
Abstract
Software development processes are highly creative, and
therefore prone to change frequently. In addition, neces-
sary expertise often cannot be found at one development
site, so that the necessity arises to distribute projects
among several sites, or form “virtual” corporations,
where software development is shared between several
companies. The first point makes it necessary to support
changes by identifying and notifying the people affected
by a change. The second point emphasizes this necessity,
while also complicating project planning and manage-
ment: changes in one development site or company might
necessitate replanning in several locations. In this paper,
we introduce the MILOS approach, which provides con-
cepts to integrate process modeling, planning, scheduling
and enactment in one system. Thus dynamic plan changes,
as well as automated feedback from execution to the
project plan, can be supported.

Keywords
distributed planning and modeling; integrated planning,
modeling, and enactment; process support; coordination;
change notification

1 Introduction
Software processes represent knowledge about software

development activities. They can be used to facilitate hu-
man understanding and communication, support process
improvement and management, automate process guid-
ance and automate execution support [4]. Capturing, stor-
ing and using an organisation’s process knowledge is
complicated by the following typical characteristics of
software development: Software processes are inherently
nondeterministic, concurrent, and distributed.

The nondeterminism of software processes results from
the fact that the sequence of development steps cannot be
predicted in advance. Reasons are the existence of many
creative development steps (e.g. design steps), possible
choices among different alternative paths for plan execu-
tion, and product changes triggered from inside or outside

the development organization (e.g. defect detection and re-
pair, requirements changes and subsequent product adap-
tations).

Concurrency and distribution of software processes re-
sult from interacting development activities that can be
performed in parallel. Especially, outsourcing of develop-
ment activities and the pressure to incorporate distributed
agents enforces the spatially as well as the temporally dis-
tributed enactment of software processes.

Providing appropriate process support for these charac-
teristics requires
• a process support system that allows for alternating

modeling, planning, and enactment of distributed proc-
esses, and

• the explicit description of decisions and dependencies.
This paper explains the main ideas of MILOS, an ap-

proach to integrated design support. In our current imple-
mentation, MILOS already supports modeling, planning,
and executing the software process, and allows for dynam-
ic plan changes. Notifications are sent to the executing
agents whenever a relevant part of the plan changes or
products are changed which concern them. We are current-
ly extending the system to provide active support (and
change notification) not only for technical roles, but also
for planners and modelers.

This paper is organized as follows: The different stages
of software process support and their interaction are sur-
veyed in Sec. 2. Sec. 3 identifies techniques for supporting
cooperative planning and execution in a distributed devel-
opment environment. Sec. 4 explains the MILOS architec-
ture. Section 5 discusses a typical distributed process in the
context of a representative scenario and thereby illustrates
the functionality of MILOS. Sec. 6 gives an overview of
the current capabilities and limitations of the prototype im-
plementation. Finally, Sec. 7 summarizes the article and
gives an outlook on future work.

2 Stages of Software Process Support
Support for software development projects needs to be

provided on three stages:
Process Modeling captures essential aspects of real-

Distributed Process Planning Support with MILOS

Sigrid Goldmann, Jürgen Münch, Harald Holz
University of Kaiserslautern, P.O. Box 3049, 67653 Kaiserslautern, Germany

{sigig, muench, holz}@informatik.uni-kl.de

Electronic version of an article published at International Journal of Software Engineering and Knowledge
Engineering, Vol. 10, No. 4 (2000), 511-525.
DOI: 10.1142/S0218194000000298
Copyright World Scientific Publishing Company, http://www.worldscientific.com/worldscinet/ijseke

world software development activities. A process model is
an abstract representation of a development activity (e.g.
coding, testing) which explicitly specifies generic knowl-
edge about a set of real-world activities.

Project planning instantiates and tailors process models
to specific project situations, and schedules the project ac-
cording to project deadlines.

During project enactment, the project plan is executed,
and products are created.

As mentioned above, the activities associated with each
of these stages might be distributed among different
project sites, and therefore need to be coordinated. Below,
we first describe each of the three stages in detail, and then
argue that these stages cannot be handled independently
from each other.

2.1 Process Modeling
A software engineering process consists of the following

information that can be captured in MILOS process mod-
els:1

Each process has a name and general description.
A process has input and output parameters. These pa-

rameters serve as variables that hold the process’ input and
output products.

Process preconditions and postconditions specify which
facts need to be true before a process can be enacted, and
what requirements should be fulfilled once the process has
been finished. Conditions can contain variables, which
will be instantiated when the process model is used in a
concrete project.

For each process, different methods can be specified, de-
scribing alternative refinements:
• An atomic method defines a way to solve the process

directly. For example, code inspection can be done in an
ad-hoc way, or using a formal reading technique.

• Complex methods refine a process into a number of sub-
processes, e.g. a component development process is
composed of a component design, a design inspection
and a component implementation process.
For each method, a set of skill requirements is defined,

which describe the resource qualifications necessary to use
that method to work on a process.

Resource models describe types of project resources or
agents (i.e. people or tools), with the resources’ skills and
roles. These models can be used during process modeling
to describe the type of resource that is needed to work on a
process or apply a method.

The general process information described above is
stored in a company-specific “experience base”, to be (re-
) used in specific projects. Other information, like quality

1. Most of the concepts described below are standard process modeling concepts.
However, the concept of alternative methods that are applicable to a process, is
MILOS-specific.

models2 that have proved accurate in past projects, are also
stored in this experience base, and can be used to plan a
project. A survey of the MILOS representation schema and
language can be found in [6].

2.2 Project Planning
Project planning is essentially instantiation of process

models. Planning a project comprises
• selecting appropriate processes from the experience

base, and inserting them into the plan,
• selecting applicable development methods according to

the characteristics of the organizations (e.g. familiarity
with specific methods) and the goals of the project (e.g.
budget limitations),

• instantiating variables in pre- and postconditions,
• allocating resources to the processes according to the

resource properties specified in the respective process
models, and

• time scheduling with these resource allocations in mind.
The resulting plan3 contains the information necessary to

enact the plan. It can also be used for monitoring (and con-
trolling) quality values and other relevant information for
project management and quality assurance.

2.3 Project Enactment
Once an initial plan has been built, it can be executed:

Agents work on processes assigned to them, thereby creat-
ing the corresponding output products. As specified in the
model, certain conditions must be fulfilled before a pro-
cess can be started. These conditions can either be always
true, or they become true when a certain stage in the
project is reached, e.g. when all of a process’ inputs are
complete and meet the specified quality requirements.

It can also happen that an already finished process be-
comes executable again, and needs to be redone, e.g. com-
ponent implementation has to be redone when the
component test detects errors in the code.

2.4 Interleaved Modeling, Planning, and
Enactment

In case a process restart becomes necessary during
project enactment, the original plan will become obsolete
if this loop has not been anticipated and provided for in the
plan. This is one of many examples which show that mod-
eling, planning, and execution depend on each other and
need to be interleaved. Other examples are:
• During planning, it turns out that a new method is

needed for a process. The planner should be able to
access the model and define that method.

2. Quality models map measurable influence factors to quality factors of interest.
3. In this paper, we use the terms “plan” and “schedule” synonymously.

• A process definition itself needs to be tailored to the
specific project, e.g. additional attributes are needed, or
a new precondition needs to be defined.
These two cases might also occur during execution, if the

planner did not have the information necessary to predict
that the process cannot be used “as is”, but needs to be tai-
lored.

In general, it is not always possible to build a perfect
model or plan in advance. In complex projects such as soft-
ware development, it is generally the case that information
necessary for planning will only become available during
project execution. It is therefore necessary for a usable
support system to allow plan changes during project exe-
cution, as well as to be capable of executing plans that are
incomplete when plan execution starts, and are refined lat-
er when the necessary information becomes available.

3 Techniques for Cooperative Modeling,
Planning, and Execution

The increasing complexity of software projects creates
the necessity to distribute the project between team mem-
bers, development sites, and companies. In the past, while
projects might have been executed in a distributed way,
they generally were planned centrally. With increasing
project size, as well as distribution of projects between dif-
ferent companies in virtual corporations, it is no longer
feasible to always plan a project centrally. That means that
support is needed for coordinating distributed project en-
actment as well as support for cooperative modeling and
planning activities. Below, we first describe techniques we
use for coordinating distributed project execution, and then
we argue how the same techniques can be adapted to sup-
port distributed modeling and planning.

3.1 Execution Support
Execution support in our system has two important tasks:

(1) Provide to-do lists for agents, and generate notifica-
tions to the concerned agents whenever a process can
be started (or needs to be restarted), or when something
of interest (e.g. an input product, a scheduled time, or a
process definition) has changed.

(2) Provide feedback to the planner about plan violations
during execution, and allow the model and plan to be
changed during process execution, triggering change
notifications to the concerned agents.

The first point provides guidance to the agents, and
thereby helps ensure that the “real world” process con-
forms with the plan. The second, on the other hand, allows
the plan to be adjusted when necessary, and therefore pre-
vents the plan from becoming obsolete when execution
does not follow the plan in spite of the guidance our system

provides.
In order to meet the first requirement, we generate noti-

fication dependencies from the project plan, and allow
project participants to express interest in specific informa-
tion. To implement these notification dependencies, we
use Event-Condition-Action (ECA) rules that can be based
on product and process-specific events. For example, if the
precondition of the component testing process demands
that the component requirements document should be
complete, our system would automatically generate the
following rule:

Event: document component requirements completed
Condition: the component test process has been assigned

to Agent x
Action: Notify Agent x
The second of the above requirements we meet by keep-

ing a project trace, and checking the trace data (like actual
start and end times) against the plan. If a process’ execu-
tion data deviates from its planned values, the assigned
agent as well as the responsible planner are notified, so that
necessary replanning can be performed. These notifica-
tions are also triggered by corresponding ECA rules. See
[5] for more details concerning our use of ECA rules.

3.2 Modeling and Planning Support
Not only do modeling and planning depend on enact-

ment data, but there are also dependencies between differ-
ent modeling and planning activities that concern the same
process or subplan. Once these activities are performed in
a decentralized way, support is needed to coordinate mod-
eling and planning activities as well as execution activities.
For example, the removal of an output parameter in a pro-
cess model might necessitate replanning in case the output
is needed somewhere else in the plan. If these different
modeling and planning activities have been distributed be-
tween different people, notifications have to be triggered
in order to inform all concerned people of the necessity of
replanning or re-modeling their processes.

As mentioned in [12], modeling and planning can be
seen as a different kind of (meta) process, and can be han-
dled as such. If modeling and planning (and re-modeling
and replanning) are seen as tasks in the meta process of
“managing a software project”, these meta tasks can be as-
signed to agents (i.e. modelers and planners), just like de-
velopment processes are assigned to resources with the
appropriate skills. The meta process can be modeled, and
ECA rules can be extracted from that meta process. For ex-
ample, when the output of the system design process is
changed from an OMT document to a UML document, the
following ECA rule will be triggered (among other rules):

Event: output type for process system design has
changed

Condition: process component design needs OMT design
document as an input

AND planning task for process component design has
been assigned to Agent y

Action: Notify Agent y
In other words, the same mechanisms can be used to co-

ordinate modeling and planning that we already apply to
execution: from the notification mechanisms and ECA
rules to agendas for meta tasks, all coordination concepts
developed for enacting the software process itself can also
be utilized in order to facilitate the meta process of mode-
ling and planning the software process.

4 System Architecture
The MILOS system uses a three-tier-architecture,

formed by the modeling component, the planning compo-
nent and the enactment support system (see [9] for a more
detailed description of the MILOS architecture).

The modeling component lets the user(s) specify process
definitions. These include the concepts specified in section
2.1, like product flow and control flow between processes,
product and process attributes, and resource models.

The planning component provides functionality for plan-
ning and scheduling a concrete project. It allows the plan-
ner to select processes defined in the modeling component
and customize them for a specific project, as described in
section 2.2.

To support resource assignment to processes (in the
planning component), as well as agent notifications by the
enactment component, our system manages a resource
pool (RP), which stores information about the available re-
sources, their properties (e.g. skills), their utilization, and
their email addresses. The planning component accesses
the RP in order to find the agents who’s skills are appropri-
ate for specific processes, and checks whether their time
schedule allows the assignment of processes to them.

The enactment support component is a flexible work-
flow engine that provides task agendas for enactment cli-
ents, and manages the current project state, including
product versions and the project trace. It sends email noti-
fications (using the agents’ email addresses stored in the
resource pool) when products become available/change, or
when the plan or schedule is changed.

These three tiers of our (as yet centralized) server can be
accessed via World Wide Web (WWW) interfaces. We
have defined modeling and planning interfaces as well as
agent agendas that provide guidance to the agents who en-
act parts of the plan. In addition to our own planning inter-
face, the planning component can also be accessed using
MS-Project as a planning tool.

5 Scenario
In this section, a scenario is given which demonstrates a

typical distributed process: a component development due
to given requirements, and a subsequent component testing
at geographically distributed sites. While showing typical
events (such as the violation of quality criteria) and their
consequences for a distributed process support environ-
ment, we illustrate the functionality of the MILOS system.
In particular, the following planning activities are de-
scribed:
• distributed method selection with corresponding

changes of the data- and control flow,
• distributed time- and resource scheduling and its conse-

quences,
• dynamic distributed replanning caused by plan viola-

tions.

Figure 1 Plan excerpt (test site)

component_
requirements

test_cases
component_

design

executable_
code

test_results

generate_
test_cases

perform_
tests

transferred
input

tester1

tester2

transferred
input:

transferred
input:

transferred
output

white_box_test

Legend

product:

process:
consume:

produce:
method:

resource:

Initially, two processes - component_test and compo-
nent_development - have to be instantiated in a global
project plan. We assume that these two processes are to be
enacted in geographically distributed locations (i.e. a test
site and a development site). The instantiated global
project plan can be interpreted by the MILOS workflow
engine in order to enact the processes.

Planners for both sites are selected: Susan = planner for
the test site, John = planner for the development site.

Figure 2 Plan excerpt (development site)

As depicted in Fig. 1 and Fig. 2, Susan and John have al-
ready selected a development method for each process be-
fore the project starts1; for example, Susan (the planner of
the test site) has chosen white_box_test as test method be-
cause there is sufficient experience with this method in the
organization. Especially the relationship between the com-
plexity (due to the McCabe complexity measure) and the
expected test effort is known with respect to the organiza-

1. The depicted plan excerpts are only partially instantiated because fur-
ther instantiation steps (such as resource assignments) still have to be
performed and will be described later.

tion’s characteristics. This is explicitly expressed in a pre-
dictive quality model (see Fig. 3).

Figure 3 Predictive quality model

During planning, variables (such as effort) in the pre-
and postconditions have to be instantiated with desired val-
ues due to project goals and characteristics. For our scenar-
io the conditions for the process generate_test_cases are:

Precondition:
(component_requirements.status = complete) AND
(component_design.status = complete)

Postcondition:
(component_test.effort ≤ 200h) AND
(component_design.path_coverage ≥ 70%) AND
(test_cases. status = complete)

The desired effort value results from budget limitations,
and the desired statement coverage value results from a de-
manded reliability goal. The planners in both organizations
must communicate and adapt the product and control
flows.

In our scenario, the planner for the component develop-
ment process needs to know the planned effort for the test
process to predict the maximum complexity of the compo-
nent design using the quality model. The conditions for the
process create_component_design consequently are

Precondition:
(component_requirements.status = complete)

Postcondition:
(create_component_design.effort ≤ 250h) AND
(component_design.complexity ≤ 50 [McCabe]) AND
(component_design.status = complete)

component_
requirements

transferred
input:

create_
component_
design

designer

ad_hoc

inspection

create_
component_
code

component_development

defect_
list

inspector

coder

component_
design

executable_
code

transferred
output

transferred
output

compiler

design_

200h=T1

C0=50

test
effort

code
complexity
[McCabe]

[h]

Figure 4 Process and method refinement

The time scheduling is performed in MILOS by adding
planned start and finish dates to the processes. These
scheduled times are derived by the planners using the pro-
cesses’ pre- and postconditions and external constraints
(such as delivery deadlines). The planners perform the ini-
tial resource assignment from the resource pool due to
available and qualified personnel and tools. As mentioned
above, Susan is the responsible planning agent for the
component validation process and assigns herself as plan-
ning agent for the subtasks of the method white_box_test.
Then she assigns Magret and Paul as development agents
to the atomic methods (see Fig. 4). Fig. 5 shows the result-
ing plan in MS-Project with the following assignments:
tester1 = Magret, tester2 = Paul, designer = Colin, inspec-
tor = Vic, Coder = Tom, Compiler = Sun Java Compiler.

Figure 5 Global plan in MS-Project

Now let’s start project execution. The first situation un-
der consideration is that the finish date of the process
create_component_design is exceeded by two days be-
cause the actual effort has surpassed the predicted effort by
16 hours. The reaction is, that John, the planner of the de-
velopment site, reschedules the start and finish times for
the subsequent processes design_inspection and
create_component_code. Furthermore, he notifies Vic and
Tom about the delay. Additionally, Susan, the planner of

the test site, should be notified about a delayed delivery of
the product component_design which is input for the pro-
cess generate_test_cases. This process may have to start
later than originally planned, so that it is not guaranteed
that the existing personnel is available during the new time
slots. Reassignments and notifications may be necessary.

Figure 6 Replanned test method

Let us now assume that the complexity of the developed
component design is too high. If there were enough time,
it would be possible to redesign the component with a
complexity that fits the postcondition of the process. How-
ever, since there already is a time delay, it is not possible
to redesign the component. Several other possibilities ex-
ist: First, the planner on the test site can increase the test ef-
fort due to the quality model, and reschedule time and
reassign personnel as described above. Second, the reli-
ability requirements for the test process can be reduced
(e.g. reduction of the minimum path coverage to 30%), so
that the time limitations can be fulfilled. Third, a different
test method can be chosen, e. g., statistic testing (see
Fig. 6). This implies

a) a rejection of the method white_box_test,
b) changes of the product flow (additional input product

usage_model; component_design is no longer needed for
testing),

c) a change of the pre- and postcondition (e.g. replace the
path coverage value by reliability and significance values),

Process
Method

Planning

Legend

Development
Agent

Agent

component
validation

white_box_
test

statistic_
test

generate_
test_cases

perform_
tests

Susan

Susan

Magret Paul

equivalence class
test_generation simulator

test

component_
requirements

test_cases

executable_
code

test_results

generate_
test_cases

perform_
tests

transferred
output

tester1

tester2
transferred
input:

transferred
output

statistic_test

usage
model

st_tool

d) a reassignment of the resources (do Paul and Margret
have experience with stochastic testing?, assignment of the
additional test tool st_tool), and

e) notification of the involved personnel.

6 State of Implementation
The current implementation of our system can satisfac-

torily handle the above scenario by providing the modeling
and planning functionality necessary to build the global
plan described in section 5, and by notifying all involved
agents of changes during project enactment, as described
in section 2.4. However, MILOS does not yet provide sup-
port to explicitly model the meta process of modeling and
planning the project, and therefore the different meta tasks
cannot be assigned to the appropriate planners. With re-
spect to the above scenario, this means that while the en-
actment agents are notified individually of the changes that
concern them, MILOS cannot yet identify which of the two
planners at the different sites needs to be notified of the ne-
cessity of replanning. The current system version handles
this problem by notifying all involved planners whenever
the necessity of replanning occurs.

The MILOS system has been implemented in Java, using
the object-oriented database GemStone/J 2.0 as an Enter-
prise Java Bean (EJB) server that provides transaction
management and persistency services. This server manag-
es the process model and project plan, and provides sup-
port for project enactment. Clients are responsible for
modeling, planning and executing software development
processes. They are stand-alone applications or Java ap-
plets which access the server via HTTP or using a Java Re-
mote Method Invocation (Java RMI) interface. The data
exchange with MS-Project has been implemented using
the MS-Project API, which allows import and export of
MS-Project plans in a predefined exchange format. Our
system is able to import and export plans, and to identify
similarities and differences between imported plans.

Our system also includes an interface to a software met-
rics tool [16]. This tool can be automatically triggered to
take process and product measurements at specified points
in the project (e.g. when a process is started/finished, or
when a product becomes available).

7 Conclusions and Future Work
MILOS is a process modeling and enactment approach

which not only supports modeling and enactment in the
same system, but also provides project management func-
tionality in the form of planning and scheduling support.
This allows us to guide project execution according to the
project plan and process model, as well as to keep the plan
up-to-date by feeding back enactment information into the
plan. MILOS’ flexible workflow engine allows the model

and plan to be changed during project enactment, and pro-
vides support for process restarts whenever necessary.
(See [10] for an example problem that can be supported
and facilitated using the MILOS system.) We support dis-
tributed project enactment by allowing the clients access to
the workflow engine via the WWW. We are currently ex-
tending our approach to allow off-line execution of partial
plans.

In order to provide more active support for distributed
modeling and planning, we are currently extending MI-
LOS to provide notifications services for planners and
modelers by explicitly modeling the meta process (i.e. the
management activities that have to be done in addition to
the actual development process, which include planning
and modeling), and allowing these meta tasks to be as-
signed to individual people. We are currently identifying
the dependencies inherent in this meta process which can
be extracted in order to generate the appropriate ECA rules
to support it. We are also planning to address the idea of
versioning plans and models (and linking them to the
project trace and the products produced during execution),
in order to be able to store different plan versions for later
reuse.

8 Related Research
Our work bears similarities to several areas of research,

particularly project management tools, workflow manage-
ment approaches, process modeling and enactment re-
search.

Commercially available project management tools like
MS-Project and Autoplan support project planning and
scheduling, but provide little or no enactment support. A
project management system that does provide both plan-
ning and execution support is the Mesa/Vista Enterprise
tool. Mesa/Vista Enterprise is an environment for collabo-
rative project execution and management. It provides dis-
tributed access to project data, as well as version and
configuration management, but it does not include any
change notification services.

Workflow management tools like Staffware, FlowMark,
or TeamWARE concentrate on project execution and pro-
vide little or no support for process modeling and project
planning. In particular, plan changes during enactment re-
quire a complete restart of the project in most workflow
management tools.

The approaches most similar to our work can be found in
the area of process modeling and enactment research, e.g.
Endeavors [2], Serendipity [7], OzWeb [8], EPOS [11],
and SPADE [1]. Most approaches in that area provide
(web-based) modeling and enactment functionality, as
well as some support for dynamic plan changes and change
notifications. However, most of these approaches do not

provide project planning and management support, like re-
source allocation and time scheduling for tasks in the
project. See [10] for an overview over these approaches.

Multi-view approaches in the area of process modeling
allow distributed modeling of objects in different styles
and representations (e.g. control-flow view, abstraction hi-
erarchy view, role-oriented view). These approaches can
be classified according to their integration mechanisms.
One class is characterized by separate modeling of differ-
ent views and subsequent integration. A representative of
this class is the MVM approach (multi-view modeling)
[15]. This approach is based on role-specific views, which
are modeled independently using the formal process mod-
eling language MVP-L [3]. Finally, the integration of
views is performed with similarity and consistency analy-
ses and the creation of a comprehensive software process
model.

The other class of approaches is characterized by the dis-
tributed modeling of a common model. This implies the
permanent application of consistency checks and updating
operations. A typical approach of this class is the MUVIE
approach [13]. Here, each view defines a focus on an un-
derlying graph structure model. The modeler only handles
those parts that pertain to a specific view. The underlying
semantics which guide incremental changes are expressed
by a graph model and graph replacements.

Acknowledgments
The MILOS system was developed and implemented in coop-

eration with Prof. Dr. Frank Maurer’ research group at University
of Calgary. Barbara Dellen, Boris Kötting, and Fawsy Bendeck
were involved in the conceptual work as well as the implementa-
tion of the MILOS system. The work was supported by NSERC,
Nortel, the University of Calgary, and the DFG with several re-
search grants.

Literature
1. S. Bandinelli, A. Fuggetta, S. Grigolli: Process Modeling-in-

the-large with SLANG. In IEEE Proceedings of the 2nd
International Conference on the Software Process, Berlin
(Germany).

2. G.A. Bolcer and R. N. Taylor: Endeavors: A Process System
Integration Infrastructure. in Proceedings of the Fourth
International Conference on the Software Process, Brighton,
England, December 1996.

3. A. Bröckers, C. Lott, H. Rombach, M. Verlage: MVP-L lan-
guage report version 2. Technical Report 265/95, Depart-
ment of Computer Science, University of Kaiserslautern,
Germany, 1995.

4. Bill Curtis and Marc I. Kellner and Jim Over: Process Mode-
ling. Communications of the ACM, Vol. 35, No. 9, Septem-
ber 1992.

5. B. Dellen, F. Maurer: Change impact analysis support for
software development processes. Journal of Applied Soft-

ware Technology, International Academic Publishing, 1998.
6. B. Dellen, F. Maurer, J. Münch, and M. Verlage: Enriching

Software Process Support by Knowledge-based Techniques.
In Int. Journal of Software Engineering and Knowledge
Engineering, Volume 7, No. 2, pp. 185-215, 1997.

7. J.C. Grundy and J.G. Hosking,: Serendipity: integrated envi-
ronment support for process modeling, enactment and work
coordination. Automated Software Engineering: Special
Issue on Process Technology 5(1), January 1998, Kluwer
Academic Publishers, pp. 27-60.

8. G.E. Kaiser, St.E. Dossick, W. Jiang, J. Jingshuang Yang and
S.X. Ye,: WWW-based Collaboration Environments with
Distributed Tool Services. World Wide Web, Baltzer Science
Publishers (to appear).

9. F. Maurer, B. Dellen: A Concept for an Internet-based Proc-
ess-Oriented Knowledge Management Environment. Pro-
ceedings of the KAW’98, Banff, Canada, 1998

10. F. Maurer, G. Succi, H. Holz, B. Kötting, S. Goldmann, B.
Dellen: Software Process Support over the Internet. submit-
ted to ICSE99, Formal Demonstration Track.

11. M.N. Nguyen, A.I. Wang, R. Conradi: Total Software Proc-
ess Model Evolution In EPOS. Submitted paper for 4th
ICSP, 1996, Brigthon, UK.

12. Ch. Petrie, S. Goldmann, A. Raquet: Agent-Based Project
Management. to appear in Springer LNAI 1500 special vol-
ume on Artificial Intelligence Today.

13. Peter Rösch, “User Interaction in a Multi-View Design Envi-
ronment”. IEEE Symposium on Visual Languages (VL’96),
Proceedings, pp. 316-323, Boulder, Colorado, Sept. 3-6,
1996. USA, IEEE Computer Society Press,
ISBN 0-8186-7508-X.

14. S. Sutton, L. Osterweil, D. Heimbigner: APPL/A: a lan-
guage for software process programming. IEEE Transac-
tions on SE and Methodology, Vol. 4, No. 3, p. 221-286,
1995.

15. Martin Verlage, “An Approach for Capturing Large Software
Development Processes by Integration of Views Modeled
Independently”. 10th International Conference on Software
Engineering and Knowledge Engineering (SEKE98), June
1998.

16. G. Succi , Webmetrics project. URL: http://
www.sern.enel.ucalgary.ca/Charmi/ResearchProjects/Web-
metrics/

