not specified,
sattime2013 also works, but it will be difficult to reproduce
the same execution of sattime2013 for the input instance.

VII. AVAILABILITY

The codes sources of Sattime2013 will be avail-
able for research purpose after the competition 2013 at
http://home.mis.u-picardie.fr/˜cli/EnglishPage.html
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Abstract—This document describes the SAT solver Sattime-
Clasp, a SAT solver based on sattime2013 and clasp2.0.

I. INTRODUCTION

SattimeClasp is a SAT solver which combines sattime2013
with clasp2.0. Sattime2013 is a Stochastic Local Search (SLS)
algorithm based on sattime2012 [1]. In SAT challenge 2012,
sattime2012 was the best local search solver in the crafted
(hard combinatorial problems) category and the second best
mono-core solver in the random category [2]. Clasp 2.0
(R4092) is a conflict learning asp solver distributed under
the GNU Public License [3]. In SAT Competition 2011,
clasp has shown excellent performance in the crafted (hard
combinatorial problems) category [4].

We believe that each solver has its own superiority in
solving different problems. Sattime and clasp should be com-
plementary to solve different problems. In order to solve a
problem, SattimeClasp calls sattime and clasp sequentially:
sattime is started first with a time limit. If the time limit is
exceeded and a solution is not found, sattime will be killed and
clasp is started to continue solving the instance. The starting
process is controlled by a unix shell script.

II. MAIN PARAMETERS

Sattime2013 is a new version of sattime. Please see the
description of Sattime2013 in this book. Sattime2013 uses the
following parameters: -cutoff a, -tries b, -seed c, -nbsol d,
allowing to run b times Sattime2013 for at most a steps each
time, the random seed of the first run being c, to search for
d solutions of the input instance. In the version submitted to
the competition, a=2000000000, b=1000, and d=1.

The parameters of clasp are set to it’s default values.

III. SAT COMPETITION 2013 SPECIFICS

SattimeClasp is submitted to the sequential SAT and
SAT+UNSAT category of Application, Hard-combinatorial
and Random instances. Sattime is compiled as a 64-bit binary
using the intel icc compiler and clasp is compiled using gcc
compiler.

SattimeClasp should be called in the competition using:

./SCSeq.sh INSTANCE -seed SEED cutofftime

The parameter cutofftime specifies the time limit to sattime.
In the testing stage, the time to each instance is limited to
1200 seconds, so cutofftime=600. In the competition stage,
cutofftime=2500.
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Abstract—This document describes the SAT solver SattimeRel-
backSeq, a two-engine SAT solver based on Sattime2013 and
Relback.

I. INTRODUCTION

SattimeRelbackSeq is a two-engine SAT solver combining
Sattime2013 with Relback. Sattime2013 is a Stochastic Local
Search (SLS) algorithm based on Sattime2012 [1]. In SAT
challenge 2012, Sattime2012 was the best local search solver
in the crafted (hard combinatorial problems) category and the
second best mono-core solver in the random category [2].
Relback is a CDCL-based solver due to D. Habet and C.M.
LI, which is implemented by modifying the backtracking of
the Glucose solver of G. Audemard and L. Simon [3]. In SAT
challenge 2012, Relback was one of the best single-engine
solvers in Hard Combinatorial SAT+UNSAT category [2].

We believe that each solver has its own superiority in
solving different problems. Sattime and Relback should be
complementary to solve different problems. In order to solve
a problem instance, SattimeRelbackSeq calls Sattime and
Relback sequentially: Sattime is started first with a time limit.
If the time limit is exceeded and a solution is not found,
Sattime will be killed, then SatElite is called to simplify the
instance before Relback is started to continue solving the
simplified instance. The starting process is controlled by a
unix shell script.

II. MAIN PARAMETERS

Sattime2013 is a new version of Sattime. Please see the
description of Sattime2013 in this book. Sattime2013 uses the
following parameters: -cutoff a, -tries b, -seed c, -nbsol d,
allowing to run b times Sattime2013 for at most a steps each
time, the random seed of the first run being c, to search for
d solutions of the input instance. In the version submitted to
the competition, a=2000000000, b=1000, and d=1.

Relback is the same version as in satchallenge 2012. See
the description of Relback in this book.

III. SAT COMPETITION 2013 SPECIFICS

SattimeRelbackSeq is submitted to the sequential SAT and
SAT+UNSAT category of Application, Hard-combinatorial
and Random instances. Sattime2013 is compiled using the icc
compiler using the ”-O3 -static” flag. Relback is compiled
using g++ with the optimization flag ”-O3”.

SattimeRelbackSeq should be called in the competition
using:

./sattimeRelbackSeq INSTANCE -seed SEED cutofftime
-tmp TMPDIR

where ”cutofftime” is the time limit within which Sattime can
run. ”TMPDIR” is a temporary directory in which SatElite
writes temporary files. In the competition, cutofftime is equal
to 2500 seconds.
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Abstract—This document describes the SAT solver SattimeRel-
backShr, a SAT solver based on sattime2013 and relback.

I. INTRODUCTION

SattimeRelbackShr is a two engine SAT solver which com-
bines sattime2013 with relback. Sattime2013 is a Stochastic
Local Search (SLS) algorithm based on sattime2012 [1].
In SAT challenge 2012, sattime2012 was the best local
search solver in the crafted (hard combinatorial problems)
category and the second best mono-core solver in the ran-
dom category [2]. Relback is a CDLC like solver,which is
implemented under the glucoe solver without SatElite for-
mula simplification[3]. In SAT challenge 2012, relback was
one of the best single-engine solver in Hard Combinatorial
SAT+UNSAT category [2].

We believe that each solver has its own superiority in
solving different problems. Sattime and relback should be
complementary to solve different problems. In order to solve
a problem, SattimeRelbackShr create two threads to run sat-
time and relback engine respectively.When one engine find a
solution, the other one will be cutoff and only one solution
will be reported.

II. MAIN PARAMETERS

Sattime2013 is a new version of sattime. Please see the
description of Sattime2013 in this book. Sattime2013 uses the
following parameters: -cutoff a, -tries b, -seed c, -nbsol d,
allowing to run b times Sattime2013 for at most a steps each
time, the random seed of the first run being c, to search for
d solutions of the input instance. In the version submitted to
the competition, a=2000000000, b=1000, and d=1.

About relback ,please see the description of relback in this
book.

III. SAT COMPETITION 2013 SPECIFICS

SattimeRelbackShr is submitted to the sequential SAT and
SAT+UNSAT category of Application, Hard-combinatorial
and Random instances. The used compiler is g++ with op-
timization flag ”-O3”.

SattimeRelbackShr should be called in the competition
using:

./sattimeRelbackShr INSTANCE -seed SEED
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SOLVER DESCRIPTION

satUZK is a conflict-driven clause learning solver for the
boolean satisfiability problem (SAT). It is written in C++ from
scratch and aims to be flexible and easily extendable.

In addition to the standard DPLL [1] algorithm with clause
learning the solver is able to perform various preprocessing
and inprocessing techniques.

Preprocessing

We implemented SatELite-like variable elimination and
self-subsumption [2], unhiding [3], a distillation technique
similar to the one presented in [4], blocked clause elimination
[5] and variable probing to detect failed literals, equivalent
literals and literals that must be true in every model.

The preprocessing starts with unhiding, followed by self-
subsumption and variable probing in order to fix some vari-
ables and increase the number of literals that can be propagated
by binary constraint propagation (BCP).

After that the size of the formula is reduced by blocked
clause elimination and SatELite-like variable elimination.
These techniques can reduce the reasoning power of BCP and
that is why they are scheduled after the previous preprocessing
steps.

Preprocessing generally tries to eliminate 0.5% of the
remaining variables in 1% of the available time (which is
900 seconds in this case). All preprocessing techniques are
repeated until the number of variables that are affected by
each simplification pass becomes too low or a limit of 10%
of the time budget is reached.

Search

The data structures required for BCP are implemented in the
same way as in MiniSAT 2.2 [6]. Binary clauses are stored in
a separate watch list.

We are using the standard 1-UIP [1] learning scheme
together with conflict clause minimization and the VSIDS
decision heuristic with phase saving.

We submitted a version of our solver using a MiniSAT-like
learned clause deletion strategy and a version with a more
aggressive literal blocks distance based deletion strategy [7].

Both Luby restarts and glucose-like dynamic restarts are
implemented [7].

Inprocessing

The DPLL procedure is interleaved with inprocessing steps
that perform unhiding, variable probing and distillation. These
techniques do not require literal occurrence lists and thus they
can be integrated into the search without great performance
overheads.

Variable probing and distillation is only applied to the most
active variables and clauses.

At most 10% of the available time is used for inprocessing.
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SatX10-GlCi is an instantiation of a parallel SAT
solver built using the SatX10 framework [3] which is
available at: http://x10-lang.org/x10-community/x10-in-use/
applications/207-satx10.html.

The SatX10 framework is based on the X10 programming
language designed specifically for programming on multi-core
and clustered systems easily [5]. The framework provides
various facilities to conveniently run algorithms (here SAT
solvers) in parallel, along with a communication infrastructure.

Version 1.1 of this solver participated in the Parallel 2-core
Solvers application track of the SAT Competition 2013.

I. SOLVING TECHNIQUES

SatX10-GlCi is composed of 2 core MiniSat-based con-
flict directed clause learning SAT solvers:

1) Circuit MiniSat [4]
2) Glucose 2.1 [1]
The X10 framework is used to both launch multiple solvers

and to enable communication of information between them.
In the current configuration, every solver sends all learned
clauses of a fixed maximum length to all other solvers, which
incorporate these clauses either during their search or at restart
points. Thus, information is shared using an implicit clique
topology. Note that in general the communication amount,
frequency, as well as network structure can take arbitrary form
in SatX10.

II. IMPLEMENTATION DETAILS

The solver SatX10-GlCi is built using the SatX10 frame-
work [3], heavily utilizing the mechanisms it provides for
incorporating new solvers and sharing information amongst
solvers. The version of the X10 language used was 2.3.1 and
information sharing performed using TCP/IP sockets backend
of X10. Each individual SAT solver is embedded in the parallel
solver at the source code level, which was modified appropri-
ately to adhere to the requirements of the SatX10 framework.
The solvers themselves were compiled into object files using
GNU g++ 4.8.0 using option “-O3” and then linked into the
C++ backend of X10. The flags used for the compiler x10c++
were “-STATIC CHECKS -NO CHECKS -O”. The resulting

single binary executable is then launched with environment
variable X10 NTHREADS set to 1, X10 STATIC THREADS
set to true, and X10 NPLACES set to the desired number of
solvers to launch. (The same executable can be used to run the
solver on multiple machines as well, by specifying a list of
hostnames.) The amount of clause sharing is controlled with a
parameter specifying the maximum length upto which clauses
are shared with other solvers.

III. SAT COMPETITION 2013 SPECIFIC DETAILS

The launcher script of SatX10 is written in Python 2.6
and the command line used in the competition is as follows:
python runSatX10.py --x10nplaces=8
--x10maxlen=-10 --x10outbuf=100
--x10usepre --x10ppconfig=SC2013.ppconfig

The parameters define how many cores to use (8), what the
maximal length of shared clauses is, the size of the clause
buffer before sharing (100), to apply preprocessing, and what
configuration to run (SC2013.ppconfig). The negative
clause length indicates that the maximal shared clause length is
adaptively changed with the aim of sharing a fixed percentage
of the clauses learned in total (e.g., 5%).

In the used plug&play configuration Glucose 2.1

is executed on 6 cores and Circuit MiniSat on
2 cores. All solvers are launched with the parameter
-verb=0. For detailed parameter settings please refer to the
SC2013.ppconfig file.

Preprocessing is applied to problem instances prior to
execution of SatX10. The preprocessor SatELite [2] was
modified to not map variables numbers and to explicitly
append unit clauses, when possible, for variables it would
have eliminated otherwise. Preprocessing is terminated if it
exceeds 100 seconds. If the parallel execution fails for any
reason, Glucose 2.1 is invoked on a single core.
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I. INTRODUCTION

SINNminisat is based on MiniSat2.2.0[1]. The SINNminisat
system employs TrueLBD which is a kind of LBD and
Aggressive Reduce Database.

II. MAIN TECHNIQUES

A. True LBD

True LBD is a kind of LBD[?]. True LBD is different from
LBD in the manner of updating its value. It ignores literals
assinged at level 0.

B. Aggressive Reduce Database

Aggressive Reduce Database is a learnt clause management
method. This method is implemented in GlueMiniSat2.2.5[3].
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I. INTRODUCTION

In the past decade SAT-solving techniques have been pol-
ished to precise excellence, and modern solvers can deal
with circuits containing millions of clauses. Preprocessing
techniques, such as those related to pure-literals elimination,
clause subsumption and variable elimination have been known
for quite a long time [1]. More recent preprocessing technique
concerning blocked-clauses was introduced, and experimen-
tally verified to be useful [2]. As available computational
resources grow, more solving time could be spent for pre-
processing.

“Solver43” is a complete SAT solver based on “Glucose”
[3], but instrumented with new preprocessor that utilizes all
aforementioned preprocessing techniques, and some new ones.
In the next section we shall briefly describe all novelties that
have been introduced.

II. NEW PREPROCESSING TECHNIQUES

Generally speaking, one could divide all sound preprocess-
ing techniques into two categories: ones that do not change
functionality of the input instance, and ones that preserve
its satisfiability. Subsumption, and other resolution-related
(we do not consider variable elimination here) techniques
belong to the first category. Variable elimination, pure-literals
elimination, and blocked-clauses elimination belong to the
latter. “Solver43” is instrumented with all of them, but with
some minor changes. First of all, during preprocessing we
decided not to eliminate variables eagerly. Second, do not
remove blocked 2-clauses. We also decided to look for simple
definitions in preprocessing phase and simplify them on the
fly, as it might enable more simplification by other techniques.

All aforementioned preprocessing techniques are quite well
studied, and are devoted to elimination (variable and/or
clause). Intuitively, elimination of variables and clauses shall
decrease the resources used by the solver, and thus theoret-
ically decrease the solving time. In practice, benefits from
preprocessing can rather be seen for large populations of
benchmarks, and in some particular cases preprocessing slows
down the solver.

On the other hand, slightly puzzling is the fact that during
the solving phase solvers tend to add learned clauses for
completeness reasons. Whether it might be useful to add vari-
ables and/or clauses in preprocessing phase remains an opened
question. Mysterious influence of freshly defined variables
on the size of resolution proofs (extended resolution) is one
simple example in favor of such an addition [4].

In the preprocessing phase “Solver43”, after applying all
standard preprocessing techniques, searches for blocked 2-
clauses not present in the formula. Effectively this process
is the same as one step look-ahead search for pure-literals,
since we just search for a literal p, assigning which to true
makes given literal q pure. It is easy to mention that resulted
implication clause (¬p ∨ q) has a blocked literal q, verifying
that this clause is blocked and thus can be freely added to the
formula without changing its satisfiability. Some of the found
by “Solver43” blocked 2-clauses are added then to the original
clause set.

It has been experimentally observed that preprocessing
techniques interfere with each other, and the order of their
application might affect the result. One of such effects is
that adding blocked 2-clauses increases number of found
definitions.

After preprocessing phase, “Solver43” uses “Glucose” for
usual SAT-solving. If “Glucose” returns UNSAT answer, no
latter postprocessing is necessary to be done. In case of SAT
answer, we have to modify the SAT-assignment according to
the removed clauses to obtain SAT assignment for the original
instance.

III. MAIN PARAMETERS

Submitted to SAT’13 competitions version of “Solver43”
does not provide user-controllable parameters, except of those
provided by “Glucose”. Internal parameters, however include
preprocessing order, and some effort parameters that decide
how eagerly we should apply different preprocessing tech-
niques.

IV. AVAILABILITY

“Solver43” is open source and has exactly the same li-
cense as that of “MiniSAT” [5] and “Glucose”. It is publicly
available and anyone could use the solver for evaluation and
research purposes.
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Abstract—SPARROW+CP3 and SPARROWTORISS are using
as a first step the preprocessor CP3 to simplify the formula
in a way that is beneficial for SLS solvers. SPARROW+CP3
then uses the solver SPARROW to solve the simplified problem.
SPARROWTORISS is first trying to solve the problem with
Sparrow, limiting its execution to 5 ·108 flips and then passes the
assignment found to the CDCL solver RISS3G, which uses this
information for initialization and then tries to solve the problem.
The solver RISS3G combines the improved Minisat-style solving
engine of GLUCOSE 2.2 with a state-of-the-art preprocessor
COPROCESSOR and adds further modifications to the search
process. The SLS solver SPARROW is an improved version of
SPARROW 2011

I. INTRODUCTION

SLS solvers showed remarkable performance on the sat-
isfiable crafted problems in the competitions from the last
years. Motivated by this results we have analyzed in [1] the
utility of different preprocessing techniques for the SLS solver
SPARROW. The best found technique together with SPARROW
represents the basis of our solver SPARROW+CP3.

As SPARROW is not able to prove the unsatisfiability of
a problem we have decided to append a CDCL solver to
SPARROW+CP3, namely RISS3G after limiting the execution
of SPARROW to 5·108 flips. The CDCL solver RISS3G uses the
MINISAT search engine [2], more specifically the extensions
added in GLUCOSE 2.2 [3], [4]. Furthermore, RISS3G is
equipped with the preprocessor COPROCESSOR(CP3) [5], that
implements most of the recently published formula simplifi-
cation techniques, ready to be used as inprocessing as well.

II. MAIN TECHNIQUES

SPARROW is a clause weighting SLS solvers that uses
promising variables and probability distribution based selec-
tion heuristics. It is described in detail in [6]. Compared to the
original version, the one submitted here is updating weights of
unsatisfied clauses in every step where no promising variable
can be found.

The built-in preprocessor CP3 has been ported from CO-
PROCESSOR 2 and supports the following simplification tech-
niques: Unit Propagation, Subsumption, Strengthening (also
called self-subsuming resolution) – where for small clauses
all subsuming resolvents can be produced, (Bounded) Variable
Elimination (BVE) [7] combined with Blocked Clause Elim-
ination (BCE) [8], (Bounded) Variable Addition (BVA) [9],
Probing [10], Covered Clause Elimination [11], Hidden Tau-
tology Elimination [12], Equivalent Literal Elimination [13],
Unhiding (Unhide) [14], Add Binary Resolvents [15], at-most-
one rewriting [16], [17], a 2SAT algorithm [18], and a walksat

implementation [19]. The preprocessor furthermore supports
parallel subsumption, strengthening and variable elimination,
which is described in [20].

RISS3G uses GLUCOSE 2.2 as main search engine – the
version used in SPARROWTORISS just replaces the internal
preprocessor with CP3.

The combination of the SPARROW and RISS3G, called
SPARROWTORISS, does not simply execute the two solvers
after each other, but also forwards information from the SLS
solver to the CDCL solver: when SPARROW terminates, it
outputs its last full assignment in chronological order (i.e.
the oldest variable first), which is used to initialize the phase
saving of RISS3G, such that the first decisions of RISS3G
follow this assignment. In a brief empirical evaluation this
communication turned out to be useful. The solvers are also
able to forward the information about the age of the variables
in the SLS search. This data could be used to initialize the
activities of the variables inside RISS3G. However, this feature
is not enabled in the used configuration.

III. MAIN PARAMETERS

SPARROW is using the same parameters as SPARROW 2011.
The configuration of CP3 has been tuned for SPARROW

in [1] on the SAT Challenge 2012 satisfiable hard combinato-
rial benchmarks.

The main parameters of RISS3G control how the formula
simplification of CP3 is executed. The configuration of CP3
has been tuned for GLUCOSE 2.2 in [1] on the SAT Chal-
lenge 2012 application benchmark. The final setup of the
preprocessor inside RISS3G uses the following techniques:
UP, SUB+STR (producing all resolvents for ternary clauses),
Unhide without hidden literal elimination [14] and 5 iterations,
BVE without on the fly BCE and BVA with a small number
of 120000 steps.

For SPARROWTORISS it can be chosen whether to forward
the last assignment, or the activity information.

IV. IMPLEMENTATION DETAILS

SPARROW is implemented in C. The solver RISS3G is build
on top of MINISAT 2.2 and GLUCOSE 2.2. Furthermore, we
integrated COPROCESSOR into the system, allowing inprocess-
ing techniques to be executed during search – however, this
feature is not used in the competition. All solvers have been
compiled with the GCC C++compiler as 64 bit binaries.

V. AVAILABILITY

The source code of RISS3G (including CP3) is available at
tools.computational-logic.org for research purposes.
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I. Introduction

In this solver description we present the feature-set of
StrangeNight, a modern SAT Solver that aims to unify the
advantages of SatELite [1], PrecoSat [2], Glucose [3] and
MiniSat [4] with the xor-clause handling of version 1 of
StrangeNight [5] to create a formula that can solve many
types of different problem instances under reasonable time.

II. Features

StrangeNight is a DPLL-based SAT solver developed
from MiniSat. The following list of non-exhaustive features
are offered by StrangeNight relative to the original “core”
MiniSat.

A. Xor clauses

XOR clauses are extracted at the beginning of the solving.
They are subsequently treated differently. They have their
own watchlists, their own propagation mechanism, and
their own subsumption algorithm. This should mean that
they are handled faster in most scenarios.

B. Binary xor clauses

Binary xor clauses are handled specially. Firstly, they are
regularly searched for using a special heuristic. Secondly,
a forest structure is built from them, indicating which
variable is equi- or antivalent with which variable. The top
of the trees are regularly replaced with those lower in the
tree, reducing the number of clauses and variables in the
problem, and usually leading to variable assignments (and
possibly even more binary xor clauses).

C. Binary xor clause finding through regular XOR-ing of
xor clauses

As per the PhD Thesis of Heule [6], xor clauses are
regularly XOR-ed with one another to obtain different
XOR clauses. However, contrary to that present in the
paper, the smaller XOR-s are only acted upon if they are
binary. In this case, they are added to the forest of equi-
and antivalences, and replaced with one another at a later
time, according to a heuristic.

D. Phase calculation, saving and random flipping

Default phase is calculated for each variable according
to the Jeroslow and Wang [7] heuristic. The phases are
saved, according to Pipatsrisawat and Darwiche [8]. The
phase, however, is randomly flipped at intervals that is
determined by the problem. The average branch depth
is measured, and with P(1/avgBranchDepth), the current
phase is flipped. According to our experience, this helps in
exploring new places in the search space.

E. Automatic detection of cryptographic and industrial in-
stances

Industrial and cryptographic instances are very different.
They need different restart strategies and they need differ-
ent learnt clause activity statistics. We try to detect which
problem belongs to which family, and use Glucose-style
learnt clause heuristics [9] or MiniSat-style learnt clause
activity accordingly. We also switch the restart type from
dynamic to static and vica-versa. The detection is based
on the percentage of xor clauses and the stability of vari-
able activity. Either of the two is too high, the problem
is deemed to be cryptographic. The stability of variable
activity is measured through saving of the top 100 vari-
ables, and comparing them with the next restart’s top 100
variables. This is done for 5 restarts, and at the end, the
decision is made. The detection routine is run regularly, to
detect whether the problem has changed enough to switch
from one type to the other.

F. Variable elimination, clause subsumption and clause
strengthening

SatELite-type variable elimination, clause subsumption
and clause strengthening is regularly performed. The occur-
rence lists are, however, not updated all the time such as
the case with other solvers. Instead, occurrences are calcu-
lated on per-use basis. The number of variable elimination
cycles, clause subsumption cycles and clause strengthening
cycles are limited each time the simplification is done such
as to avoid the routine taking overly large amounts of time.

G. On-the-fly clause improvement

Since the occurrence lists are not updated all the time,
the only way to carry out subsumption is the algorithm by
Han and Somenzi [10]. This lightweight subsumption-check
is carried out every time a conflict analysis is done.

H. Binary clause propagation

Binary clauses are in a separate watchlist, as per Glucose
[3]. They are fully propagated before other clauses are
propagated. The propagation order is: binary clauses,
regular clauses, xor clauses. As per PrecoSat [2], the binary
clauses are always fully propagated, regardless if a conflict
has been found earlier. The conflict analysis routine is then
called on the last conflicting binary clause.

I. 32-bit pointers on 64-bit architectures under Linux

64-bit pointers are well-known to slow down the solving
of SAT solvers, due to the extra memory and thus cache
space occupied by them when going through the watchlists
in the propagation phase. This limitation means that all
code has to be compiled as 32-bit code, which means that
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extra registers and instructions provided by modern 64-bit
architectures is lost. We counter this phenomenon with
small pointers. Since the memory used by SAT solvers is
rarely more than 4GB, the pointers rarely contain more
than 32 bit real information. We extract this information,
and only store these 32 bits.

J. Binary graph treatment

Binary clauses generated by hyper-binary resolution [11]
are added in an optimal manner: the binary subtree of
literal a is searched and the highest-degree dominated literal
c still leading to b is connected to b. This ensures maximal
graph connectivity and sparsity. Binary clauses describing
tautologies such as (¬a∨ b), (¬b∨ c), (¬a ∨ c) are regularly
removed. Tautologies are also regularly and temporarily
generated to subsume and strengthen other clauses.

K. Clause cleaning

Clauses are regularly removed that have at least one of
their literals assigned to true. Contrary to “core” MiniSat,
we also remove false literals from clauses, shortening them.
Interestingly, this does not need these clauses to be re-
attached, as false literals are not in the watchlists — or if
they are, the clause is satisfied, and can be fully removed.

L. Xor clause subsumption

Xor clauses can be subsumed similarly to normal clauses.
Since xor clauses represent many regular clauses, doing the
subsumption natively saves significant time.

M. Dependent variable removal

Dependent variables , as per [6] are removed along with
their corresponding xor clause. Dependent variables are
variables that appear nowhere else but in exactly one xor
clause. Since that xor clause can always be satisfied by a
correct value of the dependent variable, the xor clause can
be removed without further ado, and reintroduced during
solution extension as per SatELite. This removes a con-
straint and a variable from the problem. Note that this
variable could not have been removed as part of pure literal
elimination. However, interestingly, blocked clause elimi-
nation (BCE) can remove these clauses and corresponding
variable(s). This connection has not been noted by Biere
and Jarvisalo in [12], but shows the effectiveness of their
method.

N. Failed literal probing

Variables are tried to be branched both to true and
false at regular intervals. If any of the branches fails
(conflict is returned), that variable is assigned to the other
branching. Otherwise, the assignments of both are saved
and compared with one another. If they contain a common
subset, that variable is assigned, as per [13]. An interesting
addition to this is the method by Li [14], where binary XOR
clauses are found in the same way that common subset of
assignments are found. Binary xor clause l⊕u is also found
when u ∈ Prop(clauses, l) and ¬u ∈ Prop(clauses,¬l),
following Proposition 4 of [13].
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Abstract—vflipnum submitted to the SAT Competition 2013
is a new stochastic local search (SLS) solver based on variable
flipping frequency heuristics. In addition to using the parameters
score and age used in Sparrow to break ties, we add a new
parameter – variable flipping frequency. As far as we know, the
new parameter never used successfully in the known SLS solvers.
This paper describes briefly vflipnum.

I. INTRODUCTION

The simplest stochastic local search (SLS) algorithm is to
pick always randomly a variable from a randomly selected
unsatisfied clause, and then flip its truth assignment. This
solving mechanism is used by solvers such as Walksat [1].
The main drawback of this mechanism is to be trapped easily
in deep local minima. To escape local minima, ones proposed
various heuristics, which result in the emergence of many
variants of Walksat. The most common information used in
various heuristics includes score, age and clause weighting
etc. As far as we know, variable flipping frequency never
used successfully in any known SLS solvers. In this paper, we
use a variable flipping frequency heuristic to develop a new
SLS solver called vflipnum. This new solver is based on the
framework of Sparrow [2], which is the winner of the random
satisfiable category of the SAT Competition 2011. Except for
some magic constant settings and pickvar procedure, vflipnum
is the same as Sparrow.

II. VARIABLE FLIPPING FREQUENCY HEURISTICS FOR SAT

In vflipnum, the probability of selecting a variable depends
on Sparrow evaluation and variable flipping frequency. Let
C be the selected clause, and Numflip(vi) be the number
of flips that occur in variable vi. Using variable flipping
frequency, for each variable vi, the probability pf(vi) of
selecting it is defined as follows.

MaxNumf = max
vi∈C
{Numflip(vi)}

∆(vi) =MaxNumf + 1−Numflip(vi)

pf(vi) =
∆(vi)∑

vj∈C

∆(vj)

We use pf(vi) in the following two cases. (1) If none of vi’s
neighboring variables has been flipped since vi’s last flip, but
its score is large enough, we pick variable vi with probability
pf(vi). This is similar to CCASat [3]. However, we break

ties in favor of probability pf(vi), while CCASat break ties
in favor of the oldest age. (2) If the probability selecting
condition of Sparrow is reached, we replace the probability
selecting formula of Sparrow:

sparrowScore×sparrowAge∑
sparrowScore×sparrowAge

with the following formula:
sparrowScore×sparrowAge×pf∑
sparrowScore×sparrowAge×pf

where the sum ranges over all variables in the given clause.
For the meaning of sparrowScore and sparrowAge, see [2].

III. THE VFLIPNUM SOLVER

The vflipnum solver is built on top of Sparrow. Sparrow
can be divided into the following components: parameter
setting, pickvar, flipvar, smooth and scale etc. The flipvar,
smooth and scale procedure of vflipnum are the same as that
of Sparrow. The parameter setting and pickvar procedure of
vflipnum are different from Sparrow. Here we may describe
briefly our pickvar procedure as follows.

(1) If #unsat clauses > θ, like Sparrow, pick a variable with
the greatest score > 0, and break ties in favor of the
oldest age.

(2) Let V be set of variables whose neighboring variables
have been flipped. If V 6= ∅, pick a variable in V with
the greatest score > 0.

(3) If in the above two steps we fail to pick a promising
variable, with probability pf(x), pick variable x with
the greatest score ≥ 0.

(4) If #unsat clauses ≤ 2, we always pick a variable with
the oldest age.

(5) If none of the above steps has picked successfully a
promising variable, we pick randomly an unsatisfied
clause C, and then with probability given in our new
probability formula (see the previous section), pick a
variable in C to be flipped.

The parameter θ in the variable picking algorithm is set to 5
when the number of variables is greater than 3000, and 6 up
to 9 otherwise.

Table 1 shows vflipnum parameter settings. The meaning
of parameters c1, c2, c3 and ps is in accordance with Spar-
row2011. In many cases, the parameter configurations used
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TABLE I
VFLIPNUM PARAMETER SETTINGS.

k-SAT #var c1 c2 c3 ps
3-SAT <3000 2.15 4 100000 0.4
3-SAT ≥3000 2.15 4 100000 0.347
5-SAT ≤200 3 4 105000 0.9
5-SAT >200 2.85 4 75000 1
7-SAT <90 5.5 4 110000 0.835
7-SAT ≥90 6.5 4 110000 0.83

by vflipnum are different from Sparrow2011. For example,
when the number of variables is less than or equal to 200,
the 5-SAT configuration in vflipnum is 〈c1, c2, c3, ps〉 =
〈3, 4, 105000, 0.9〉, while Sparrow2011 set 〈c1, c2, c3, ps〉 to
be 〈2.85, 4, 75000, 1〉. Nevertheless, in any case, both vflipnum
and Sparrow2011 set parameter c2 to 4.

IV. CONCLUSION

Here we presented a new SLS sequential solver called
vflipnum. Although this new solver is based on Sparrow, both
performances are different since we used different mechanism
for picking a variable to be flipped, and different parameter
configuration. From our empirical observation, vflipnum was
significantly faster than Sparrow. In designing vflipnum, many
parameters are done by hand-tuning. In fact, many solvers are
based on hand-tuned parameter configuration. Then, what are
the optimal parameter configuration and the most efficient SLS
solver? such a problem is left as an open problem.
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Abstract—This note describes the SAT solver
“WalkSATlm2013”, which is a local search solver, especially
designed for random instances.

I. INTRODUCTION

Algorithms for solving SAT can be mainly categorized into
two classes: complete algorithms and stochastic local search
(SLS) algorithms. Among SLS algorithms for SAT, WalkSAT
[1] stands out as one of the most influential algorithms.

Recently, there has been increasing interest in WalkSAT,
due to the discovery of its great power on large random 3-SAT
instances. However, the performance of WalkSAT on random
k-SAT instances with k > 3 lags far behind. Indeed, there
have been few works in improving SLS algorithms for such
instances. We improve WalkSAT for random instances with
long clauses by a simple yet very effective method, which
is used to break ties in WalkSAT. The method is based on
the notion of multi-level make [2]. This improved algorithms
is called WalkSATlm. The SAT solver WalkSATlm2013
adopts WalkSAT to solve random instances whose maximum
clause length (denoted by k) is greater than 3, and adopts
WalkSATlm to solve instances with k > 3.

II. MAIN TECHNIQUES

The only main new technique is a novel scoring function
named linear make [2]. We proposed the concept of τ th

level make [2], denoted by makeτ , which measures the
number of (τ − 1)-satisfied clauses that would become τ -
satisfied by flipping x. Here a clause is τ -satisfied if and only
if it contains exactly τ true literals. Recall that if a literal
evaluates to true under the given assignment, it is a true
literal; otherwise, it is a false literal. The lmake function
combines the make property with a new property make2 and
is defined as lmake(x) = w1 ∗make1(x) + w2 ∗make2(x).

WalkSATlm differs from WalkSAT only in the tie-breaking
method (of choosing a variable from those with the equally
minimum break value). In detail, while WalkSAT breaks ties
randomly, WalkSATlm does so by preferring the variable with
the greatest lmake value (further ties are broken randomly).

III. WALKSAT AND WALKSATlm

WalkSAT applies the following variable selection scheme in
each step. First, an unsatisfied clause C is selected randomly.
If there exist variables with a break value of 0 in clause C,
i.e., if C can be satisfied without breaking another clause, one
of such variables is flipped (so-called zero-damage step). If no
such variable exists, then with a certain probability p (the noise

parameter), one of the variables from C is randomly selected;
in the remaining cases, one of the variables with the minimum
break value from C is selected.

In WalkSAT, all ties are broken randomly, while in
WalkSATlm, all ties are broken by preferring the variable with
the greatest lmake value (further ties are broken randomly).

IV. MAIN PARAMETERS

We combine the WalkSAT and WalkSATlm algorithms,
leading to an SLS solver also called WalkSATlm2013, which
adopts WalkSAT to solve instances with k ≤ 3, and adopts
WalkSATlm to solve instances with k > 3.

WalkSAT and WalkSATlm has one same parameter, namely
the noise parameter wp. In WalkSATlm2013, wp is set as
follows.

For k ≤ 3, wp is set to 0.567 when r ≤ 4.22, 0.777-0.05r if
r ∈ (4.22, 4.23], 1.553-0.23r if r ∈ (4.23, 4.26) and 2.261-0.4r
if r ≥ 4.26, where r is the clause-to-variable ratio.

For k = 4, wp is set to 0.6 if r ≤ 9, 1.4921-0.1r if
r ∈ (9, 9.5], 1.5026-0.1r if r ∈ (9.5, 9.75], and 1.9895-0.15r
otherwise. For k = 5, wp is set to 0.39 if r ≤ 20, 1.22-r/24 if
r ∈ (20, 20.6), 0.707-r/60 if r ∈ [20.6, 20.8], and 1.231-r/24
otherwise. For k = 6, wp is set to 1.05-0.02r if r < 42, and
0.2 otherwise. For k > 6, wp is set to 0.12 if r ≤ 85, and
0.232-r/750 if r ∈ (85, 87], and 0.115 otherwise.

Besides wp, the WalkSATlm algorithm also has two other
parameters namely w1 and w2. In WalkSATlm, w1 = 3, w2 =
1 for k = 4, w1 = 3 and w2 = 2 for k = 5, w1 = 4 and
w2 = 3 for k = 6 and w1 = w2 = 1 for k > 6.

V. IMPLEMENTATION DETAILS

WalkSATlm2013 is implemented in C++. It is implemented
from scratch. In this implementation, for each variable, we
separately record the clause numbers where positive literals
appear and those where negative literals appear. By this
data structure, the algorithm is significantly accelerated. To
compute break of a variable x, we only need to check each
clause where true literals of x appear, that whether the clause
has only one true literal; if this is the case, then break(x)
increases one, and nothing happens otherwise. The make and
make2 properties can be calculated likewise.

VI. SAT COMPETITION 2013 SPECIFIES

WalkSATlm2013 is submitted to “Core solvers, Sequential,
Random SAT” and “Core solvers, Parallel, Random SAT”
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tracks. It is compiled by g++ with the ’O3’ optimization
option. It is a 32-bit binary.

Its running command is:
WalkSATlm2013 <instance file name> <random seed>.
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I. INTRODUCTION

ZENN is based on MiniSat2.2.0[1]. The ZENN system
employs Phase Shift that integrates different search methods,
SAFE LBD for keeping better learnt clauses, TLBD which is
a kind of LBD and two restart strategies: Luby SE Restart and
LBD+CDLV Restart.

II. PHASE SHIFT

Phase Shift integrates different search methods. The solver
goes through two or more phases in its search. Each phase
has a limited duration and the solver changes phases when
the number of restarts reaches the limit. ZENN has two
phases called Luby SE Phase and LBD+CDLV Phase. Luby
SE Phase uses Luby SE restart as its restart strategy and
RHPolicy for determining the number of learnt clauses that
will be deleted. LBD+CDLV Phase uses LBD+CDLV restart
for restart strategy and RQPolicy as a method to delete learnt
clauses.

A. Luby SE Phase

1) Luby SE Restart:Luby SE Restart is a
restart strategy based on Luby Restart. Luby
Restart use a sequence that has cycles. Luby
SE Restart shortens the length of each cycle,
that is, skipping the initial segments of a
sequence, and let the solver search more
deeply.

2) RHPolicy:The solver deletes the first half of
learnt clauses at deletion time. This policy
is based on MiniSat2.2 but ZENN will not
delete more than half of learnt clauses like
MiniSat.

3) VarDecayReduction:Set var-decay (one of
parameters in Minisat) to 0.990.

B. LBD+CDLV Phase

1) LBD+CDLV Restart: LBD+CDLV restart
is a dynamic restart strategy used by
GlueMiniSat2.2.5[2]: if one of the follow-
ing conditions is satisfied, then a restart is
forced.
(a) an average of decision levels in the

last 50 conflicts is greater than the
global average.

(b) an average of NTLBDs (explained
later) in the last 50 conflicts is greater
than the global average×0.8.

2) RQPolicy: The solver deletes 3 quarters of
learnts clauses at deletion time. This policy
is based on GlueMiniSat2.2.5.

3) VarDecayAcceleration:Set var-decay (one
of parameters in Minisat) to 0.800.

III. TLBD

True LBD, TLBD for short, is a kind of LBD[3]. TLBD
is different from LBD in the manner of updating its value.
TLBD ignores literals assinged at level 0.

A. NTLBD
Newest TLBD, NTLBD for short, is a kind of TLBD.
NTLBD takes the latest TLBD of a learnt clause.

B. LTLBD
Lowest TLBD, LTLBD for short, is also a kind of
TLBD. LTLBD takes the best NTLBD of a learnt
clause so far.

C. HTLBD
Highest TLBD, HTLBD for short, is also a kind of
TLBD. HTLBD takes the worst NTLBD of a learnt
clause so far.

IV. SAFE LBD

Safe LBD is a criterion for freezing learnt clauses. When
a learnt clause is about to be deleted, if its LTLBD is lower
than SAFE LOW LBD and its HTLBD is lower than SAFE
HIGH LBD, it will not be deleted but be detached and kept
for possible activation in the future.
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INTRO

This description explains how the benchmarks were created
of the uniform random categories of the SAT Competition
2013. These categories consists of uniform random k-SAT
instances with k ∈ 3, 4, 5, 6, 7 – Boolean formulas for which
all clauses have length k. For each k the same number of
benchmarks have been generated. All instances have been
generated with the Uniform Random k-SAT Generator which
was also used in the SAT Challenge 2012 and is freely
available online1.

GENERATING THE SATISFIABLE BENCHMARKS

The satisfiable uniform random k-SAT benchmarks are
generated for two different types: threshold and huge. The
threshold benchmarks have a clause-to-variable ratio equal
to the conjectured threshold ratio [1] 2. New this year are
the huge random benchmarks. These benchmarks have a few
million clauses and are therefore as large as some of the
application benchmarks. For the huge benchmarks, the ratio
ranges from far from the threshold ratio to relatively close.
Table I shows the details.

No filtering was applied to construct the competition suite.
As a consequence, a significant fraction of the generated
threshold benchmarks is unsatisfiable.

GENERATING THE UNSATISFIABLE BENCHMARKS

This section describes how the unsatisfiable benchmarks
for the competition have been generated. Given a complete
SAT solver, it generally holds that the computational cost to
solve uniform random k-SAT formulas with n variables and
m clauses is quite similar. Notice that this does not hold for
satisfiable benchmarks, where a SAT solver can be “lucky”.
Therefore, having a set of several benchmarks with the same
n and m is less useful. Hence, the generated uniform random

1http://sourceforge.net/projects/ksatgenerator/
2The clause-to-variable ratio for which 50% of the uniform random

formulas are satisfiable. For most algorithms, the closer a formula is generated
near the threshold ratio, the harder it is to solve it.

TABLE I
PARAMETERS OF GENERATING THE SATISFIABLE BENCHMARKS

k threshold (50) huge (6)

3
r = 4.267
n ∈ {3200, 3400, . . . , 13000}

r ∈ {3.7, 3.8, . . . , 4.2}
n = 1, 000, 000

4
r = 9.931
n ∈ {830, 860, . . . , 2300}

r ∈ {7.5, 8.0, . . . , 9.5}
n = 500, 000

5
r = 21.117
n ∈ {305, 310, . . . , 550}

r ∈ {15, 16, . . . , 20}
n = 250, 000

6
r = 43.37
n ∈ {191, 192, . . . , 240}

r ∈ {30, 32, . . . , 40}
n = 100, 000

7
r = 87.79
n ∈ {91, 92, . . . , 140}

r ∈ {60, 65, . . . , 85}
n = 50, 000

unsatisfiable benchmarks differ all in size. Here, size refers
to the number of clauses. For each k ∈ {3, 4, 5, 6, 7} the
formula with the smallest size can be solved in about a minute
by lookahead SAT solvers — the fastest type of solvers for
uniform random unsatisfiable formulas. The size is slightly
increased with a constant number of clauses, such that the
largest one (after 30 steps) is expected to be out of reach of
today’s state-of-the-art solvers. Table II shows the details.

TABLE II
PARAMETERS OF GENERATING THE UNSATISFIABLE BENCHMARKS

k r smallest step largest
3 4.267 1800 +24 2496
4 9.931 1500 +17 1993
5 21.117 1800 +30 2670
6 43.37 2800 +44 4076
7 87.79 4500 +88 7052

The number of variables for each instance is computed by
dividing the number of clauses by the ratio r (rounded down to
obtain a ratio slightly above the conjectured threshold ratio).

In contrast to the set of satisfiable benchmarks, we filtered
the set of unsatisfiable benchmarks. For the filtering we
used local search solvers: i.e, solvers that cannot determine
unsatisfiability. We have used the best performing SLS solvers
from the SAT Challenge 2012 from the category Random
SAT, namely CCASat [2] and probSAT [3]. If a local search
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solver was not able to produce a solution in 600 seconds, the
instance is considered to be unsatisfiable. Given the strength
of local search SAT solvers on uniform random formulas of
the considered sizes, it is expected that all of them are indeed
unsatisfiable.
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The benchmarks for the Application and the Hard Combina-
torial tracks of SAT Competition 2013 were drawn from a pool
containing benchmarks that either (i) were used in the past
six competitive SAT events (SAT Competitions 2007, 2009,
2011; SAT Races 2008, 2010; SAT Challenge 2012); (ii) were
submitted to these 6 events but not used; (iii) new benchmarks
submitted to SAT Competition 2013 (the descriptions for these
benchmarks are provided in these proceedings). The main
factor that influenced the benchmark selection process of SAT
Competition 2013 is the fact that, as with the previous SAT
competitions, the SAT solvers participating in the competition
are ranked using the solution-count ranking system. Thus the
primary requirement is that the selected set of benchmarks
should contain as few as possible benchmarks that would
not be solved by any submitted solver. At the same time,
the set should contain as few as possible benchmarks that
would be solved by all submitted solvers. In order to level
out the playing field for the submitters that do not have the
resources to tune their solvers on all benchmark sets used in
the previous competitions, an additional requirement is that the
selected set should contain as many benchmarks as possible
that were not used in the previous SAT competitions. Finally,
the selected set should not contain a dominating number of
benchmarks from the same application domain and the same
source. To accommodate this latter requirement, we assigned
the benchmarks in the pool to buckets, where the assignment
is guided by the combination of the specific application or a
specific combinatorial problem the benchmark originates from
and the benchmark submitter1.

The empirical hardness of the benchmarks in the pool was
evaluated using a selection of 5 well-performing SAT solvers
from SAT Challenge 2012. The solvers were selected from the
set of the state-of-the-art (SOTA) contributors [1] in the corre-
sponding tracks of SAT Challenge 2012, with the preference
given to solvers that solved a higher number of benchmarks

1The description files that accompany benchmark set distributions contain
all information, including the assignment to buckets.

in the Challenge uniquely. The selected solvers for each track
are as follows. Application track: glucose, Lingeling,
simpsat, linge_dyphase, ZENN. Hard Combinato-
rial track: clasp-crafted, glucose, Lingeling,
simpsat, sattime20122. The execution environment used
for the evaluation of benchmarks’ hardness is the same as the
used for the Competition.

The benchmarks rating for the tracks was defined as fol-
lows:
easy — benchmarks that were solved by all 5 solvers

in under 500 seconds (1/10-th of the Competition’s timeout).
These benchmarks are extremely unlikely to contribute to the
solution-count ranking of SAT solvers in the competition, as
all reasonably efficient solvers are expected to solve these
instances within the 5000 seconds timeout enforced in the
Competition.
medium — benchmarks that were solved by all 5 solvers in

under 5000 seconds. Though these benchmarks are expected
to be solved by the top-performers in the Competition, they
can help to rank the weaker solvers.
too-hard — benchmarks that were not solved by any

solver within 10000 seconds (2 times the timeout used in the
Competition). These benchmarks are likely to be unsolved by
all solvers in the Competition, and as such are also useless for
the solution-count ranking, and any other ranking that takes
into account the execution time of the solvers, e.g. the careful
ranking [2].
hard — the remaining benchmarks, i.e. the benchmarks

that were solved by at least one solver within 10000 seconds,
and were not solved by at least one solver within 5000
seconds. These benchmarks are expected to be the most
useful for ranking the top-performing solvers submitted to the
Competition.

Once the hardness of the benchmarks in the pool was
established, 300 benchmarks for each track were selected from

2sattime2012 is an SLS-based solver, and so was only used to evaluate
satisfiable benchmarks in the track
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the pool. The selection process was controlled by the following
constraints:

(i) the ratio of SAT to UNSAT benchmarks should be
exactly 50-50;

(ii) no more than 10% of the selected set should come from
the same bucket;

(iii) the ratio of new to used benchmarks should be as high
as possible;

(iv) the ratio of medium to hard benchmarks should
be as close to 50-50 as possible — however, in order to
reduce influence of the solvers used for the rating of the
benchmarks, 20% of the selected benchmarks were selected
among the medium, hard and too-hard benchmarks in
the pool without the consideration of their rating;

(v) the performance of the 5 solvers used for the evaluation
of the benchmarks should be as uniform as possible — this
is to avoid a potential bias towards a particular evaluation
solver in the set (the potential negative effects of such bias
are discussed in [3]).

The details for the selected sets are provided in Tables I
and II on the following page.
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TABLE I
DETAILED COUNTS OF THE APPLICATION BENCHMARK SET

bucket count SAT UNSAT new old medium hard too-hard
2d-strip-packing 5 3 2 0 5 3 2 0
bio 5 5 0 0 5 4 1 0
crypto-aes 11 9 2 0 11 0 11 0
crypto-des 9 9 0 0 9 3 6 0
crypto-gos 30 2 28 30 0 0 30 0
crypto-md5 11 9 2 0 11 10 1 0
crypto-sha 30 30 0 30 0 0 28 2
crypto-vmpc 8 8 0 0 8 2 5 1
diagnosis 26 17 9 0 26 17 9 0
hardware-bmc 3 0 3 0 3 3 0 0
hardware-bmc-ibm 4 0 4 0 4 0 4 0
hardware-cec 30 0 30 30 0 3 22 5
hardware-velev 21 10 11 0 21 18 3 0
planning 25 21 4 0 25 10 15 0
scheduling 30 16 14 30 0 9 21 0
scheduling-pesp 30 3 27 30 0 17 4 9
software-bit-verif 14 3 11 0 14 8 6 0
software-bmc 3 3 0 0 3 2 1 0
termination 5 2 3 0 5 5 0 0
Total 300 150 150 150 150 114 169 17

TABLE II
DETAILED COUNTS OF THE HARD COMBINATORIAL BENCHMARK SET

bucket count SAT UNSAT new old medium hard too-hard
VanderWaerden 9 4 5 0 9 3 6 0
clique-width 24 3 21 24 0 2 7 15
coloring 3 3 0 2 1 0 3 0
connm-ue-csp-sa 4 1 3 0 4 1 3 0
counting-php 13 0 13 13 0 1 0 12
edgematching 8 8 0 0 8 7 1 0
ensemble-computation 7 5 2 0 7 2 5 0
extended-resolution 3 0 3 0 3 0 3 0
factoring 12 12 0 8 4 4 8 0
fixed-shape-forced 3 3 0 0 3 0 3 0
frb 1 1 0 0 1 0 1 0
games-battleship 2 1 1 0 2 0 2 0
games-hidoku 22 1 21 21 1 20 1 1
games-pebbling 2 2 0 0 2 1 1 0
graph-isomorphism 30 0 30 30 0 3 27 0
greentao 1 1 0 0 1 0 1 0
grid-coloring 1 1 0 0 1 0 1 0
hwb 3 0 3 0 3 0 3 0
labs 30 23 7 30 0 0 30 0
lksat 1 0 1 0 1 1 0 0
markstrom 3 0 3 0 3 0 3 0
modcircuits 6 6 0 0 6 0 6 0
ordering 2 0 2 0 2 1 1 0
phnf 2 0 2 0 2 1 1 0
planning 30 29 1 30 0 0 30 0
pmg 2 0 2 0 2 0 2 0
quasigroup 5 0 5 0 5 4 1 0
ramseycube 1 1 0 0 1 1 0 0
random-mus 13 0 13 13 0 4 9 0
rbsat 14 14 0 0 14 9 5 0
satex-challenges 1 1 0 0 1 0 1 0
sgen 9 7 2 0 9 2 7 0
social-golfer-problem 2 2 0 0 2 0 2 0
software-bit-verif 30 21 9 30 0 29 1 0
xor-chain 1 0 1 0 1 0 1 0
Total 300 150 150 201 99 96 176 28
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I. INTRODUCTION

We submit benchmark SAT instances based on the integer
factorization problem. Specifically, we give a set of CNF
formulas such that their satisfying assignments will encode
nontrivial factors of various integers. It is widely believed that
the integer factorization problem is intractable for classical
(i.e. non-quantum) computers. Indeed, the security of many
cryptographic protocols, such as the RSA cryptosystem, relies
on this assumption [1].

We have written a SAT instance generator, called ToughSAT,
that transforms instances of the integer factorization problem
into SAT instances. Satisfying assignments to the SAT in-
stances can be correspondingly transformed into solutions to
the original factorization problem. Our instance generator can
be accessed as a web application at http://toughsat.appspot.
com. We have made the source code available as well. Tough-
SAT also produces instances based off of other hard problems,
such as SUBSET SUM.

II. METHODOLOGY

We discuss the factoring instance generation in more detail.
The input to the ToughSAT generator is an integer n, and
the output is a satisfiable CNF φ such that any satisfying
assignment will encode two integers p and q, p, q 6= 1,
such that n = pq. In the instances we submit to the SAT
Competition 2013, the integers n are all products of two large
primes, which are observed to be the hardest instances for the
integer factorization problem [2].

Formally, we can consider the decision problem FACTOR-
ING: given three positive integers 〈n, a, b〉, determine whether
there exist a nontrivial factor of n between a and b. FACTOR-
ING is in the complexity class NP, and is therefore reducible
in polynomial time to every NP-complete problem, including
satisfiability. A corollary is that the problem of actually finding
the prime factors of n = pq can be polynomial-time reduced
to finding a satisfying assignment of a CNF.

ToughSAT’s factoring instance generator is a practical im-
plementation of this polynomial time reduction. The reduction
itself, on input n, outputs a CNF formula φ that encodes a
boolean circuit C, of the following form: it consists of a binary
multiplier and binary comparators that (1) tests for equality of
the output of the multiplier on two integers p and q with the
integer n, and (2) tests that both p, q are not 1 (to avoid trivial
solutions). The binary encoding of these numbers p, q are left
as free variables in φ. Therefore, satisfying assignments of φ
must encode nontrivial factors of the number n.

It is noteworthy that there are sub-exponential time al-
gorithms to factor integers – the state-of-the-art being the
General Number Field Sieve [3] – so the SAT instances output
by ToughSAT are likely not the hardest instances of SAT
possible (under the hypothesis that SAT requires exponential
time in the worst case to solve). However, these instances
still seem among the most difficult SAT instances easily and
consistently constructible. Furthermore, we believe that no
SAT solvers to date implement any of the complex number
theoretic techniques that appear in, say, the General Number
Field Sieve, to specially handle SAT instances that encode the
factoring problem!

In conclusion, we believe that the small but difficult in-
stances produced by ToughSAT’s factoring instance generator
are a useful addition to the library of benchmarks available to
SAT solver authors.

III. OUR INSTANCES

In our submission, we provide 8 CNF formulas whose sat-
isfying assignments encode non-trivial factors to the following
integers:

N1 = 46847546963729

N2 = 24427471030957

N3 = 17037614121013

N4 = 152411913452483

N5 = 55413665935423

N6 = 275259516432919

N7 = 682781751377743

N8 = 199255464717812117.
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In the newest version of our SAT solver Lingeling we
included a simple algorithm for solving large trivially encoded
pigeon hole problems. The algorithm is based on cardinality
reasoning. More information about the algorithm can be found
in our solver description [1].

One phase of the algorithm consists of extracting at-most-
one constraints, which we extended to extract at-most-two con-
straints too. This extension allowed us to solve the following
simple extension of the pigeon hole problem.

Given h holes, we ask whether it possible to fit
n = 2 ·h+1 pigeons into these holes, where each
hole can fit at most two pigeons.

We submitted a C program gentph.c as benchmark generator,
which takes the number of holes as one argument. For each
hole there is an at-most-two constraint over n pigeons, which
is encoded with (n3) = n ·(n−1) ·(n−2)/6 clauses of length
3. In addition, for each pigeon there is a clause of length n
requiring that the pigeon is at least in one hole.

For h = 6 holes the problem becomes difficult for standard
CDCL solvers. Glucose 2.1 needs 420 seconds, while Lin-
geling 587f needs 970 seconds, both on an Intel i7-3930K
CPU running at 3.20GHz. Lingeling as submitted to this
year’s competition, but without cardinality reasoning needs
291 seconds. More holes seem to be out of reach. With
cardinality constraint reasoning this problem is trivial and can
be solved for up to 20 holes instantly.

We list the sizes of these new benchmarks in Table I.
Compared to the well-known original pigeon hole benchmarks,
with sizes listed in Table II, we observed that the benchmarks
become more difficult for a smaller number of variables.
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holes pigeons variables clauses
h n
1 3 3 4
2 5 10 25
3 7 21 112
4 9 36 345
5 11 55 836
6 13 78 1729
7 15 105 3200
8 17 136 5457
9 19 171 8740

10 21 210 13321
11 23 253 19504
12 25 300 27625
13 27 351 38052
14 29 406 51185
15 31 465 67456
16 33 528 87329
17 35 595 111300
18 37 666 139897
19 39 741 173680
20 41 820 213241

TABLE I
SUBMITTED “TWO PIGEON PER HOLES” BENCHMARKS TPHh .

holes pigeons variables clauses
h n
1 2 2 3
2 3 6 9
3 4 12 22
4 5 20 45
5 6 30 81
6 7 42 133
7 8 56 204
8 9 72 297
9 10 90 415

10 11 110 561
11 12 132 738
12 13 156 949
13 14 182 1197
14 15 210 1485
15 16 240 1816
16 17 272 2193
17 18 306 2619
18 19 342 3097
19 20 380 3630
20 21 420 4221

TABLE II
WELL-KNOWN PIGEON HOLE BENCHMARKS PHn .
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INTRO

A miter encodes an equivalence check of two Boolean
circuits. This is encoded as a combinatorial problem searching
for an input for these circuits such that their output is different.
Fig 1 shows an illustration of a miter: Two circuits have the
same inputs and there is an exclusive-OR (XOR) for each
output of the circuits. If the output of one of these XORs
can be assigned to true, a certificate is found that shows that
the circuits are not equivalent. Miters are generally used as
follows: one of the two circuits is an optimized variant of
the other one. If the miter has no solution (unsatisfiable), it
means that the circuits are equivalent and that the optimization
is valid.

Fig. 1. Illustration of a miter.

GENERATION OF THE BENCHMARKS

We generated two types of miters using the circuits de-
scribed in the AIGER benchmarks of the hardware model
checking competition (HWMCC) 20121. We used circuits with
both single and multiple bad state properties (the latter also
contain environment constraints). We used aigmiter for
constructing combinational miters, e.g. next state functions of
flip-flops are treated as outputs, and then translated them to
CNF with aigtocnf.

These tools are available from http://fmv.jku.at/aiger. Note
that these benchmarks are trivial on the AIG level and can sim-
ply be solved by structural hashing. Further, the benchmarks,

1see http://fmv.jku.at/hwmcc12/ for details

scripts for generating these miters, as well as log files of the
generation process are available from http://fmv.jku.at/miters.

NON-OPTIMIZED MITERS

The first type of miter was constructed using two copies
of the same circuit. On the AIG level, these benchmarks
are trivial. We showed that these benchmarks can also be
solved on the CNF level by the preprocessing technique hyper
binary resolution [1], [2] (HBR). However, some of the non-
optimized miters can be hard for SAT solvers.

OPTIMIZED MITERS

The ABC tool [3] was used to construct optimized circuits
(using the dc2 command). The miters of this second type en-
code that the original circuit is equivalent to the optimized one.
These benchmarks are much harder than the non-optimized
miters.
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RANDOM k-SAT

A uniform random k-SAT formula consists of clauses of
length k for which the literals are chosen by a uniform
random distribution and literals have a 50% chance to be
negated. Uniform random k-SAT formulas are particularly
hard when they are generated near the phase-transition density:
the clause-variable ratio for which the fraction of satisfiable /
unsatisfiable formulas is 50% / 50 %. Fig. 1 and 2 shows the
phase-transition phenomenon for random 3-SAT.
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Fig. 1. Number of steps to solve formulas for a certain clause-variable ratio.
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Fig. 2. Fraction of satisfiable formulas for a certain clause-variable ratio.

MINIMUM UNSATISFIABLE CORES

An minimal unsatisfiable core [1] is a formula F for which
holds that F is unsatisfiable, and for any clause C ∈ F , F \
{C} is satisfiable. We call a clause C ∈ F redundant with
respect to F if removing C from F preserves unsatisfiability.

Although unsatisfiable random formulas near the phase-
transition are hard to solve, they contain quite some redundant
clauses. The benchmarks in this suite are random 3-SAT
formulas generated near the phase-transition for which the
redundant clauses have been removed.

Redundant clauses have been removed by combing a delta-
debugger [2] and the lookahead SAT solver march rw [3].
The procedure works as follows: the delta-debugger obtains
the random 3-SAT formula and runs march rw on it which
returns a certain result (SAT or UNSAT). Afterwards, the
delta-debugger removes as many clauses as possible without
changing the result. If the formula was satisfiable it imme-
diately removes all clauses. In case it was unsatisfiable, the
reduced formula is a minimum unsatisfiable core. In the latter
case, the computational costs for the reduction can be large
(e.g. for a formula with 300 variables about 30 minutes).

We generated random 3-SAT formulas with the number of
variables between 300 and 330 and a clause-to-variable ratio
of 4.26 (the phase-transition). On average, the delta-debugger
was able to remove about 25% of the clauses. The reduced
formulas are much harder to solve than the original random
formulas. For lookahead SAT solvers, the difference is about
an order of magnitude. For conflict-driven clause learning
solver, the observed difference was typically even larger.

REFERENCES

[1] H. Kleine Büning and O. Kullmann, Minimal Unsatisfiability and Au-
tarkies, ser. Frontiers in Artificial Intelligence and Applications. IOS
Press, February 2009, vol. 185, ch. 11, pp. 339–401.

[2] R. Brummayer, F. Lonsing, and A. Biere, “Automated testing and de-
bugging of sat and qbf solvers,” in SAT, ser. Lecture Notes in Computer
Science, O. Strichman and S. Szeider, Eds., vol. 6175. Springer, 2010,
pp. 44–57.

[3] S. Mijnders, B. de Wilde, and M. J. H. Heule, “Symbiosis of search and
heuristics for random 3-SAT,” in Proc. LaSh, 2010.

Appears in A. Balint, A. Belov, M.J.H. Heule, and M. Järvisalo (eds.), Proceedings of SAT Competition 2013: Solver and Benchmark Descriptions,
volume B-2013-1 of Department of Computer Science Series of Publications B, University of Helsinki 2013. ISBN 978-952-10-8991-6.

105



SAT Benchmarks from Clique-Width Computation
Marijn J. H. Heule

Department of Computer Sciences
The University of Texas at Austin, USA

Stefan Szeider

Institute of Information Systems
Vienna University of Technology, Vienna, Austria

BACKGROUND

Clique-width is a fundamental graph invariant that has been
widely studied in combinatorics and computer science. Clique-
width measures in a certain sense the “complexity” of a
graph. It is defined via a graph construction process involving
four operations where only a limited number of vertex labels
are available; vertices that share the same label at a certain
point of the construction process must be treated uniformly
in subsequent steps. This graph composition mechanism was
first considered by Courcelle, Engelfriet, and Rozenberg [1],
[2] and has since then been an important topic in combinatorics
and computer science. Deciding whether the clique-width of
a graph is bounded by a given number, is a very intricate
combinatorial problem. More precisely, given a graph G and
an integer k, deciding whether the clique-width of G is at
most k is NP-complete [3].

A SAT ENCODING OF CLIQUE-WIDTH

Recently, Heule and Szeider [4] suggested an efficient SAT
encoding of the clique-width computation. It is based on a new
reformulation of clique-width based on partitions, combined
with a efficient encoding of cardinality constraints, called
representative encoding. In particular, for an graph G and an
integer k, the encoding produces a CNF formula which is
satisfiable if and only if G has clique-width at most k.

We provide a benchmark set of various such CNF formulas,
produced from random graphs of various density as well as
from famous named graphs known from the literature.

In particular, we provide instances based on random graphs
and on specific named graphs, for various values of k.

INSTANCES BASED ON RANDOM GRAPHS

For edge probability in {0.1, 0.2, . . . , 0.9} the benchmark
set contains formulas based on three random graphs with
25 vertices. We expect that most solvers will be able to
solve the 0.1, 0.2, 0.8, and 0.9 instances, some the 0.3 and
0.7 instances, and that the others are interesting challenges.
Hopefully some researchers will try to find good techniques
for those challenging benchmarks. For each random generated
graph, we made two instances: one with the clique-width
(satisfiable) and one with the clique-width - 1 (unsatisfiable).

INSTANCES BASED ON FAMOUS NAMED GRAPHS

The benchmark set contains formulas corresponding to all
the famous named graphs considered in [4]. Definitions of all
considered graphs can be found in MathWorld [5]. We also
included the da Vinci graph. This graph we discovered while
search for small graphs with a large clique-width. The da Vinci
graph is the smallest graph with clique-width 6.

Fig. 1. the da Vinci graph, the smallest graph with clique-width 6.
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Abstract—This document describes several sets of benchmarks
corresponding to quantifier-free bit-vector formulas. A genera-
tion script first creates all benchmarks in SMT2 format and then
uses Boolector to generate CNF instances in DIMACS format by
bit-blasting.

I. INTRODUCTION

Bit-precise reasoning over fixed-size bit-vector logics
(QF BV) is important for many practical applications of
Satisfability Modulo Theories (SMT), particularly for hard-
ware and software verifcation. In [1], we argued that a
logarithmic (w.l.o.g. binary) encoding, as used e.g. in the
SMT-LIB format [2], leads to NEXPTIME-completeness of
the underlying decision problem. Bit-blasting, as used in
most current SMT solvers, therefore produces exponentially
larger CNF formulas on certain QF BV formulas. We provide
generation scripts for several sets of QF BV benchmarks in
SMT-LIB format where this is the case and use bit-blasting
to generate SAT benchmarks out of the original SMT2 spec-
ifications. All scripts and generated benchmarks are available
at http://fmv.jku.at/smtbench.

II. BENCHMARKS

Our benchmark sets can be divided into two main cat-
egories: Expressing common bit-vector operations by other
operations and general properties that can be expressed by
a fragment of QF BV with a restricted set of operations.

A. Translating Bit-Vector Operations

The first category contains 13 different benchmark sets
and was used for verifying correctness of various translations
between bit-vector operators. Having proved that bitwise op-
erations, equality, and slicing suffice to derive NEXPTIME-
hardness theoretically, we also wanted to give concrete ex-
amples of how to replace common bit-vector operations by
those base operations. To check correctness, we encoded all
translations into SMT2 and verified that no counter-example
exists. We did this for 13 different operations. All benchmarks
are unsatisfiable:

addition (bvadd), subtraction (bvsub), multiplication
(bvmul), unsigned division (bvudiv), signed division
(bvsdiv), unsigned remainder (bvurem), signed remain-
der (bvsrem), signed modulo (bvsmod), logical shift
right (bvlshr), arithmetic shift right (bvashr), shift left
(bvshl), unsigned less than (bvult), and signed less than
(bvslt).

To give one specific example, addition can be expressed by
base operations as follows:
t1

[n] + t2
[n] is replaced by ts1

[n] ⊕ ts2
[n] ⊕ cin

[n] and
additional constraints

1) ts1[n] = t1
[n]

2) ts2[n] = t2
[n]

3) cout[n] = (ts1
[n] & ts2

[n]) | (ts1
[n] & cin

[n]) |
(ts2

[n] & cin
[n])

4) cin[n] = cout
[n] � 1[n]

are added. Now again, cout[n] � 1[n] can be replaced by ts3[n]

and additional constraints
1) ts3[n] [n : 1] = cout

[n] [n− 1 : 0]
2) ts3[n] [0 : 0] = 0[1]

are added.
While this is well-known for the example of addition,

expressing multiplication or other operations by using only
those base operations is much more complicated and cannot
be detailed in the scope of this description. On the other hand,
this already explains the benefit of verifying correctness by
using our benchmarks.

B. Bit-Vector Properties in PSPACE

The second category consists of QF BV benchmark sets
with a reduced set of operations. In [3], we showed that
QF BV becomes PSPACE-complete under certain restrictions
on the set of allowed operations. While bit-blasting still pro-
duces exponentially larger formulas, the original benchmarks
could be solved more efficiently, e.g. by using model checkers.
It will be interesting to see whether any of the SAT solvers
can also profit from this fact.

The 4 benchmark sets contained in this category are the
following ones:
ndist.a: We verify that, for two bit-vector variables x[n],

y[n], it holds that x[n] < y[n] implies (x[n] +1[n]) ≤ y[n]. The
instances are unsatisfiable.
ndist.b: We give a counter-example (due to overflow) to

the claim that, for two bit-vector variables x[n], y[n], it holds
that (x[n]+1[n]) ≤ y[n] implies x[n] < y[n]. The instances are
satisfiable.
power2sum: We verify that, for two bit-vector variables

x[n] = 2j , y[n] = 2k, with j 6= k, x[n] + y[n] cannot be a
power of 2. The instances are unsatisfiable.
shift1add: We verify that for an arbitrary bit-vector x[n],

there exists no bit-vector y[n] 6= x[n] with (x[n] + y[n]) =
(x[n] � 1[n]). The instances are unsatisfiable.
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III. SMT2 AND CNF GENERATION

For each of the 17 benchmark sets, an individual generation
script is provided. The scripts generate several instances of
the given problem set, starting from a minimal bit-width up
to a maximal bit-width, incrementing the bit-width by a given
step size. Given those parameters as input, they output several
SMT2 formulas with bit-vector variables of corresponding bit-
widths. Additionally, a generate.sh script is included. This
script automatically calls all individual generation scripts with
appropriate parameters (i.e. bit-widths that create challenging
but not too-hard instances) and afterwards calls Boolector [4]
with argument -de to bit-blast the SMT2 instances and create
CNF formulas in DIMACS format, therefore directly providing
the input benchmarks for the SAT solvers. Additional CNF
instances corresponding to different bit-widths can be created
manually by using the individual scripts with custom param-
eters and then translating the output with Boolector.

IV. PRACTICAL CONSIDERATIONS

All benchmarks were originally created to evaluate the
performance of SMT solvers. While most benchmarks were
challenging for all SMT solvers, some solvers turned out to
perform particularly well on specific instances. So far, it is not
clear whether this difference in performance is due to SMT
rewriting rules, differences in bit-blasting, or because of the
underlying SAT solvers. It therefore will be interesting to see
how various SAT solvers perform on the bit-blasted version
of our benchmarks.
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I. INTRODUCTION

Currently, railway timetables are still created by manual
labor, since computer programs only assist in managing
and visualizing data. New approaches cover modeling of
all timetable restrictions, allowing automatically synchronized
timetable computation [2], [3], [4], [1].

The whole network of all routes and their technical restric-
tions is modeled as periodic event network. The nodes of this
network represent arrival and departure events of the lines in
the stations. All time consuming processes, especially dwell
time in stations, running times between stations and headways
between different trains on the same track are represented by
edges. They constrain the set of valid timetables. The Problem
whether a valid timetable for this event network exists, is
called Periodic Event Scheduling Problem (PESP) [5], which
is NP -complete.

All departure times are encoded as propositional variables
by order encoding [6], whereas all constraints exclude all
infeasible pairs of departure/arrival times of the events [1].

Usually, initially generated periodic event networks for real-
world problems are too restrictive [4] and hence, unsatisfi-
able [1]. Consequently, lots of modified, less restrictive event
networks have to be probed whether they are satisfiable.
In real-world timetabling, thousands of SAT instances have
to be solved during one timetable computation run. Thus,
short runtime is highly desirable. The networks’ sizes and
complexity which can be solved in reasonable time, is still
restricted. However, SAT solvers already outperform all known
native domain solvers despite the additionally needed encoding
from PESP to SAT.

II. SAT INSTANCES

Each SAT instance is an encoded periodic event network of
a real-world timetabling problem that covers a subset of the
German railway network. The “pre” instances were simplified
by a native domain preprocessor.

file name satisfiability
b04_s_2_unknown.cnf unknown
b04_s_2_unknown_pre.cnf unknown
b04_s_unknown.cnf unknown
b04_s_unknown_pre.cnf unknown
b_unsat.cnf unsatisfiable

file name satisfiability
b_unsat_pre.cnf unsatisfiable
ctl_3082_415_unsat.cnf unsatisfiable
ctl_3082_415_unsat_pre.cnf unsatisfiable
ctl_3791_556_unsat.cnf unsatisfiable
ctl_3791_556_unsat_pre.cnf unsatisfiable
ctl_4201_555_unsat.cnf unsatisfiable
ctl_4201_555_unsat_pre.cnf unsatisfiable
ctl_4291_567_1_unsat.cnf unsatisfiable
ctl_4291_567_1_unsat_pre.cnf unsatisfiable
ctl_4291_567_2_unsat.cnf unsatisfiable
ctl_4291_567_2_unsat_pre.cnf unsatisfiable
ctl_4291_567_3_unsat.cnf unsatisfiable
ctl_4291_567_3_unsat_pre.cnf unsatisfiable
ctl_4291_567_4_unsat.cnf unsatisfiable
ctl_4291_567_4_unsat_pre.cnf unsatisfiable
ctl_4291_567_5_unsat.cnf unsatisfiable
ctl_4291_567_5_unsat_pre.cnf unsatisfiable
ctl_4291_567_6_unsat.cnf unsatisfiable
ctl_4291_567_6_unsat_pre.cnf unsatisfiable
ctl_4291_567_7_unsat.cnf unsatisfiable
ctl_4291_567_7_unsat_pre.cnf unsatisfiable
ctl_4291_567_8_unsat.cnf unsatisfiable
ctl_4291_567_8_unsat_pre.cnf unsatisfiable
ctl_4291_567_9_unsat.cnf unsatisfiable
ctl_4291_567_9_unsat_pre.cnf unsatisfiable
ctl_4291_567_10_unsat.cnf unsatisfiable
ctl_4291_567_10_unsat_pre.cnf unsatisfiable
ctl_4291_567_11_unsat.cnf unsatisfiable
ctl_4291_567_11_unsat_pre.cnf unsatisfiable
ctl_4291_567_12_unsat.cnf unsatisfiable
ctl_4291_567_12_unsat_pre.cnf unsatisfiable
ctl_6280_753_unknown.cnf unknown
ctl_6280_753_unknown_pre.cnf unknown
ctl_s_unknown.cnf unknown
ctl_s_unknown_pre.cnf unknown
dhlh_25_unknown.cnf unknown
dhlh_25_unknown_pre.cnf unknown
dhlh_27_unknown.cnf unknown
dhlh_27_unknown_pre.cnf unknown
k_unsat.cnf unsatisfiable
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file name satisfiability
k_unsat_pre.cnf unsatisfiable
reg_s_unknown.cnf unknown
reg_s_2_unknown.cnf unknown
reg_s_2_unsat_pre.cnf unsatisfiable
s_unknown.cnf unknown
s_unknown_pre.cnf unknown
we_unknown.cnf unknown
we_unknown_pre.cnf unknown
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Abstract—Hidokus are number puzzles that represent the
Hamiltonian Path problem on a square grid. A solution of a
Hidoku is found, if in each field of the grid there is a number,
and the successor of this number is placed in a neighboring field.
Human solvable Hidokus usually have only a few solutions, and
are easily solved by SAT solvers. However, the other way around,
large empty Hidokus are challenging for SAT solvers, but can
be solved easily by humans. The presented CNF generator adds
another category: easily unsatisfiable Hidokus, that are easily
solvable by humans again. The generated instances are crafted
instances, and thus should be used in the crafted track.

I. INTRODUCTION

Number puzzles like the Sudoku or the Hidoku are usually
solved by humans. Still, there also exists research on these
puzzles, for example both types of puzzles can be solved with
SAT solvers [1], [2], and Sudokus have been shown to be
NP-complete. Usually, these number puzzles do have at least
one solution, so that the puzzles can be used to improve the
performance of SAT solvers on satisfiable instances. However,
providing instances to proof the unsatisfiability of a problem
is a research goal as well, to tune the performance of solver
further. Both parts are necessary for example if an optimization
problem such as MaxSAT [3] should be solved with the help
of a SAT solver.

Focussing on Hidokus, there exists types of puzzles that
are easily solved by SAT solvers, but which are challenging
for humans, for example because of their size. On the other
hand, there exists puzzles with simple patterns that can be
solved easily by humans, but are challenging for SAT solvers,
like for example an empty Hidoku. Here, another pattern is
presented, that forces the Hidoku to be unsatisfiable. Again,
the unsatisfiability can be seen easily from the design of the
instances, however, it is hard to be found for SAT solvers.

II. HIDOKUS

A Hidoku is a number puzzle on a n × n grid, where the
numbers ranging from 1 to n2 have to be places in the grid
such that the following constraints are met:

1) Each cell contains exactly one value
2) Each number from 1 to n2 appears exactly once on the

board
3.1) If a cell contains the number i, then the number i + 1

has to appear in a neighboring cell (except for n2)
The third rule can also be re-formulated into:

3.2) If a cell contains the number i, then the number i + 1
cannot appear in any non-neighboring cell

The two alternatives of the last rule allow to decode the
puzzle with either the absolute encoding (direct encoding) or
the support encoding.

III. ENCODING

To encode a Hidoku into SAT, first the first two con-
straints need are encoded. The exactly-one constraint can be
separated into an at-most-one constraint (AMO), and an at-
least-one constraint (ALO). Then for 1), we encode per cell
ALO(cell) and AMO(cell), to represent that one value has to
be in this cell. Similarly, 2) can be split into ALO(board)
and AMO(board). Depending on how the third constraint is
encoded, the encoding can be reduced to contain less clauses,
but still encoding a valid Hidoku. For a Hidoku with width
n, per cell, AMO(cell) requires 3n2 clauses, to encode an
AMO for each value, by allowing to use auxiliary variables.
Per AMO of n literals, 1.5n auxiliary variables are introduced,
since encoding AMO is done in a recursive fashion, similar
to [4]. For n2 cells the total number of clauses is 3n4, where
all clauses are binary. For ALO(cell), one large clause (n
literals) is required per cell, resulting in n2 large clauses.
For AMO(board), per value 3n2 binary clauses are encoded,
resulting in a total of 3n4 clauses. Finally, ALO(board) en-
codes a large clause (n2 literals) per value, adding another n2

large clauses. Thus, encoding the full board itself, without any
special constraints, results in 6n4 + 2n2 clauses.

A. Support Encoding

The support encoding encodes that if a certain value is
present in a cell, then one of the neighboring cells has to
contain the consecutive number. Thus, for each cell and value
a clause with 9 literals is added (sometimes 6 or 4, depending
on the position of the cell), adding n4 large clauses. With this
constraint it is sufficient to encode ALO(cell) and AMO(cell)
to obtain a valid encoding. In total, this encoding requires
about 4n4 + n2 clauses.

B. Absolute Encoding

With the direct encoding, constraint 3.1) is encoded. For
each pair of non-neighboring cells a clause is added that disal-
lows that the two cells contain consecutive values. Therefore,
per cell up to n2 × n2 binary clauses are added, encoding
the constraint for each value. In total, the encoded number
of clauses comes close to n6. When the direct encoding is
used, it is sufficient to encode ALO(board) and AMO(cell) to
obtain a valid encoding. In total, this encoding requires about
n6 + 3n4 + n2 clauses.
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Fig. 1. The figure represents a partially filled Hidoku, which has a contradiction in the cell in the middle of the puzzle. With distance L1, a number M1 is
places into a cell, and into another cell the number M1+D1 is placed, such that all the cells on the diagonal between these two cells have to be filled with
consecutive values – forcing the middle cell to take a value. The same situation appears with M2, L2 and D2, such that the other diagonal is also forced to
contain consecutive values. Now, the middle cell has to contain two values – however, this contradicts the rules of a valid Hidoku.

IV. UNSATISFIABLE HIDOKUS

An example of an unsatisfiable Hidoku is given in Figure 1.
There, a field M1 is given, and in distance D1, there is another
field. By putting the number M1+D1 into this field, the path
in the solution of the Hidoku has to follow exactly the line
with distance D1, thus, putting also a value into the cell in
the middle. Note, since the shortest distance between these
two cells is a diagonal, there does not exist another path that
connects the two cells with D1 steps. The same procedure is
repeated for the other diagonal. From M2 with the distance D2
the value M2+D2 is placed into the grid, such that the cell in
the middle has to contain another value. It is easy to see that
this Hidoku cannot be solved, since one of the constraints (for
example the the first constraint) has to be violated to connect
the preset fields according to the rules.

V. THE GENERATOR

The provided generator can produce Hidokus with different
n, and thus takes n as a parameter. Furthermore, all the other
parameters M1,D1 and M2,D2 can be specified. Additionally,
it can be determined how far M1 should be away from the
conflicting cell (compare Figure 1), by specifying L1. A
similar parameter L2 is provided for M2. To ensure that this
cell in the middle is the only conflict in the encoded Hidoku,
the following constraints have to be met when the parameters
are specified:

Parameter Minimum Maximum

n 3 inf

L1 0 bn2 c
D1 L1 bn2 c+ L1
M1 1 bn2

2 c− D1

L2 1 bn2 c
D2 L2 + 1 bn2 c+ L2
M2 bn2

2 c + D2 + L1 bn2

2 c− D2

All these parameters can be specified, so that the generator
creates the according Hidoku, and then encodes this Hidoku
into CNF. The preset values M1, M1+D1,M2 and M2+D2
are added to the formula as unit clauses. The generator also
provide an interface to create puzzles by a random seed.
Therefore, only the number n has to be specified, as well as a
random seed, an the remaining parameters are filled randomly
by the generator. In this mode, also the encoding is chosen
randomly. Finally, to control the encoding, another mode has
been added. The generator also accepts parameters for n, the
encoding, and to enable AMO(cell), ALO(cell), AMO(board)
and ALO(board) additionally to the constraints that are re-
quired for the chosen encoding (compare Section III-A and
III-B). Finally, a seed is added to determine the parameters of
the unsatisfiable Hidoku randomly.

VI. HARDNESS OF THE INSTANCES

Already empty Hidokus with a sufficiently large n can
be challenging for CDCL solvers, independent of the used
encoding. When increasing n, the hardness of the Hidoku, and
therefore the formula can be controlled. For the unsatisfiable
Hidokus it is interesting to see that the absolute encoding
results in comparable easy instances for n < 20, whereas the
support encoding already produces challenging instances when
n is equal to 6. For larger n, the support encoding produces
very challenging instances.
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Abstract—In trying to solve a hard graph colouring problem
we ran into an interesting SAT formula. The encoding uses
just 160 variables and defines a special case of a rectangle-free
coloring of a 18x18 grid using four colors. Rectangle-free means
that the corners of every rectangle in the grid cannot have all
the same colour. Such structured satisfiable problems pose a real
challenge to SAT solvers.

I. INTRODUCTION

In 2011 a blog post of

blog.computationalcomplexity.org

announced a reward of 289 $ for a solution to the problem of
4-colouring a 17× 17 grid such that for each rectangle in the
grid all its corners consist of at least two different colours. A
solution to 16×16 was known to exist and all grids 19×19 and
larger were proven to not contain such a colouring. In 2012
Steinbach and Posthoff presented a solution to 17 × 17 and
18×18 [1] (every solution of larger grids generates solutions to
smaller). We provide the SAT competition with an interesting
encoding for this problem which is similar to the approach they
used. It will be valuable for the community to see if any SAT
solver is able to solve this hard problem within the time-out.
Our own experiments show that CDCL solvers tend to spend
several hours to find a solution. By such a benchmark we might
identify advantages of non-standard SAT solver techniques.

II. ENCODING

Naive encodings for this problem can solve grids up to 14×
14 almost instantly and do not put a challenge to a SAT solver.
With some advancements and symmetry breaking one can also
solve 15×15 and 16×16. However, no direct approach seems
to tackle the hard cases of 17×17 and 18×18. In this section
we explain the tricks that made it possible.

We identify a special case that can be extended to a full
solution. If such a solution would exist then the problem is
solved, but a negative result would not give much insight.
Luckily, it turns out that the simplification does indeed lead
to solutions.

We simplify the problem to find a two coloring. We denote
the two colours as primary and secondary, and the secondary
colour represents the three other colours of the original prob-
lem. A solution to this problem can be extended to a solution
if

• only the primary colour needs to be rectangle-free,
• 1/4 of all positions are filled with the primary colour,

• rotating the solution by 90,180, and 270 degrees will not
map a position containing a primay colour onto another.

We can then take a solution of this problem and fill for
each rotation the mapped positions of the primary colour with
one of the remaining one. Since there are no collisions and
rectangle-free is preserved under rotation, we generate a full
solution.

A natural choice would be to define for each each position
in the board a Boolean variable that is true if that position con-
tains the primary colour. We reduce the number of variables
by using the restriction that each orbit wrt. to the 90 degree
rotations should have exactly one primary colour. This can
be encoded in a logarithmic fashion such that two Boolean
variables identify for each orbit in which of the four half
section of the grid it exists. Furthermore, we break symmetries
by forcing the upper left position to contain a primary colour.
By these reductions we get a formula that only uses 160
variables.

III. BENCHMARK

The set contains 4 encodings of the same problems. They
have been generated by shuffling the variables, literals and
order of clauses of the encoding described above.
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SAT Benchmark for the Car Sequencing Problem
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Abstract—Car sequencing occurs in the production process of
the automotive industry. It addresses the problem of scheduling
cars along an assembly line such that capacities of different
workstations along the line are not exceeded. We provide the SAT
competition with a selection of hard car sequencing problems
from the CSPLIB [1]. The encoding is based on a variant of the
sequential counter encoding of cardinality constraints and the
reuse of auxiliary variables.

I. INTRODUCTION

Car sequencing deals with the problem of scheduling cars
along an assembly line with capacity constraints for different
stations (e.g. radio, sun roof, air-conditioning, etc). Cars are
partitioned into classes according to their requirements. The
stations are denoted as options and defined by a ratio u/q
restricting the maximal number u of cars that can be scheduled
on every subsequence of length q.

Example 1 Given classes C = {1, 2, 3} and options
O = {a, b}. The demands (number of cars) for the classes
are 3, 2, 2, respectively. Capacity constraints on options are
given by a : 1/2 and b : 1/5, respectively. Class 1 has
no restrictions, class 2 requires option a and class 3 needs
options {a, b}. The only legal sequence for this problem is
[3, 1, 2, 1, 2, 1, 3], since class 2 and 3 cannot be sequenced
after another and class 3 need to be at least 5 positions apart.

Car sequencing in the CSPlib contains a selection of bench-
mark problems of this form ranging from 100 to 400 cars. Over
the years different approaches have been used to solve these
instances, among them constraint programming, local search
and integer programming [2][3][4][5][6].

Car sequencing has also been treated as an optimisa-
tion problem and several versions for the opimisation goal
have been proposed. Most of the approaches use a variant
of minimising the number of violated capacity constraints.
However, for this benchmark we use the definition of [7]
which transforms easily to sequence of decision problem and
SAT solving can be directly applied: An unsatisfiable car
sequencing problem can be made solvable by adding empty
slots to the sequence. The goal is then to minimise the number
of empty slots needed for a valid sequence. A lower bound lb
is proven by unsatisfiability with lb−1 additional empty slots.

II. THE ENCODING

The car sequencing problem can be naturally modelled by
Boolean cardinality constraints. Our approach is to translate
cardinality constraints by a variant of the sequential counter
encoding proposed by [8]. The key idea is then to integrate

capacity constraint into the sequential counter of the demand
constraints by reusing the auxiliary variables. This enforces a
global view on the conjunction of these two constraints and
facilitates propagation. Our own experiments show that this
encodings is far better than naive approaches or an automatic
translation from the pseudo Boolean model.

III. THE BENCHMARK

A command line tool that generates CNF in DIMACS
format from a problem description in the CSPlib is freely avail-
able at github.com/vale1410/car-sequencing.
With this tool one can generate different encodings and
compare the runtime of SAT solvers. For this benchmark we
chose the best encoding according to our experiments and we
are interested if the solvers from the competition are able to
prove stronger bounds.
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SAT encoded Graph Isomorphism (GI)
Benchmark Description
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Abstract—In this paper, we describe and implement a way to
convert instances of the graph isomorphism problem into SAT
instances. We then take a number of small, regular graphs and
convert each into a pair of substantially bigger graphs that are
almost, but not quite isomorphic, and use those pairs to create
hard SAT instances.

I. GI DESCRIPTION

The Graph Isomorphism (GI) problem presents itself as
follows: Given two graphs G1, G2 with equal number of
vertices n and edges m, can we find a permutation s ∈ Sn,
so that after applying s to the vertex labels in G1, the two
graphs are identical. Note that the graphs considered in this
paper need to fulfill a number of further requirements: We
require undirected graphs without multiple edges (i.e. there
can be at most one edge between two vertices) and without
self-edges (i.e. a vertex cannot have an edge to itself). With
the added simplification process in section III, vertices in the
graphs can have colors assigned to them.

II. TRANSFORMING GI TO SAT

The conversion algorithm (Algorithm 1) used in this paper
is based on [1]. We take two graphs G1 and G2, both with
n vertices and m edges, and transform them into a CNF
formula with n2 variables and O(n)+O(n3)+O(n4) clauses.
For each vertex v in G1, we initially create n variables
varv,1 . . . varv,n. The semantics behind this is that if, say,
vari,j is true, then vertex i in G1 corresponds to vertex j
in G2, or s(i) = j. It is obvious that if the two graphs are
isomorphic, then for each vertex v in G1, precisely one of the
variables varv,1 . . . varv,n needs to be true, and all the others
need to be false. For each of the n vertices in G1, a type-1
clause (varv,1, . . . , varv,n) ensures that at least one of them
is true; the ”at most one” requirement will be fulfilled with
type-2 clauses. Type-2 clauses ensure that no two vertices in
G1 can be relabled to the same vertex G2. So for every two
vertices i, j in G1 (i < j) and every vertex k in G2, we
create a clause (vari,k, varj,k). Since all n vertices in G1 are
mapped to a vertex in G2, and no two vertices can be mapped
to the same vertex, any mapping the SAT-Solver can find is
a permutation. There are (n

2(n−1)
2 ) type-2 clauses, initially,

though the simplification algorithm described in section III
will likely remove many of them, unless the graphs are not
coloured and strictly regular. The main part of the isomorphism
test resides in type-3 clauses. These clauses will ensure that
two vertices in G1 that are connected by an edge cannot be

mapped to two vertices in G2 that have no edge between them.
For each pair of connected vertices i, j in G1 (i < j), and each
pair of unconnected vertices k, l in G2, we create a clause
(vari,k, varj,l). The number of type-3 clauses created this way
is

2m ·
(
n(n− 1)

2
−m

)

and depends on the number of edges m and the maximum
number of possible edges n(n−1)

2 in the graphs. Graphs with
very few (or very many) edges will result in fewer clauses,
while graphs with m ≈ n(n−1)

4 will generate the most clauses.
As with type-2, the simplification process will likely remove
many of these clauses.

Algorithm 1: GI to SAT converter
Input : G1, G2

Output: CNF instance
1 C = ∅ ;
2 for i = 1 to n do //Type-1
3 Clause = ∅;
4 for j = 1 to n do
5 Clause = Clause

⋃
vari,j ;

6 C = C
⋃
Clause;

7 for j = 1 to n do //Type-2
8 for k = 1 to n do
9 for i = 1 to j do

10 C = C
⋃
(vari,k, varj,k);

11 for j = 1 to n do //Type-3
12 for i = 1 to j do
13 if (i, j) ∈ G1 then
14 for k = 1 to n do
15 for l = 1 to n do
16 if k 6= l and (k, l) 6∈ G2 then
17 C = C

⋃
(vari,k, varj,l);

18 return C;

III. SIMPLIFICATION OF SAT FORMULAS

When solving the Graph Isomorphism problem, one often
has a wealth of information available that a SAT solver can
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only find through painstaking trial and error. For instance, it is
immediately obvious that a vertex i in G1 can never be mapped
to a another vertex j in G2 if degreeG1(i) 6= degreeG2(j) or
if colourG1(i) 6= colourG2(j). In a CNF formula created as
described above, a SAT solver will - at least for a difference in
degrees - eventually discover that vari,j needs to be false, but
only after a lengthy evaluation process. This can be sped up
if the converter already takes this additional information into
account, and simplifies the resulting formula by removing all
variables vari,j and all clauses that contain vari,j , wherever
the degrees of i and j do not match. As an extension of this,
for each vertex the sum of the degrees of all adjacent vertices
in either graph can be calculated. Again, if these sums don’t
match for two vertices (one in G1, the other in G2), then the
corresponding variables and clauses can be removed. This can
further be extended to the sum of the sums of all adjacent
vertices, and so forth. In our implementation, this is done up
to a depth of six.

IV. GENERATED SAT INSTANCES

The generated SAT instances are directly dependent on
the graphs we used to create them. The original graphs are
small, 6-regular graphs with 10,11 and 12 vertices. They
were generated with the GENREG tool described in [2].
We created 30 graphs of each size, except for size 10,
where GENREG can only find 21 graphs, and assigned each
vertex in a graph random colours, with either two, three
or four vertices per color. Based on these original graphs,
we used the method proposed in [3] to transform each into
two substantially larger and more complex graphs, that are
almost isomorphic, except that for precisely four vertices
i, j, k, l, one graph has edges (i, j), (k, l) and the other has
(i, l), (k, j). We then used each pair of graphs to create an
unsatisfiable SAT instance with the methods described above.
The instance names adhere to the following convention:
”crafted n<numV> d<deg> c<cgs> num<numG>.cnf”,
where deg and numV are the degree and number of vertices
of the original graph, cgs is the size of the color groups, and
numG is the graph number, identifying a graph amongst it’s
30 peers with equal degree, number of vertices, and colour
group size.

V. EVALUATION OF GI CNF

We attempted to solve the instances we generated with both
the glucose 2.1 [4] and lingeling [5] solvers, with a time limit
of three hours per instance. Fig. 1 shows the average runtimes
of either solver, for the tree different original graph sizes, and
colour cluster sizes of two, three and four. One interesting
result ist that changing the colour cluster size does not seem
to affect the difficulty of the instance in monotone way. It
may seem intuitive that a colour group smaller size might
result in an easier instance, since there are fewer vertices in
the second graph that any vertice in the first graph could be
mapped to, and thus fewer variables in the CNF. However,
this does not appear to be the case for graphs crafted from
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Fig. 1: Average runtime of solvers on graphs crafted from
6-regular original graphs

6-regular originals: The instances with colour groups of size
two are at least as hard as the ones with larger colour groups.

ACKNOWLEDGMENTS

The authors would like to thank the bwGRID [6] for
providing the computational resources to filter the instances.
The first author acknowledges funding from the Deutsche
Forschungsgemeinschaft (DFG) (grant SCHO 302/9-1).

REFERENCES

[1] J. Toran, “On the resolution complexity of graph non-isomorphism,” in
SAT2013, 2013.

[2] M. Meringer, “Fast generation of regular graphs and construction of
cages,” Journal of Graph Theory, vol. 30, 1999.
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Abstract—In this paper, we describe a way to convert instances
of the low autocorrelation binary sequence problem into SAT,
by first converting them to instances of the pseudo boolean
satisfaction problem. We describe the algorithm used for LABS
to PBS conversion, and point to an already existing way of
converting PBS to SAT. We then create a number of SAT
instances in this fashion, and give a brief analysis of the results.

I. LABS DESCRIPTION

The Low Autocorrelation Binary Sequence (LABS) problem
presents itself as follows: For a given length n, find the binary
sequence x = x1x2 . . . xn of length n, with xi ∈ {−1, 1},
where the maximum value M for the autocorrelation functions
Ck(x) is minimal.

M = max
k∈1...n−1

|Ck(x)|

Ck(x) =

n−k∑

i=1

xixi+k

Note that this is an optimisation problem.

II. TRANSFORMING LABS TO LABS PBS

The Pseudo Boolean Satisfaction problem is a constraint
satisfaction problem, which allows constraints of the forms:

s1 + s2 + . . .+ sn ≥ k
s1 + s2 + . . .+ sn = k

where k is a constant, and the si are of the form:

si = ci ∗ lk ∗ . . . ∗ lm
where the cis are constants, and lk . . . lm is the product of one
or more Boolean literals (i.e. li ∈ {0, 1}, negated variables are
allowed). The goal of PBS is to find values for the variables,
which satisfy all constraints. Since LABS is an optimization
problem, it cannot be directly transformed into PBS. It is,
however, possible, to transform it into an (infinite) number of
PBS problems, each asking ”‘is there a sequence with M = k
for some constant k. Since the values for M are typically fairly
low (< 10 for n <= 100), creating, say, 10 PBS instances
checking for target values of M = 1 . . . 10 for each LABS
length n is a feasible approach. Algorithm 1 creates a set of
PBS constraints for a given length n and target M : We need
to create constraints |Ck(x)| ≤M for each k ≤ n− 1. These

already look very similar to PBS constraints; we only need to
correct three issues: Since PBS does not allow usage of leq
and the abs() function, we need to use ≥ instead and split
each constraint into two:

−Ck(x) ≥ −M

Ck(x) ≥ −M

Also, the variables in our constraints are currently in {−1, 1},
but PBS variables need to be in {0, 1}. Since the summands in
our constraints currently consist of only two variables, and no
constants, this can be achieved by turning a summand xi · xj
into a sum:

1 +−2lilj + 2lilj

We get from an xi to li by substituting a −1 with 0 and a 1
with 1, resulting in the final PBS instance having precisely n
variables. The constant +1 here needs to be shifted to the other
side of the equation, since PBS doesn’t allow for summands
that do not contain variables. Since we create two constraints
for every Ck, and since we need to check n− 1Cks, we get a
total of 2(n− 1) constraints.

Algorithm 1: LABS to PBS converter
Input : n, M
Output: PBS instance: set of 2(M − 1) PBS constraints

1 C = ∅ ;
2 i = 1;
3 while i ≤ n− 1 do
4 C1 = ∅ ;
5 C2 = ∅ ;
6 j = 0 ;
7 while j < n− i do
8 C1 = C

⋃
(+2xixj + 2xixj);

9 C2 = C
⋃
(−2xixj − 2xixj);

10 j++;

11 C1 = C1

⋃
(≤ j −M);

12 C2 = C2

⋃
(≤ −j −M);

13 C = C
⋃
C1

⋃
C2;

14 i++;

15 return C;
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Fig. 1: Results of running glucose on the created CNF
instances

III. CODING LABS PBS TO LABS CNF

Transforming PBS instances to CNF form was done with
the npSolver tool described in [1], which can solve - amongst
other things - PBS problems by transforming them to SAT,
then solving the SAT instances. It was modified by the authors
of [1] to output the CNF formulas it creates, instead of directly
solving them.

IV. GENERATED LABS CNF AND PBS INSTANCES

To analyse the Results of the conversion process, we created
PBS and CNF instances for LABS lengths of n = 10 . . . 100,
each with targets M = 1 . . . 10.

V. EVALUATION OF LABS CNF

We attempted to solve the generated CNF instances with
the glucose 2.1 solver [2] in the EDACC-System ([3],[4]),
with a timeout of three hours. Glucose was able to solve
instances with known optimal values (see [5]) correctly up
to n = 39, as can be seen in fig. 1. Starting with n = 40
optimality of the code could not be proved any more. The
runtime of the satisfiable instances is considerably lower than
of the unsatisfiable ones.
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Abstract—The instance generator described in this document
encodes three attacks on the cryptographic hash function SHA-1.
Unlike most instance generators for cryptographic hash func-
tions, our encoding is not based purely on the Tseitin transform-
ation. In particular, we encode modular addition using column
sums represented as pseudo-boolean constraints and minimised
in clausal form using the heuristic logic minimiser ESPRESSO.

I. INTRODUCTION

SHA-1 is a cryptographic hash function that was published
by the NIST in 1995 [1]. Cryptographic hash functions are
functions which are “hard to invert”; in particular, this means
that a given function f should satisfy the following three
properties:

1) Preimage resistance. Given a hash H , it is infeasible
to find a message M such that f(M) = H .

2) Second-preimage resistance. Given a message M , it is
infeasible to find another message M ′ such that f(M) =
f(M ′).

3) Collision resistance. It is infeasible to find distinct
messages M and M ′ such that f(M) = f(M ′).

In this document, we describe an instance generator that
encodes the corresponding attacks against the compression
function of SHA-1 as SAT problems. The attack is successful
if the SAT solver is able to find a solution to the instance.
Given that SHA-1 was designed with these three properties in
mind, we expect the resulting instances to be among the most
difficult combinatorial problems for a SAT solver.

II. PARAMETERS

A. General parameters

To seed the generator’s random number generator, use
--seed i, where i is an integer.

The type of attack to encode can be specified
using one of --attack preimage, --attack
second-preimage, or --attack collision.

B. Difficulty parameters

For preimage attacks, there are three difficulty parameters:
--rounds t, where 16 ≤ t ≤ 80, --hash-bits m,
where 0 ≤ m ≤ 160, and --message-bits n, where
0 ≤ n ≤ 512. See section III for more information about
the impact these parameters have on the expected hardness of
the resulting instances.

C. Format options

The generator supports output in both CNF and OPB
formats, using --cnf and --opb; exactly one of these
must be given. Since the rules of the SAT Competition 2013
mandate that no comment follows the “p” line, we provide an
option --sat2011 that outputs CNF files that strictly follow
the rules of the SAT Competition 2011.

III. EXPECTED HARDNESS

Given that SHA-1 was designed to be hard to crack, it is
highly unlikely that any solver will be able to solve an instance
in reasonable time; however, we have measured the mean
running time for MINISAT on a series of reduced-difficulty
instances encoding preimage attacks.

The three difficulty parameters for preimage attacks are
number of rounds, number of fixed hash bits, and number of
fixed message bits.

The full SHA-1 algorithm has 80 rounds, of which (only)
the first 16 take input directly from the message to be hashed.
Therefore, the possible number of rounds are between 16 and
80, where 16 is a very easy instance and 80 is a very hard
instance. To see the effect of the number of rounds, we lowered
the number of fixed hash bits. We observed three distinct
phases; between 16 and 21 rounds, the instances are trivial
to solve. Between 22 and 26 rounds, the difficulty increases
extremely rapidly (an instance with 26 rounds takes approx-
imately 211 times longer to solve than an instance with 22
rounds), and from 27 rounds onwards, the difficulty increases
very slowly (an instance with 80 rounds takes approximately
only twice as long to solve as an instance with 27 rounds).

The number of fixed hash bits varies between 0 and 160 and
effectively allows us to adjust the number of bits in the hash;
with a value of 0, any message will be a solution (thus, an
extremely easy instance), and with a value of 160, we require
the message to hash exactly to the given hash value. The
difficulty of the instance is roughly (but not quite) exponential
in the number of fixed hash bits.

In the full SHA-1 algorithm, the input to the compression
function is 512 bits of the message. Thus, 2512 is an upper
limit on the size of the search space of a brute force search
for a preimage. By adjusting the number of fixed message bits,
we effectively give the solver parts of one known solution. By
increasing this number, we effectively lower the search space
of a brute force search. However, our observations indicate that
by fixing a small number of bits (i.e. less than 32), the problem
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becomes drastically more difficulty to solve. Only by fixing a
very large number of bits (i.e. more than approximately 512−
24) does the problem become easier to solve.

See [2] for more detailed information about the hardness as
a function of these parameters.

For the SAT Competition 2013, for instances that on av-
erage roughly take around the time limit of 5000 s to solve
using MINISAT, we suggest the following combinations of
parameters:
• 22 rounds, 128–160 hash bits, and 0 fixed message bits;
• 23 rounds, 64–96 hash bits, and 0 fixed message bits;
• 80 rounds, 8–12 hash bits, and 0 fixed message bits.

IV. ENCODING OF 5-ARY 32-BIT MODULAR ADDITION

Each round of SHA-1 includes exactly one 5-ary 32-bit ad-
der. Expressing a constraint over 160 boolean variables (one of
the inputs is an integer constant and is therefore disregarded),
this actually constitutes a large part of the instance in terms
of the number of clauses needed to encode it.

One very simple and frequently used way to encode addition
is to use the Tseitin transformation on a standard ripple-carry
adder circuit. This typically means introducing a lot of extra
variables: one for each gate in the circuit. We take a different
(and, we believe, novel) approach based on column sums
expressed as pseudo-boolean constraints and further encoded
in clausal form using the ESPRESSO heuristic logic minimiser.

Consider the following grade school addition schema for
three binary numbers, x, y, and z, and their sum, w:

c3
c2 c1

c0
x3 x2 x1 x0
y3 y2 y1 y0

+ z3 z2 z1 z0
= w3 w2 w1 w0

The sum of three bits is either 0, 1, 2, or 3, and thus can
be represented by a two-bit number. For the first (rightmost)
column, we let c0w0 be the sum of x0, y0, and z0, and express
it with the following pseudo-boolean constraint:

x0 + y0 + z0 = 2c0 + w0

The carry bit c0 is added to the next column, which is
summed in a similar way. However, the sum of four bits is at
most 4 and must be represented with three bits, in this case
c2c1w1. Thus, we obtain the constraint for the second column
sum:

c0 + x1 + y1 + z1 = 4c2 + 2c1 + w1

We continue in the same way for the remaining columns,
with one small exception: since we are encoding modular
addition, we will get some extraneous carry bits towards the
end that should simply be discarded. These carry bits are
termed dummy bits (as they are only ever used as placeholders
for any value) and denoted with the letter d. The last two

columns of this particular example are therefore encoded as
follows:

c1 + x2 + y2 + z2 = 4d0 + 2c3 + w2

c3 + c2 + x3 + y3 + z3 = 4d2 + 2d1 + w3

Having obtained a set of k pseudo-boolean constraints (for
a k-bit adder), we now encode these constraints in CNF using
ESPRESSO. Since the number of variables in each constraint
is fairly small (n+b1+log2 nc for an n-ary adder; at most 10
variables for 5-ary 32-bit modular addition), enumerating their
truth tables (of at most 210 entries) is completely feasible. The
final number of clauses for each column sum depends on the
constraint, but is in any case bounded by the size of its truth
table.

V. COMPARISON WITH OTHER GENERATORS

We make a brief comparison with other encodings of SHA-1
preimage attacks found in the literature:

Encoding Variables Clauses Ratio

Our encoding 13,408 478,476 35.69
CRYPTLOGVER [3] 44,812 248,220 5.54
Plain Tseitin [4] ≈ 55,000 ≈ 235,000 ≈ 4.27

In short, our encoding has fewer variables, more clauses,
and is easier to solve than the variants of the Tseitin encoding.

VI. VERIFIER

In addition to the instance generator, we also provide a
verifier for instances encoding preimage attacks. The verifier
takes the instance and a solution (as found by a SAT solver)
and verifies that the solution is indeed a valid preimage for
the (possibly partial) hash value encoded in the instance.

The verifier does not simply check that the solution satisfies
the clauses in the instance; rather, it calculates the SHA-1 hash
of the message part of the solution and checks that it matches
the hash part of the solution. This ensures not only that the
solver is correct, but that the encoding itself is correct. (Of
course, we can only ensure that a particular solution to and
encoding of a particular instance is correct, but this is good
enough in practice.)

VII. AVAILABILITY

The program and scripts are available as Free Software
(under the GNU General Public License version 3) from
https://github.com/vegard/sha1-sat/. The program depends on
the logic minimiser ESPRESSO in order to run.
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Grain of Salt benchmarks
Mate Soos

Security Research Labs

I. Problem generator description

Grain of Salt is an advanced CNF generator for stream ci-
phers. It takes an input a stream cipher definition and a set
of parameters how to set up the CNF and generates random
problems based on the setup and its options. Grain of Salt
is open-source software, available for download at https:

//www.gitorious.org/grainofsalt/grainofsalt/. A
highly detailed description of the generator was published at
the Tools for Cryptanalysis workshot at the Royal Holloway
(University of London), in 2010. This 14-page description is
available either from the website of the workshop, at http:
//www.ecrypt.eu.org/symlab/tools2010/ or from the
author’s website.

II. Generated problems

Two problem types were generated, one for the cipher
Bivium [1] and one for HiTag2 [2]. For each, a set of key
bits were given randomly as help bits, and a correct output
was provided. Solution to the problem is equivelent to
reversing the cipher, i.e. finding the key. Since some key
bits were set randomly as help bits, this in most cases is
impossible, as there is no possible key with those bits set
to those values that could procude the given output. There
are in fact only 2 problems that are satisfiable, both in the
HiTag2 set of problems, indicated with the ending “-SAT”.

Generated problems for the Bivium cipher:

• exptime200. 100 problems that should take about
200s on average to solve with current SAT solving
technology. Used command line: ./grainofsalt –crypto
bivium –outputs 200 –probBits 45 –num 100

• exptime1600. 100 problems that should take about
1600s on average to solve with current SAT solving
technology. Used command line: ./grainofsalt –crypto
bivium –outputs 200 –probBits 42 –num 100

• exptime6400. 100 problems that should take about
6400s on average to solve with current SAT solving
technology. Used command line: ./grainofsalt –crypto
bivium –outputs 200 –probBits 40 –num 100

• exptime12800. 100 problems that should take about
12800s on average to solve with current SAT solving
technology. Used command line: ./grainofsalt –crypto
bivium –outputs 200 –probBits 39 –num 100

Generated problems for the HiTag2 cipher:

• exptime400. 100 problems that should take about
400s on average to solve with current SAT solving
technology. Used command line: ./grainofsalt –crypto
hitag2 –outputs 60 –probBits 12 –num 100

• exptime1200. 100 problems that should take about
1200s on average to solve with current SAT solving
technology. Used command line: ./grainofsalt –crypto
hitag2 –outputs 60 –probBits 10 –num 100

• exptime4800. 100 problems that should take about
5800s on average to solve with current SAT solving
technology. Used command line: ./grainofsalt –crypto
hitag2 –outputs 60 –probBits 8 –num 100

• exptime12800. 100 problems that should take about
12800s on average to solve with current SAT solving
technology. Used command line: ./grainofsalt –crypto
hitag2 –outputs 60 –probBits 7 –num 100

III. Comments in the CNF

All CNFs generated have large amounts of information in
comments, such as the definition of each and every variable
and the definition of each and every set of clauses. As such,
every step the SAT solver takes can be mapped back to the
original problem itself.
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Abstract — A propositional satisfiability (SAT) benchmark 

motivated by planning paths for multiple robots on graphs is 

described in this short paper. It is suggested to model the ques-

tion if robots can find paths in a graph to given goal vertices in 

the given number of time steps as propositional satisfiability. 

The problem, its propositional model, and benchmark genera-

tor for grid environments are described. 

I. WHERE THE MULTI-ROBOTIC PROBLEM COMES FROM 

Multi-robot path planning (MRPP, also referred as coop-
erative path-finding – CPF) on graphs [5], [6] is an abstrac-
tion for centralized navigation of multiple mobile robots 
(distinguishable but same in other aspects). Each robot has to 
relocate itself from a given initial location to a given goal 
location while it must not collide with other robots and obsta-
cles. Plans as sequences of movements for each robot are 
constructed in advance by a centralized planner which can 
fully observe the situation. 

The problem of navigating a group of mobile robots or 
other movable units has many practical applications. Except 
the classical case with mobile robots let us mention traffic 
optimization, relocation of containers [5], or movement plan-
ning of units in RTS computer games. 

To be able to tackle the problem a graph-based abstrac-
tion is often adopted – the environment is represented as an 
undirected graph with at most one robot in a vertex. Edges 
can be traversed by robots. 

We describe a MRPP problem formally and develop SAT 
encoding for it in the following sections. Then an instance 
generator for MRPP on 4-connected grids is described. 

II. FROM GRAPH FORMULATION TO SAT ENCODING 

Our encoding of MRPP will be introduced through finite 
domain integer programming. After creating integer model, 
the integer variables and constraints will be replaced with 
vectors of propositional variables (bit-vectors) and corre-
sponding clauses. 

A. Multi-robot Path Planning on Graphs (MRPP) 

Let         be an undirected graph and let   
            be a set of robots where        . The ar-
rangement of robots in   will be described by a uniquely 
invertible function      . The interpretation is that a 
robot     is located in a vertex     . A generalized inverse 
of   denoted as             will provide us a robot 
located in a given vertex or   if the vertex is empty. 

An arrangement of robots at time step      will be de-
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noted as   . If we formally express rules on movements in 
terms of location function then we have following transition 
constraints: 

(i)       either               or 
                  holds 
(robots move along edges or do not move at all), 

(ii)                          
        

(robots move to empty vertices only), and 
(iii)                               

(no two robots enter the same target vertex). 

The initial arrangement is    and    will denote the goal 
arrangement. An instance of MRPP is then given as quadru-
ple          

  . The task is to transform    to    so that 
transition constraints are preserved between all the consecu-
tive time steps. 

Definition 1 (solution, makespan). Let            
   be 

an instance of CPF. A solution of   is a sequence of ar-
rangements            where       and transition 

constraints are satisfied between      and    for every 
       . The number   is called a makespan of the solu-
tion. The shortest possible makespan of   will be denoted as 
     .  

 It is known that finding       is NP-hard [4]. If makespan 
sub-optimal solution is sufficient then polynomial time solv-
ing techniques from [3] can be used. An example of MRPP 
instance on a graph represented by a 4-connected grid is 
shown in Figure 1. 

 
Figure 1.  A typical random MRPP instance on a grid of size 5×5 with 

20% of positions occupied by obstacles. 

B. k-Level MRPP Encoding as Integer Programming 

An incomplete approach from domain independent plan-
ners SASE [1] and SATPlan [2] can be adopted to find 
makespan optimal solutions of MRPP. A question whether 
there exists a solution of the given MRPP of makespan   is 
modeled as propositional satisfiability. A solution of the 
optimal makespan can be found by trying larger and larger 
makespans in a case the MRPP instance is solvable (the 
unsolvability cannot be detected by this approach). 

Unlike domain independent planners SASE and SATPlan 
we use a propositional encoding specially designed for 
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MRPP. The employed encoding called inverse has been de-
veloped in [7] and is significantly smaller in terms of the 
number of variables and clauses than SASE and SATPlan 
encodings on the same MRPP instances. 

Basically we need to model arrangements of robots at in-
dividual time steps and introduce transition constraints into 
the model. In the inverse encoding, the arrangement of ro-
bots at time step   is modeled by state variables   

  for 
    that represent inverse location function at the time 
step  . Next, there are state variables   

  for     that rep-
resent actions taken in vertices at time step  . An outgoing 
action into some of vertex neighbors or an incoming action 
from some of vertex neighbors or noop can be taken in each 
vertex. The domain of   

  consists of            values 
to represent all the possible actions. It is necessary to intro-
duce some ordering on neighbors of each vertex to be able to 
assign concrete actions to elements of the domain of   

 . 
Suppose that we have a function                
                and its inverse   

   that implements this 
ordering of neighbors. 

Definition 2 (inverse encoding). The  -th level of inverse 
encoding consists of the following integer interval state 
variables: 

   
              for all     such that 

   
    iff          

   
                     for all     such that 
  

       iff no-op was selected in  ; 

  
         iff an outgoing primitive action with  
      the target     was selected in  ; 

  
                iff an incoming primitive ac-

tion with     as the source was selected in  . 
and constraints: 

   
          

    
  for all     (no-op case); 

     
               

          
    

    
   

               where     
     

   
for all     (outgoing robot case); 

           
              

   
        where     

     
          

for all     (incoming robot case).   

C. Translation of IP Model of MRPP to SAT 

The encoding is built upon integer finite domains varia-
bles. We eventually need propositional encoding which is 
obtained by translating integer state variables into bit vectors. 
If the state variable has   states (  elements in its domain) 
then we need         propositional variables to represent it. 

If we are asking whether there is a solution of makespan 
  we need to build   levels. The initial arrangement    is 
encoded in   

 . Analogically   
  are set to the goal arrange-

ment   . 

III. MRPP ON GRIDS INSTANCE GENERATOR 

A classical MRPP benchmark introduced in [6] takes 
place on a 4-connected grid of certain size into which obsta-
cles are placed randomly by excluding randomly selected 
nodes. Initial and goal positions for robots are random as 
well. In all the cases random selection is uniform from the set 
of remaining items. Our instance generator produces SAT 
encodings for these benchmarks. Several parameters are 
accepted by the generator: 

 size of the grid   –  dimensions height × width 

 probability of obstacles – placed randomly/uniformly 

 number of robots – placed randomly/uniformly 

 number of levels  – corresponds to the makespan 

 random seed 

A. Simple Knowledge Compilation into the SAT Encoding 

 A simple knowledge compilation into the presented en-
coding is done by our instance generator. It is checked if a 
given robot can occur in a given vertex at a given time step. 
Such occurrence of a robot excludes existence of a solution 
if the vertex cannot be reached from the initial position in 
the given number of time steps or if the goal position cannot 
be reached in the remaining number of time steps along 
shortest paths. 

B. Properties, Parameters and Difficulty 

 A property having the most significant impact on the 

difficulty of MRPP solving is the intensity of interactions 

among robots during their movement. It is more difficult to 

solve a problem when robots need to intensively avoid each 

other regardless of the solving method applied [7], [8]. In-

tensity of interaction is directly changed by the size of the 

grid, probability of obstacles, and the number of robots. 

 Notice also that the SAT model encodes bounded MRPP 

by certain number of levels. The most difficult cases appear 

for the number of levels around the optimal makespan [2]. 

On the other hand instances with few levels can be quickly 

identified as unsolvable. However, it is typically more diffi-

cult to discover solvability of instances with many levels due 

to increasing size of the instance. 

DISCUSSION AND FUTURE WORK 

 Several other encodings of MRPP were investigated by 

the author. The presented inverse encoding is the most com-

pact one if the number of robots is relatively high. 

 There is still room for improving encodings by compiling 

more sophisticated knowledge into it. Further compacting 

the encoding at the bit level is also planned. 
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INTRODUCTION

In cryptography, ARCFOUR is the most widely used soft-
ware stream cipher and is used in popular protocols such as
Secure Sockets Layer (SSL) (to protect Internet traffic) and
WEP (to secure wireless networks). While remarkable for its
simplicity and speed in software, ARCFOUR has weaknesses
that argue against its use in new systems. It is especially
vulnerable when the beginning of the output keystream is
not discarded, or when nonrandom or related keys are used;
some ways of using ARCFOUR can lead to very insecure
cryptosystems such as WEP.

Fig. 1. The lookup stage of ARCFOUR. The output byte is selected by
looking up the values of S[i] and S[j], adding them together modulo 256,
and then looking up the sum in S; S[S[i] + S[j]] is used as a byte of the
key stream, K.

KEY-SCHEDULING ALGORITHMS

ARCFOUR generates a pseudorandom stream of bits (a
keystream). As with any stream cipher, these can be used for
encryption by combining it with the plaintext using bit-wise
exclusive-or; decryption is performed the same way (since
exclusive-or with given data is an involution). To generate the
keystream, the cipher makes use of a secret internal state which
consists of two parts:

• A permutation of all 256 possible bytes (denoted S
below).

• Two 8-bit index-pointers (denoted i and j).
The permutation is initialized with a variable length key,
typically between 40 and 256 bits, using the key-scheduling
algorithm (see Fig. 1).

Parts of the description are from http://en.wikipedia.org/wiki/RC4

The key-scheduling algorithm is used to initialize the per-
mutation in the array S. keylength is defined as the number of
bytes in the key and can be in the range 1 ≤ keylength ≤ 256,
typically between 5 and 16, corresponding to a key length of
40 to 128 bits.

keyScheduleA (k) = S
1 for i = 0 to 255 do S[i] = i

2 j = 0

3 for i = 0 to 255 do
4 j := (j + S[i] + key[i % keylength]) % 256

5 tmp = S[i]

6 S[i] = S[j]

7 S[j] = tmp

Now consider key schedule B which changes Line 4 by
swapping j and key[i % keylength] in the addition.

keyScheduleB (k) = S
1 for i = 0 to 255 do S[i] = i

2 j = 0

3 for i = 0 to 255 do
4 j := (key[i % keylength] + S[i] + j) % 256

5 tmp = S[i]

6 S[i] = S[j]

7 S[j] = tmp

The benchmarks in this suite encode that
forall k, keyScheduleA(k) = keyScheduleB(k)

for various lengths of k and bit-widths of i and j.

Appears in A. Balint, A. Belov, M.J.H. Heule, and M. Järvisalo (eds.), Proceedings of SAT Competition 2013: Solver and Benchmark Descriptions,
volume B-2013-1 of Department of Computer Science Series of Publications B, University of Helsinki 2013. ISBN 978-952-10-8991-6.
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