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Abstract

Background: Twin studies are powerful models to elucidate epigenetic modifications resulting from
gene–environment interactions. Yet, commonly a limited number of clinical twin samples are available,
leading to an underpowered situation afflicted with false positives and hampered by low sensitivity. We
investigated genome-wide DNA methylation data from two small sets of monozygotic twins representing
different phases during the progression of rheumatoid arthritis (RA) to find novel genes for further research.

Methods: We implemented a robust statistical methodology aimed at investigating a small number of
samples to identify differential methylation utilizing the comprehensive CHARM platform with whole blood
cell DNA from two sets of twin pairs discordant either for ACPA (antibodies to citrullinated protein antigens)-
positive RA versus ACPA-negative healthy or for ACPA-positive healthy (a pre-RA stage) versus ACPA-negative
healthy. To deconvolute cell type-dependent differential methylation, we assayed the methylation patterns of
sorted cells and used computational algorithms to resolve the relative contributions of different cell types and
used them as covariates.

Results: To identify methylation biomarkers, five healthy twin pairs discordant for ACPAs were profiled, revealing
a single differentially methylated region (DMR). Seven twin pairs discordant for ACPA-positive RA revealed six
significant DMRs. After deconvolution of cell type proportions, profiling of the healthy ACPA discordant twin-set
revealed 17 genome-wide significant DMRs. When methylation profiles of ACPA-positive RA twin pairs were
adjusted for cell type, the analysis disclosed one significant DMR, associated with the EXOSC1 gene. Additionally,
the results from our methodology suggest a temporal connection of the protocadherine beta-14 gene to
ACPA-positivity with clinical RA.
(Continued on next page)

* Correspondence: Tomas.Ekstrom@ki.se
†Equal contributors
1Center for Molecular Medicine at Karolinska Institutet and Karolinska
University Hospital, Stockholm, Sweden
4Department of Clinical Neuroscience, Karolinska Institutet, Stockholm,
Sweden
Full list of author information is available at the end of the article

© The Author(s). 2016 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Gomez-Cabrero et al. Genome Medicine  (2016) 8:124 
DOI 10.1186/s13073-016-0374-0

http://crossmark.crossref.org/dialog/?doi=10.1186/s13073-016-0374-0&domain=pdf
mailto:Tomas.Ekstrom@ki.se
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
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Conclusions: Our biostatistical methodology, optimized for a low-sample twin design, revealed non-genetically
linked genes associated with two distinct phases of RA. Functional evidence is still lacking but the results reinforce
further study of epigenetic modifications influencing the progression of RA. Our study design and methodology may
prove generally useful in twin studies.
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Background
Epigenetic states define the functional genome and its
communication with, and response to, the environment
[1]. Importantly, epigenetic modifications have been
shown to be partly associated with the genetic and envir-
onmental backgrounds in which they reside [2, 3]. Since
epigenetic mechanisms are believed to be important
players in the interactions between genome and environ-
ment, it is essential to separate the genetic and epigen-
etic components in order to elucidate the mechanisms
by which the environment may impact on the genome
and phenotypes. This can be approached by studies of
monozygotic twins with discordant phenotypes.
One of the basic epigenetic mechanisms is DNA methy-

lation, which is closely associated with gene regulation
both near and distant to genes. The pattern of DNA
methylation of “CpG island shores”, 1–2 kb downstream
or upstream of CpG islands, has been found to associate
strongly with cell type as well as disease [4]. Furthermore,
distant enhancer regions may also employ methylation in
gene regulatory machineries [5].
Rheumatoid arthritis (RA) is a systemic inflamma-

tory disease affecting approximately 1% of the human
population [6] with a multifactorial etiology [7, 8]. RA
development has been serologically investigated using
retrospective collected samples [9, 10], and more recently
prospective collected biobank samples from individuals
at increased risk for RA [11–13] have allowed identifica-
tion of several distinct phases of disease development
[14]. One of these initial phases is characterized by signs
of deregulated immune system function with the pres-
ence of disease-specific autoantibodies—referred to as
anti citrullinated peptide antibodies (ACPA)—directed
to tissue antigens expressed in the joints. These anti-
bodies can be detected already a decade prior to clinical
RA symptoms [9, 15]. ACPA-positive RA disease devel-
opment is therefore thought to be an accessible develop-
mental prototype of a complex autoimmune disease. The
normal maintenance of the immune system, as well as
the failure to regulate it, is dependent on epigenetic fac-
tors [16]. RA is a complex autoimmune disease in which
epigenetic changes have been shown to mediate previ-
ously unrecognized genetic effects [2].

ACPA-positive RA is the major form of RA, its etiology
involving genetic predisposition in combination with
exposure to certain environmental risk factors [7, 8, 17, 18].
Twin, family, and genetic studies have shown that en-
vironmental factors make a substantial contribution, be-
sides the genetic factors, to the development of ACPA
and ACPA-positive RA [11, 19, 20]. More specifically, the
risk for development of ACPA and ACPA-positive RA
is associated with smoking and HLA-DRB1 gene alleles
[17, 18]. In addition, over 100 non-MHC risk alleles for
ACPA-positive RA have been identified [21]. Our recent
finding of associations between genotype, DNA methyla-
tion, and ACPA-positive RA within the HLA cluster [2]
provide genetic insight into how epigenetic regulation can
mediate early stages of the disease. Yet, little is known in
general of how and if environmental factors orchestrate
epigenetic changes before disease onset.
In our previous work, we showed how epigenetic

changes in RA can mediate previously opaque genetic
differences [2]. Here we wished to understand epigenetic
changes where the genome has a homogenous back-
ground by employing monozygotic (MZ) twins. In order
to understand some of the mechanistic changes in RA
development, we set out to examine the DNA methy-
lation profile in two MZ twin sets, discordant for two
different phases of disease development, by using the
“comprehensive high-throughput arrays for relative
methylation” (CHARM) technology, which employs
2.1 million probes [22] grouped in 43,897 genomic re-
gions. The CHARM array also includes 4500 control
probes allowing unmethylated regions to be associated, on
average, with values of 0 [22]. Coverage information for
the CHARM array design is depicted in Additional file 1:
Figure S1.
Since the sample sizes are usually small in twin studies

interrogating discordant situations, a robust methodo-
logical framework was developed to identify changes in
DNA methylation with high specificity, minimizing the
number of false positives (low-sensitivity). Our paired
data analysis suggests that the employed MZ twin model
does indeed isolate epigenetic RA determinants from
genetic ones, and also may identify candidate biomarkers
associated with a temporal epigenetic trajectory of disease
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development. Importantly, by estimating the proportion
of the common cell types in the peripheral blood samples,
we were able to distinguish phenotype-driven epigenetic
changes from cell type-driven ones. Our results reveal
differentially methylated loci in the twin sets that dis-
criminate ACPA-positive healthy subjects from those
with ACPA-positive RA, some of which are replicated
in a previously analyzed non-twin cohort, as well as also
suggesting novel associated genes.

Methods
Clinical material
DNA was obtained from five healthy MZ twin pairs
discordant for ACPA and seven MZ twin pairs discordant
for ACPA-positive RA (Table 1; Additional file 2: Table S1).
For the replication with bisulfite pyrosequencing (see
the “Statistical analysis for validation” section in the
“Methods”) an additional six healthy MZ twin pairs dis-
cordant for ACPA and six MZ twin pairs discordant for
ACPA-positivity (Additional file 2: Table S1) were ana-
lyzed. The 24 twin pairs belong to a population-based twin
cohort (Twingene) which is part of the Swedish Twin
Registry [11, 23]. Information about smoking habits, C
reactive protein, and occurrence of the HLA-DRB1 shared
epitope (SE) are listed in Table 1. ACPA presence was
tested by CCP2 ELISA assay (Immunoscan CCPlus) using
the cutoff set by the manufacturer to define positive
sera [11]. Each individual gave written approval for partici-
pation in the study and the ethical review board at the
Karolinska Institutet approved the study.

ACPA-positive healthy: verification and discordance status
ACPA-positive healthy discordant twins tested positive
for ACPA (high concentration, >75 AU/ml) while their
sibling tested negative for ACPA. None of the twins had
self-reported chronic rheumatic joint disease at the time
of blood collection. Also, none of these twins was identi-
fied with a discharge RA diagnosis (or other rheumatic
joint disease diagnosis, e.g., polyarthritis) in the Swedish
National Patient Register for a median time period of
3 years (interquartile range (IQR) 2–4) following blood
collection.

ACPA-positive RA: verification and discordance status
The ACPA-positive RA discordant twins tested positive
for ACPA (high concentration, > 75 AU/ml) while their
healthy siblings tested negative for ACPA. Also, these

ACPA-positive twins had self-reported RA at the time of
blood sampling. The self-reported RA diagnosis was
verified by both linkage to the Swedish National Patient
Register and review of the medical records according to
the American College of Rheumatology 1987 criteria
[24]. None of the ACPA-negative siblings had self-
reported chronic rheumatic joint disease at the time
of blood collection. Also, none of these ACPA-
negative siblings had previously been discharged with
a RA diagnosis (or other rheumatic joint disease diag-
nosis, e.g., polyarthritis) in the Swedish National Pa-
tient Register for a median time period of 3 years
(IQR 2–4) following blood collection.

Sampling and DNA extraction
The twins donated peripheral blood at outpatient clinics.
Sera and tubes with whole blood were sent to Karolinska
University Laboratory by overnight post and then for-
warded to the KI Biobank. At the KI Biobank the DNA
was extracted using the Puregene extraction kit (Gentra
Systems, Minneapolis, MN, USA). After extraction the
DNA was subsequently stored with a barcode at −20 °C.
Quality control was done by 1% agarose gel to detect
degradation. Sera was aliquoted and stored with a bar-
code in liquid nitrogen (−180 °C) at the KI Biobank.

Low resolution typing HLA-DRB
Two-digit HLA-DRB1 typing was conducted using
sequence-specific primer PCR (DR low-resolution kit
(2-digit); Olerup SSP, Saltsjöbaden, Sweden) and the
PCR products were loaded on 2% agarose gels. To de-
termine the specific genotype, an interpretation table was
used according to the manufacturer’s instructions. HLA-
DRB1 SE alleles were defined as *01 (except *0103), *04,
and *10.

DNA preparation and CHARM
DNA (1 μg per sample) was sheared, McrBC-digested,
and gel fractionated before labeling and hybridization
onto arrays covering 2.1 million CpG sites according
to the protocol in [25]. CHARM is a method developed
to analyze genome-wide gene-specific methylation that
combines a purpose-made array design and a statistical
procedure. The CHARM statistics-based algorithm first
involves the identification of consecutive differential
methylation sites, identifying them as candidate (diffe-
rentially methylated regions (DMRs)) and second uses

Table 1 Summary information of the individuals selected for the experimental design

Discordance type Number of
twin pairs

Females Ever smokers SE occurrence Median age (years) at
blood sampling (IQR)

Median CRP at blood
sampling (IQR)

ACPA-positive healthy 5 80% 30% 60% 63 (62–74) 1.7 (1.2–4.2)

ACPA-positive RA 7 43% 36% 71% 70 (68–72) 3.7 (2.6–7.9)

SE shared epitope, IQR interquartile range, CRP C-reactive protein
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a boot-strapping approach to compute a significance level
for each DMR [22]. This protocol also covers CpGs in
lower CpG density regions of the genome, in addition to
CpG islands and shores, and employs a smoothing algo-
rithm allowing correction for CpG density and fragment
biases which may otherwise occur in methyl-enrichment
or methyl-depletion DNA fractionation methods. DNA
from peripheral blood cells (PBC) was analyzed to deter-
mine the locus-specific differential methylation patterns.
The method is comprehensively described in [22] and
briefly in Additional file 3: Methods. TS1 (Twin-set of
ACPA-positive healthy discordant twins) and TS2 (Twin-
set of ACPA-positive RA discordant twins) were profiled
separately in two batches; within each batch, all samples
(e.g., healthy controls and RA individuals) were profiled
together. In our analysis, and similarly to epigenome-wide
association studies [26], we note the occurrence of a batch
effect between TS1 and TS2, probably due to handling or
processing effects; hence, we do not compare TS1 and
TS2 statistically. Note that all chromosomal locations are
based on the hg18 build (original CHARM design). When
annotation to genes was conducted we applied liftOver to
map to hg19 in order to confirm that the DMR-gene
annotation was consistent between genome reference
versions. We observed minor differences between DMR-
gene mapping in hg18 and hg19.

Array pre-processing
In the processing of CHARM arrays, several quality
controls are considered: (1) the signal of background
probes; (2) the standard deviation of untreated channel
signals, which must be small; (3) the difference between
the medians of control (CpG-free regions) and non-control
probes, which must be negative; and (4) probes with a
probe quality lower than 80 were discarded (see CHARM
Bioconductor package for details [27]). In addition, after
normalization, a quality control is applied to ensure that
high correlation between samples is observed. For a more
comprehensive discussion, see Additional file 3: Methods.
Because DNA methylation profiling and CHARM arrays
were processed in two different batches (for TS1 and TS2
associated samples, respectively), the data preprocessing
and following analytical steps were performed separately
for each batch.

Methylation estimation and normalization
The methp function of the CHARM Bioconductor pack-
age [27] was used to estimate methylation percentages
from signal intensities. A three-step methodology was
used: (1) within-sample normalization (using non-CpG
probes as a reference for unmethylated DNA values);
(2) between-sample normalization by subset quantile
normalization; and (3) percentage methylation estima-
tion [27]. We considered sub-quantile normalization

and LOESS normalization for between- and within-
sample normalization, respectively.

Quality control for confounders
Possible confounders were investigated with regard to
their association with experimental design (batch, within
TS1 and TS2 separately) and clinical information (age,
gender, and smoking). Also, the global variability of
samples was investigated using multi-dimensional scaling
(MDS; Additional file 1: Figure S26.); briefly, MDS depicts
in two dimensions the associations between samples. We
did not identify any associations for confounders using
MDS, sva, or principal component analysis in TS1 sam-
ples. However, TS2 samples grouped by age and gender
(Additional file 1: Figure S26b). To investigate the possible
association of age and gender with the skewness observed
in TS2 (Fig. 1b), we compared the distribution of diffe-
rences in methylation within female pairs and within male
pairs separately; no significant difference was found using
a Kolmogorov–Smirnov test (p value >0.2) and the top
differentially methylated probes. Similar results were
obtained when considering age and dividing samples
into two groups: “aged more than 70 years” and “aged
less than 70 years” (p value >0.2).

Single probe analysis
The same linear model used in dmrFind (CHARM
Bioconductor package [27]) for DMR discovery was
also used to compute p values for individual probes.
No single probe was found to be differentially methy-
lated when considering a false discovery rate (FDR)
<0.20 using the Benjamini–Hochberg FDR controlling
procedure [28].

DMR candidate identification
The dmrFind algorithm is described in detail in [22] and
further explanation is given in Additional file 3: Methods.
When cell proportion information is considered, the
percentages of neutrophils, natural killer (NK) cells
(CD56+), and the sum of CD4+ and CD8+ T cells are
included as covariates.

Resampling-based family-wise error rate
The CHARM algorithm provides three different statis-
tics that are computed for each candidate DMR: (a) avg,
the average (across probes) percentage methylation
difference; (b) max, the maximum percentage methy-
lation difference; and (c) area.raw, the number of probes
multiplied by the averaged difference of methylation,
which is the default mode. By running the default mode
we observed that the selection from the list of candidate
DMRs was biased towards DMR with larger numbers of
probes (Additional file 1: Figures S24 and S25). To correct
for this bias, we estimated for each candidate DMR the
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family-wise error rate (FWER) similarly to CHARM
FWER but considering only DMRs containing similar
number of probes and selecting for each bootstrap-
ping only those candidate DMRs (cDMRs) that are also
significant in a permutation test in order to discard
outlier-driven results (see the “Permuted p value during
bootstrapping” section in the “Methods”; Additional file 3:
Methods: Bootstrapping for statistical validation). The
original methodology is described in the CHARM package
[27]. Briefly, FWER is computed for each DMR and for
each statistic; in the case of avg it is computed as the
proportion of maximum avg (across all iterations) that is
greater than or equal to the avg of the DMR (similarly for
max and area.raw). In both TS1 and TS2 the resampling
was conducted 2000 times.

Permuted p value during bootstrapping
We observed that many candidates were selected based
on locus-specific outliers, i.e., a unique twin pair with
extreme differences in the studied DMR but not showing
differences globally and therefore not discarded as a
sample. To discard these cDMRs both in the discovery
run and for all bootstrapping iterations (to avoid infla-
tion), we computed a permuted p value for each DMR.
For this we first computed for each sample the average
(maximum) methylation over the DMR and then by
randomizing the labels within each pair of twins we
computed an average-associated permuted p value (max-
imum associated permuted p value). We excluded cDMRs
in both the discovery run and bootstrapping iterations
if the permuted p value was >0.1 for both statistics
(maximum and average). The number of permutations

computed was 32 for TS1 and 128 for TS2; these numbers
are limited by the number of samples.

Functional analyses
Genomic Regions Enrichment of Annotations Tool
(GREAT) analysis [29] was done using the web interface
provided at Bejerano’s lab (http://bejerano.stanford.edu/
great/public/html/). The method defines domains for
every gene and then uses this domain to map non-coding
cis-regulatory regions to genes; each region may be
mapped to more than one gene as domains may overlap.
The purpose is to perform a functional enrichment at the
gene level but overcoming the biases that may be intro-
duced in the mapping of regions to genes; for example,
genes in deserts may have larger number of regions
associated with them but may not represent regulatory
functions. We used GREAT version 2.0.2, with species
assembly hg18 and association rule Basal + extension:
5,000 bp upstream, 1,000 bp downstream, 1,000,000 bp
max extension, curated regulatory domains included.

Sorted cell analysis
For cell type-specific methylation profiling, CD4+ and
CD8+ T cells, CD56+ NK cells, and neutrophils were
isolated from peripheral blood from five healthy male
donors (mean age ~38 years) as described in Reinius
et al. [30]. CHARM was performed as above.

Cell proportion estimation
To estimate cell proportion, we adapted the methodology
described in [31], originally developed for the Illumina
450 K array. We downloaded software implementing the

Fig. 1 Differential methylation after correction for cell proportion. Log-transformed p value (y-axis) versus log-transformed fold change
(logFC; x-axis) from the associated linear model. A negative logFC denotes hypomethylation and a positive logFC hypermethylation in
TS1 and TS2 comparisons; the logFC was computed using M values in a linear model and using estimated cell proportions as covariates
(see “Methods”). The horizontal and vertical lines are arbitrary thresholds selected to highlight possible tendencies. a Results from ACPA-positive
healthy versus ACPA-negative healthy twin siblings (TS1). b Results from ACPA-positive RA versus ACPA-negative healthy twin siblings (TS2)

Gomez-Cabrero et al. Genome Medicine  (2016) 8:124 Page 5 of 15

http://bejerano.stanford.edu/great/public/html/
http://bejerano.stanford.edu/great/public/html/


method from http://people.oregonstate.edu/~housemae/
software/. To adapt it to the CHARM array we first iden-
tified DMRs for every cell type (e.g., CD4+ samples versus
rest of samples). We pooled those DMRs (sorted-cell
DMRs) and generated a methylation profile for each
sorted cell type by averaging the methylation of the probes
within the DMRs. We then fit a regression model (“valid-
ation model” in the original notation) to select the most
informative sorted cell DMRs. Next we solved a quadratic
problem (QP) in order to identify the cell proportions
within our TS1 and TS2 samples. We added to the QP the
condition that the sum of all the proportions was required
to be 1 in order to gain stability in the results. We selected
300 sorted-cell DMRs as informative DMRs.

Projection analysis
We wanted to check if the identified DMRs in TS1
(considering cell proportion correction) were likely
cDMRs in TS2 using TS2 data. To do this we used the
genomic intervals (DMRs found in TS1) and computed
the permuted p value [32] when using data from TS2.
To compute the permuted p values we used two of the
statistics used during DMR finding: max and average
(see “Methods”); note that the area.raw statistic in this
case provides similar results to the average statistic. For
each statistic and for each TS1 DMR we computed a
score p value, where score can be max or average. Simi-
larly, we investigated TS2 DMRs in the TS1 data.

Changes in DMRs versus confounders
Considering the low number of samples, it is not possible
to include all covariates directly into the models. Hence,
covariates thought to be most relevant were chosen to
investigate if the methylation differences identified are
associated with any relevant covariate. Four covariates
were considered: age, gender, HLA epitope, and smoking.
For age and gender, and considering that we are using
twin samples, we investigated the association between
gender and age, and the “differences in methylation” by
linear modeling analysis for each DMR were computed in
R. Concerning the HLA epitope and smoking covariates,
linear models between methylation profiles and the
variables for each DMR were computed. For each linear
model the null hypothesis was the slope associated with
the covariate being 0.

Statistical analysis for validation
Significant DMRs were selected to be validated—those
associated with genes PCDHB14 (DMR1), PCDHB5
(DMR_nc_06), and EXOSC1 (DMR18). Methylation ana-
lysis by bisulfite pyrosequencing was conducted in the
CpG sites described in Additional file 2: Table S4. Two
types of analyses were performed: technical validation
and replication. First a technical validation was done

with bisulfite pyrosequencing by analyzing the same
individuals profiled in CHARM; the percentage of times
methylation differences in twins were in agreement when
comparing CHARM and bisulfite pyrosequencing was
computed (“Ratio” column in Additional file 2: Table S4).
Next a differential methylation analysis was performed by
linear modeling using pyrosequencing data (“Technical”
column in Additional file 2: Table S4) with and without
deconvolution. In all cases the p values were not sig-
nificant, but the directions of the changes (slopes in
linear models) in methylation were conserved. For cell-
correction analysis we used as covariates the cell propor-
tion estimations computed in CHARM. Finally, using
bisulfite pyrosequencing profiling, a new set of individ-
uals were included and the analysis repeated only without
deconvolution. Again, no statistically significant associa-
tions were found; however, the slope was in the opposite
direction to that in the original cohort in Val5 alone.

Meta-analysis
Meta-analysis on the bisulfite pyro-sequencing data was
performed by combining the (unpaired) technical veri-
fication and the replication cohort. Additional file 2:
Table S4 includes two columns depicting the outcomes
of combining the validation and replication samples. We
used two different methodologies: (1) p value based meta-
analysis by the “summation of p value” method [33]; and
(2), effect size-based meta-analysis considering fixed
effects [34] (in all effect size-based analyses residual
homogeneity was not rejected, so we used a fixed effect
model). Both methodologies provided very similar results,
although, as expected, the effect size-based analysis was
more powerful.

Results
Characteristics of investigated monozygotic twins using
CHARM
We analyzed five MZ twin pairs discordant for the
presence of ACPA at risk for developing RA (TS1) but
without known established RA disease (called “healthy”
here) and seven pairs discordant for ACPA-positive RA
(TS2) (Table 1). The twins with ACPA-positive RA had
varying disease duration with a median of 20 years (range
0–56) and were all treated with disease-modifying anti-
rheumatic drugs (DMARDs). Additional detailed informa-
tion about these samples is presented in Additional file 2:
Table S1.
All samples passed the CHARM array quality criteria

(see “Methods”). The source of the investigated DNA
was whole blood. The analysis of the CHARM arrays
was done in two steps. In the first step the analysis was
conducted without considering cell proportions. Results
from this analysis reflect changes in DNA methylation
as a result of phenotype as well as of cell type proportion
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[30, 31, 35]. This analysis provides a better framework
for technical validation of the results because it is not
affected by possible errors associated with cell proportion
correction methodologies. In the second step, differential
methylation analysis was conducted with the computa-
tionally predicted information of cell proportion changes
(see “Methods”). The first step may be better suited for
biomarker discovery, while the second step will provide a
basis for hypotheses pertaining to the disease pathology.

Analyses of cell type-driven differential methylated
positions and regions
When considering differential methylation only at the
probe level, no single differentially methylated position
(DMP) was identified at a FDR of <0.20 when comparing
ACPA-positive healthy versus their respective ACPA-
negative healthy twin siblings (TS1). Neither did we iden-
tify any statistically significant DMP when comparing
ACPA-positive RA versus their respective ACPA-negative
healthy twin sibling (TS2). These results align with the
power analysis done for case-control studies in twins [36].
Volcano plots in Additional file 1: Figure S2a (TS1) and
S2b (TS2) show the genome-wide differential methylation
at the probe level for the two twin sets. We observed
a larger number of hypermethylated CpG sites in the
ACPA-positive healthy twin siblings in TS1 (Additional
file 1: Figure S2a), while ACPA-positive RA individuals
(TS2) show the opposite (Additional file 1: Figure S2b).
We did not find statistical evidences of the skewness to be
associated with confounders (see the “Quality control for
confounders” section in the “Methods”). However, we
identified age and gender as relevant covariates to investi-
gate in the candidate DMRs.
To identify DMRs, we defined a high-specificity and

low-sensitivity approach, aimed at prioritizing the identi-
fication of true positives and minimizing false positives
when using the current small number of samples. We
estimate the significance of a candidate DMR globally by
computing the family-wise error rate (FWER) using an
adapted bump-hunter-based algorithm as described by
Jaffe et al. [37] (see the “Resampling-based family-wise
error rate” section in the “Methods”). Two modifications
were made: first, we take into consideration the number
of probes of the candidate DMRs (cDMRs) and only
include bootstrap-based cDMRs that are significant when
computing a permuted p value (by randomizing the labels
within the twin pairs; see the “Permuted p value during
bootstrapping” section in the “Methods”) [38]. Our second
modification filters out cDMRs that are significant based
only on locus-specific outliers, i.e., a unique twin pair with
extreme differences in the studied DMR but not showing
differences globally and therefore not discarded as a
sample.

By employing these strict criteria, one DMR, associated
with the protocadherin (PCDH) gene PCDHB14, was
identified as significant in the TS1 group (Additional
file 2: Table S2) after filtering for FWER ≤0.10. The
limited number of DMRs is expected in the heteroge-
neous cell population since all individuals are in fact
healthy.
The analysis of TS2, a group where substantial diffe-

rences in cell type composition is expected, revealed six
significant DMRs (Additional file 2: Table S2) after filte-
ring for FWER <0.10. In TS2, another gene in the
PCDH cluster was found to be differentially methy-
lated (Additional file 1: Figure S3 for PCDHB5).
Bisulfite pyrosequencing was used for technical valid-

ation of a few selected loci (e.g., PCDH5 in Additional
file 1: Figure S3). None of our technical validations
achieved statistical significance, although all changes
computed used pyrosequencing data were in the same
direction as the CHARM results (we will refer to this
as the change being directionally consistent; see the “Stat-
istical analysis for validation” section in the “Methods”).
For an initial technical validation, we selected cDMRs as-
sociated with (FWER <0.20) COL13A1 (Additional file 1:
Figure S4) and SLITRK2 (Additional file 1: Figure S5)
genes because the methylation differences were large
enough to be analyzed by pyrosequencing; in both cases
the changes were in the same direction as those observed
in the CHARM data. Additionally, we performed a tech-
nical replication by bisulfite pyrosequencing of DMRs
associated with PCDHB14, PCDHB5, and EXOSC1
(Additional file 2: Table S4); we selected them based
on their biological relevance and in all cases we observed
the change is directionally consistent. Finally, we conducted
bisulfite pyrosequencing of the same CpGs associated with
PCDHB14, PCDHB5, and EXOSC1 in independent replica-
tion cohorts; in all but one case did we observe changes
to be directionally consistent (Additional file 2: Table S4).
Finally, we conducted a meta-analysis on the pyrose-
quencing data by combining the technical validation data
and the replication cohort data. For this, we used two
different methodologies (see the “Meta-analysis” section
in the “Methods”) that returned similar results and
between one and three significant CpGs (p value <0.05;
Additional file 2: Table S4) associated with PCDHB5
(in TS2) and PCDHB14 (in TS1).
Several of the TS2 DMRs identified were associated

with regions that differentiate the methylation profiles of
CD4+ T cells and neutrophils (see “Methods” and an
example in Additional file 1: Figure S6 for PCDHB5).
Although important for the disease phenotype, these
results point in the direction of substantial methyla-
tion changes being due to differences in cell proportion
between ACPA-positive RA and healthy individuals, which
is consistent with our previous report [2].
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Analysis of phenotype driven differentially methylated
regions: comparison with a non-twin cohort
In order to identify differentially methylated regions
caused by changes in cell type proportion, we repeated the
statistical analysis while considering the cell type propor-
tion of each sample (cell type deconvolution/correction).
To do this, we used the strategy depicted in Fig. 2. As a
first step we analyzed the methylation profile by CHARM
in physically sorted CD4+ T cells, CD8+ T cells, neutro-
phils, and CD56+ NK cells from five healthy individuals.
Those profiles allowed us to identify DMRs characteristic
of each of these cell types (see the “Sorted cell analysis” in
the “Methods”). By combining those DMRs we adapted an
existing and validated computational procedure [2, 31] to
generate robust estimations of the cell proportions in each
sample (see the “Cell proportion estimation” section in
the “Methods”). As a second step we applied the same
DMR-finder methodology used for the “non cell-corrected
analysis” (see the “DMR candidate identification” section
in the “Methods”) but this time we included as covariates
the estimated cell proportions.
When comparing cell proportions (Table 2) we did not

observe statistically significant differences after a t-test
analysis and after correction for multiple testing, but we

did observe larger proportions of neutrophils in most
ACPA-positive RA twins (five of seven) compared to their
ACPA-negative healthy siblings (TS2), which supports our
estimations observed previously [2]. By combining results
from [2] and our current data (although not significant)
showing the same directionality, we conclude that correc-
tion for cell proportion is necessary. We also observed a
non-significant decreased population of CD56+ NK cells
in the ACPA-positive healthy samples in the TS1 group.
When considering differential methylation only at the

probe level after correction for cell proportion, no single
DMP was identified at a FDR <0.20 in either TS1 or
TS2. Volcano plots in Fig. 1a (TS1) and 1b (TS2) show
the genome-wide differential methylation at the indi-
vidual probe level for the two twin sets. We observed
a larger number of hypermethylated CpG sites in both
comparisons.
However, DMR analysis in the TS1 comparison after

cell type correction returned 17 DMR candidates (FWER
≤0.10; see “Methods”; detailed list in Table 3). Of those,
14 DMRs were found in either CpG shores or CpG
islands (Table 4; Fig. 3; Additional file 1: Figure S7–S23).
From the 17 TS1 DMRs, 13 overlapped with probes

present in the Illumina 450 K array; ten of the 13

Fig. 2 Schematic representation of the analysis. TS1 and TS2 denote the tests comparing ACPA-positive healthy twin versus ACPA-negative
healthy twin and ACPA-positive RA twin versus ACPA-negative healthy twin, respectively. Steps 1 and 2 denote the first step of the analysis, DMR
identification in TS1 and TS2 without cell proportion adjustment. In step 3 we computed DMRs between each pair of cell types (neutrophils, CD4
+ T cells, CD8+ T cells, and CD56+ NK cells) and observed that DMRs identified without cell proportion adjustment were associated with cell type,
so likely to be associated with changes in cell proportion. For this reason in step 4 we estimated cell proportion in each sample by adapting the
method of Houseman et al. [31] (see the “Cell proportion estimation” section in the “Methods”). In step 5 and 6 we used cell proportion estima-
tions as covariates in the identification of DMRs in TS1 and TS2. A DMR is considered statistically significant if it is significant both globally (FWER
<0.10) and locally (permuted p-value <0.10); details are provided in the “Methods”
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Table 2 Estimation of cell proportion

For each sample the estimation of neutrophils, CD4+ T cells, CD8+ T cells, and CD56+ NK cells is provided, as described by Houseman et al. [31]. For each twin pair
the difference in cell proportion (computed in ratios from 0 to 1, equivalent to percentages) for each cell type was computed in DIF; the purple cells indicate the
p values from the paired t-test comparing differences. The sum of all ratios for a sample may differ from 1 due to rounding in the table; the analysis was
performed without rounding

Table 3 DMRs identified after cell type correction

DMR name Chromosome Start End nprobes FWER average FWER maximum FWER area Permuted p value Type

DMR1 Chr5 140582954 140584018 31 <0.01 <0.05 <0.005 0.06 TS1

DMR2 Chr11 74630937 74631216 7 <0.05 <0.01 <0.1 0. 03 TS1

DMR3 ChrX 51087402 51089195 32 <0.1 <0.1 <0.01 0. 03 TS1

DMR4 Chr14 54101669 54102157 6 <0.1 <0.1 0.03 TS1

DMR5 Chr2 85215637 85215811 6 <0.1 0.06 TS1

DMR6 Chr14 96038274 96038760 11 <0.01 0.06 TS1

DMR7 Chr9 4731364 4731640 6 <0.05 0.03 TS1

DMR8 Chr1 198645284 198645642 7 <0.1 0.03 TS1

DMR9 Chr1 116184060 116185215 33 <0.05 0.06 TS1

DMR10 Chr15 75897924 75898101 6 <0.05 0.01 TS1

DMR11 Chr2 171280327 171280711 10 <0.1 0.03 TS1

DMR12 Chr16 66835947 66836364 12 <0.05 0.09 TS1

DMR13 Chr13 113192663 113193262 8 <0.1 0.06 TS1

DMR14 Chr22 19603181 19604444 33 <0.1 0.06 TS1

DMR15 Chr17 41620864 41621503 16 <0.1 0.06 TS1

DMR16 Chr8 61353541 61354034 15 <0.1 0.06 TS1

DMR17 ChrX 113720992 113721797 22 <0.1 0.06 TS1

DMR18 Chr10 99200020 99200806 23 <0.05 <0.05 <0.005 <0.01 TS2

DMRs (differentially methylated probes) identified after cell type correction in TS1 and TS2; the double criteria for selection is first a FWER <0.20 in at least one of
the three statistics (italics) and secondly a permuted p value <0.1. “Start” and “End” denote the start and end location of the DMR in the chromosome. “nprobes”
denotes the number of probes in the DMR. “FWER average”, “FWER maximum”, and “FWER area” denote the FWER associated with each one of the statistics used
(see “Methods”). “Permuted p value” denotes the p value computed for each DMR locally, comparing each DMR statistic to random permutations of the samples.
“Type” denotes if the DMR is associated with TS1 (ACPA/healthy discordant) or TS2 (ACPA-positive RA/healthy discordant). Bold highlights DMRs whose FWER was
<0.005. Chromosomal locations are based on the hg18 build
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overlapping DMRs are located within 200 bp of the
differentially methylated probes identified after cell correc-
tion in our previous study of drug-naïve ACPA-positive
RA (the EIRA cohort) using Illumina 450 K analysis [2].
Furthermore, the changes in EIRA were directionally
consistent with changes in CHARM analysis at eight
of the ten sites. The EIRA cohort is a Swedish population-
based case-control study (for more information on this
cohort, please visit http://www.eirasweden.se/index1.htm).
One DMR (DMR18; Table 3; Additional file 1: Figure

S23) was found when analyzing the TS2 group with cell
type proportion correction (FWER ≤0.10). DMR18 spans
23 consecutive probes and is associated with the genes
EXOSC1 and ZDHHC16 (Tables 3 and 4; Additional file 1:
Figure S23). This DMR is hypermethylated in ACPA-
positive RA and located in a CpG island shore. ZDHHC16
is a probable palmitoyltransferase gene and the EXOSC1
gene codes for a core component of the exosome, highly
pertinent for innate immunity. Several proteins of this
complex are targets of autoantibodies in patients with
autoimmune disease [39]. Interestingly, EXOSC1 is
also a significant DMR in the analysis before adjust-
ment for cell type (Additional file 2: Table S2). The
DMR18 was not identified in the EIRA study after
cell type adjustment.

Additionally, a cell correction-based technical replica-
tion was conducted for the bisulfite pyrosequencing by
comparing profiles generated previously for PCDHB14
(for TS1) and EXOSC1 (for TS2) with the cell propor-
tion estimated by CHARM (see the “Statistical analysis
for validation” in the “Methods”); in all cases the change
is directionally consistent but without statistical signifi-
cance (Additional file 2: Table S4, marked in orange).

Analysis of TS1 candidate differentially methylated
regions in the TS2 group
While cell type correction is necessary for a mechanistic
understanding of gene regulation and disease pathology
(Additional file 1: Figure S6) [2], the methodology to
estimate cell proportions introduces other types of tech-
nical variance. Since we have a limited number of paired
twins in TS1 and TS2 but larger variation in cell propor-
tion estimates in the disease discordant TS2 group, we
hypothesize that cell proportion correction methodology
may introduce larger variance in TS2 than in TS1, and
therefore we have lower power to identify DMRs (despite
higher absolute log-transformed fold change in TS2).
Hence, this may be the reason for the limited overlap
between TS1 and TS2 after cell type deconvolution.

Table 4 Characterization of DMRs identified after cell type correction

DMR name Gene (distance to TSS) Projection Location: gene Location: CGI EIRA

DMR1 PCDHB14 (+224) 0.02 Promoter Shore No

DMR2 SLCO2B1 (+91266), ARRB1 (+109444) 0.28 Intergenic CGI/Shore Yesa

DMR3 NUDT10 (−3524) 0.48 Gene body - No

DMR4 SAMD4A (−2474) 0.67 Gene body CGI Yes +

DMR5 TCF7L1 (+1479), TGOLN2 (+193161) 0.30 Promoter CGI Yes a +

DMR6 PAPOLA (+44) 0.56 Promoter CGI Yes a +

DMR7 AK3 (−275) 0.84 Promoter CGI Yes +

DMR8 ZNF281 (+326) 0.89 Promoter CGI Yes +

DMR9 NHLH2 (+632) 0.55 Promoter Shore Yes

DMR10 LINGO1 (−186249), TBC1D2B (+259036) 0.45 Intergenic CGI/Shore No

DMR11 SP5 (+412) 0.83 Promoter CGI Yes +

DMR12 PLA2G15 (−592) 0.31 Promoter CGI/Shore Yes +

DMR13 TMCO3 (−346) 0.73 Promoter CGI Yes +

DMR14 LZTR1 (−62745), CRKL (+2099) 0.13 Extended promoter Shore *

DMR15 LRRC37A (−107090), KIAA1267 (−15809) 0.94 Gene body - *

DMR16 CA8 (+2720) 0.91 Extended promoter - *

DMR17 HTR2C (−3412) 0.20 Gene body Shore *

DMR18 EXOSC1 (−4655), ZDHHC16 (+4493) 0.69 Gene body Shore No

“Gene” provides information on the closest genes and the distance to the transcription start site (TSS). “Location: gene” and “Location: CGI” denote the locations
of the center of the DMR in relation to a gene or a CpG island. “EIRA” is “yes” if the DMR overlaps with a DMP from the EIRA cohort [2] or if it is alocated within
1000 bp of one; a plus sign in the EIRA column denotes the same direction of change. “Projection” denotes the permuted p value of the DMRs of TS1 and TS2
when using methylation data from TS2 and TS1, respectively (see the “Projection analysis” section in the “Methods”); p values in bold are those <0.05. An asterisk
denotes that no probes within 500 bp of the DMR are available in the Illumina 450 K array and no comparison is thus possible
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To test this hypothesis and to investigate the possible
relationship between the two different phases of disease
development, we investigated if TS1 DMRs are significant
based on permuted p values in the TS2 analysis. A single
DMR (DMR1) discovered in the cell type-adjusted healthy
ACPA discordant analysis (TS1) is statistically significant
in ACPA-positive RA data (TS2) (see the “Projection
analysis” section in the “Methods”; indicated in bold
in Table 4). DMR1 is located in the promoter of PCDHB14,
part of the protocadherin beta gene cluster [40]. Additionally
and importantly, we observed no TS2 DMR that was signifi-
cant in theTS1 analysis.

Discussion
The presence of ACPAs preceding the RA phenotype in
conjunction with accessible clinical samples supports
the notion of utilizing the pathology of ACPA-positive
RA as an autoimmunity disease prototype, facilitating
the temporal analysis of the contributions of epigenetic
modifications in the context of genes and environment.
The current study was therefore designed to elucidate epi-
genetic factors, albeit not functionally causal, associated
with ACPA and the development of ACPA-positive RA
that are not directly caused by genetic contributions. The
pathogenesis of ACPA-positive RA has strong genetic
associations in both the MHC cluster on chromosome

6, where the HLA genes of the adaptive immune system
reside, as well as non-immune genes. A wealth of informa-
tion for RA has come from comprehensive genome-wide
association studies, and from this it has even been possible
to determine the involved individual amino acids in func-
tional domains for antigen presentation [41]. We have
previously analyzed how epigenetic factors integrate with
genotype by employing DNA methylation profiling in an
ACPA-positive RA case-control study [2]. In this way,
novel genetic associations with genes were revealed that
also associated with specific patterns of DNA methylation.
It is also important, however, to separate components of
the etiology and pathogenesis of RA from the genetic
background. Our results also suggest that the twin ap-
proach employed here is useful to neutralize the genetic
components. Thus, we did not find any DMRs in the
MHC region in the current study, likely due to such
neutralization of genetic differences in the discordant MZ
twins, supporting the notion that differential methylation
in the MHC cluster in RA may actually be completely
driven by the genotype. Furthermore, none of the loci in
the over 100 previously known genotype-dependent
non-MHC genes overlaps with our identified DMRs [21].
One of these genes, however, IRF5, with known geno-
type associations with RA, contains a DMR in the non-
deconvoluted TS2 group, although no known associated

Fig. 3 DMR1, from TS1 after cell proportion correction, at the promoter region of PCDHB14 (chr5 140582954–140584018). DMR denotes
the DMR location (grey box); CpGdens denotes CpG density as computed by CHARM [27] (CpG); CGI denotes the location of CpG islands
(black box). TS1 Δbeta and TS2 Δbeta shows the smoothed linear slope (differences in methylation or delta) associated with ACPA-positive
healthy and ACPA-positive RA twin, respectively, in the linear model which is used CHARM [27] to identify DMR candidates. Every point
denotes a probe location. The location of the gene PCDHB14 is shown in a dotted box; the black square on the left denotes the location
of the transcription start site
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SNPs are in this region. Since this gene has many associ-
ated polymorphisms, this may suggest a genetic–epigenetic
interaction, which is worth further investigation as dis-
cussed below.
Our findings reveal an enrichment towards probe

hypomethylation in ACPA-positive RA (p value <10e(-9)),
in line with Karouzkis et al. [42] and Liu et al. [2]. The
CHARM methodology has, however, not previously been
used to analyze the RA methylome. Importantly, the
CHARM design enables an optimized estimation of DMRs
defined by close consecutive probes targeting methylated
regions rather than single CpG positions [22]. In addition,
DMR methodologies have lower power when applied to the
Infinium Illumina 450 K array because the latter design in-
cludes many isolated probes yielding DMPs. Furthermore,
the CHARM array used here employs a 2.1 million feature
array compared to the 480,000 probes (and CpGs) in the
Infinium Illumina 450 K array and the recent Infinium
Methylation EPIC bead array covering 850,000 probes [43].
A region of differentially methylated CpGs is also a stronger
and more robust indicator of altered methylation compared
to single CpGs; however, methodologies for DMR power
analysis are not yet available while there are methodologies
for DMP power estimation [26, 36].
Furthermore, since the cell type distribution in the

whole blood cell population was likely to differ between
the healthy and affected twin within the pairs, a decon-
volution algorithm was applied for CHARM, based on
known cell type-specific methylation profiles from four
cell types, CD4+ and CD8+ T lymphocytes, CD56+ NK
cells, and neutrophils. The deconvolution yields an esti-
mate of the relative distribution of these cell types in
order to avoid the discovery of methylation pattern changes
driven mostly by changes in differential cell count. It is
important to realize that when analyzing non-deconvoluted
data, the apparent lack of disease-specific differential
methylation in a particular CpG may be due to one
disease-affected cell type with hypermethylation in
that site and another cell type without this change
counteracting the overall methylation alteration. This
may create a false negative result. Our results clearly
reveal that the analysis of deconvoluted data and un-
adjusted data answer different questions and show the
importance of adjusting for the cell type composition
when approaching actual (non-cell type-driven) epigenetic
changes within a heterogeneous cell population. However,
phenotypic changes of cell type characteristics, regarding
methylation, may be partially lost by the deconvolution.
In addition, the view of a disease-specific cell population
may be valuable for biomarker discovery. In this analysis
we cannot interpret whether this differential methylation
is due to increases in a certain cell type or a change of cell
type distribution in parallel with methylation changes. We
did not find significant functional enrichment for the

identified genes (see the “Functional analyses” section in
the “Methods”).
The current study aimed to reveal novel regions and

genes involved in the temporal development of ACPA-
positive RA. By including the ACPA-positive discordant
healthy twin pair group, we were able to compare two
distinct phases in the development of ACPA-positive
RA. The twin set discordant for ACPA should be consi-
dered as healthy but at increased risk for developing
ACPA-positive RA. The exact risk of developing RA is
not known and some twins might never develop RA due
to additional protective factors or random factors, while
others will. Considering the low power observed in TS2,
we performed a targeted analysis to investigate if any
genomic regions identified in TS1 (TS1 DMRs) were
significant in TS2 using TS2 data (see the “Projection
analysis” section in the “Methods”). Interestingly, the top
DMR (DMR1 in Table 3) discovered in the deconvoluted
healthy ACPA-discordant analysis (TS1) was identified as
a relevant candidate also in ACPA-positive RA data (TS2)
(p value = 0.02). This overlapping DMR1 is associated
with the PCDHB14 gene. The overlap could imply the
involvement of the associated genes in an ACPA-positive
RA disease trajectory. In our analysis, several DMRs as-
sociate with PCDH genes, both in TS1 and TS2. The
relevance of PCDH genes in ACPA and RA phenotypes
is further emphasized by the significant outcome from
the meta analysis of the bisulfite pyrosequencing. The
protocadherin family, with over 70 identified genes, are
members of the cadherin super family. They are divided
into over 50 clustered α-, β-, and γ-PCDH genes, all lo-
cated on chromosome 5, and non-clustered genes scat-
tered in the genome. These transmembrane protein
genes are differentially expressed, predominantly in
neuronal dendrites, and have been reported to be in-
volved in self/non-self-recognition and self-avoidance
[44]. Furthermore, the PCDH18 protein was recently
reported as an activation marker of CD8+ memory T
cells [45]. The PCDH gene clusters have a genomic
organization similar to B-cell and T-cell receptor gene
clusters. This, together with their differential methyla-
tion pattern identified in TS1 and TS2, could imply a
role in self-recognition and autoimmunity.
The one significant DMR after adjustment for cell type

from the ACPA-positive RA discordant twins associates
with the EXOSC1 gene, which codes for a core compo-
nent of the exosome involved in the processing, control-
ling, and degrading of RNA and in cytokine regulation
and autoimmunity [46]. The exosome has also been
shown to be important in the creation of immunoglobu-
lin diversification [47]. Autoantibodies directed towards
components of the exosome complex have been identi-
fied in sera of patients with idiopathic inflammatory my-
opathy (IIM), scleroderma, and PM/Scl overlap syndrome
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[48]. Also, bioinformatic analysis targeting inflammatory
bowel disease (IBD), among other diseases, revealed that
EXOSC1 was one of the top upregulated genes associated
with the disease [49]. The EXOSC1 gene deserves further
attention and the role of epigenetically regulated gene re-
gions such as enhancers should be investigated. Since the
EXOSC1 DMR was not identified in the healthy ACPA
discordant group, it may be specific to fully developed RA
rather than a pre-stage. This DMR was not found to repli-
cate the previous non-twin EIRA study (in which the
ACPA-positive RA patients were drug-naïve); therefore,
we cannot exclude the possibility that it is driven by
DMARD therapy (Additional file 2: Table S1). The num-
ber of genes which to any extent associated with differen-
tial methylation within the pairs in the RA discordant
TS2 group are substantially less (and not all overlapping)
compared with those found in the EIRA study. Various
reasons for this may exist, but at least two main differ-
ences stand out regarding experimental design. First and
considering the number of samples, our study has lower
statistical power than in the EIRA study. Second, the
previous study interrogated DMPs using the Illumina
450 K platform and this study employed CHARM to
investigate DMRs, and in addition the probes have
limited overlap (as shown in our plots of cDMRs). Third,
the current study neutralizes any genetic influence on the
differential methylation of RA versus non-RA, which the
previous study employing a genetically heterogeneous co-
hort did not do; therefore, we may expect a limited over-
lap. Finally, the EIRA study comprises treatment-naïve RA
patients, again possibly implying an effect of DMARDs in
the current study.
Although novel associations of DNA methylation have

been implicated in phases of development of ACPA-
positive RA, we cannot at this time determine whether
this is causally dependent on DNA methylation. To in-
vestigate possible confounders for each DMR, we looked
into potential associations between changes in DNA
methylation with the following covariates: gender, age,
smoking, and HLA epitope information (Additional file 2:
Table S3). No significant associations were found (p value
<0.01), although the results showed that age (for TS1)
and gender (for TS2) are covariates to be investigated
further in larger cohorts. Importantly, our main candi-
date, PCDHB14, is not significantly associated with any
covariate.
Our findings do support the notion that DMR1 from

the ACPA-positive healthy individuals analysis (and asso-
ciated with PCDHB14) may be associated with onset of
ACPA-positive RA, since this DMR could also be found
when analyzed in the context of twin pairs discordant for
ACPA-positive RA. The discovered genes associated with
DMRs found here can be further used for hypothesis
generation.

Conclusions
Here we used a general statistical framework, adapted to
empower a low-sample twin design. This new robust
framework was applied to the DNA methylome from
two small sets of MZ twins discordant for ACPAs but
healthy and ACPA-positive RA, respectively. The unique
material for the data represents different phases during
the progression of RA, thus enabling us for the first time
to interrogate the temporal contribution of epigenetic
factors dissociated from genetics to the evolution of
the disease. This design made it possible to delineate
candidate genes of relevance for development of ACPA-
positive RA. The DMR associated with a PCDH gene
suggests a temporal epigenetic connection between
ACPA-positivity and clinical RA. Our results should
be of interest for further research in the clinical auto-
immune field for hypothesis generation, as well as for the
wider research community employing the proposed
statistical approach.
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