Do logging residue piles trigger extra decomposition of soil organic matter?

(manuscript under review)

Paavo Ojanen¹, Päivi Mäkiranta, Timo Penttilä², Kari Minkkinen¹

Biomass harvesting for energy – latest scientific knowledge on the ecological impacts in Nordic forests

Research seminar, Wednesday 5th April 2017

¹University of Helsinki, Department of Forest Sciences (paavo.ojanen@helsinki.fi)
²Natural Resources Institute Finland

Funding: Environmental Research Pool of the Finnish Energy Industries (Energiateollisuuden ympäristöpooli)
Logging residue may be harvested for energy... or left at the logging site, typically in small piles.
Composting soil organic matter?

Physical effects
- Shading, insulation

Chemical-biological effects
- Nutrients, fresh carbon

PEAT = lots of C to lose

HUMUS LAYER

Moist soil, stable temperature
- Nutrients and fresh carbon available

⇒ Increased decomposition in soil?
⇒ CO₂ emissions to the atmosphere!
Logging residue piles increased decomposition in soil by 680 g C m$^{-2}$ in two growing seasons after clearfelling!

- That’s a lot!!
- Decomposition of humus layer or peat?
- Physical or chemical-biological mechanism?
- How common is this phenomenon?
This study: Origin and mechanism of the observed emission?

- Decomposition of peat (0–10 cm + 10–20 cm) and humus (surface)
- Decomposition of cellulose (surface, 0–10 cm ... 30 – 40 cm)
- Control, pile and artificial pile plots
 - 3 sites + 5 plots/site/treatment + 3 decomposition replicates/plot
- One growing season (2013) + two years (2013–2015) after logging
<table>
<thead>
<tr>
<th>Site</th>
<th>Site type</th>
<th>Coordinates</th>
<th>Elevation (m a.s.l.)</th>
<th>WT±se (cm)</th>
<th>C/N±se</th>
<th>BD±se (kg m⁻³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Dwarf shrub</td>
<td>61° 50.164’ N, 24° 12.597’ E</td>
<td>163</td>
<td>65±5</td>
<td>34.3±0.9</td>
<td>108±5</td>
</tr>
<tr>
<td>B</td>
<td>Blueberry II</td>
<td>61° 49.644’ N, 24° 12.874’ E</td>
<td>163</td>
<td>31±5</td>
<td>28.6±0.3</td>
<td>135±8</td>
</tr>
<tr>
<td>C</td>
<td>Dwarf shrub</td>
<td>61° 49.518’ N, 24° 12.336’ E</td>
<td>162</td>
<td>21±1</td>
<td>40.0±0.5</td>
<td>83±7</td>
</tr>
</tbody>
</table>

Clearfelling winter 2012–2013 by Metsähallitus.

Physical + chemical-biological effects:

Physical effects only (at site A):
Mean temperature and mean daily temperature amplitude (daily max – daily min) at control plots and treatment plots at the study sites during the growing season (June–September 2013).

On average 2 °C colder under logging residue piles

Lower diurnal temperature variation under logging residue piles
The diurnal cycle (hour interval on x axis) of relative humidity (%) at the moss layer–atmosphere interface at different sites and treatments during July 5th–September 30th, 2013.

Relative humidity does not drop under piles during afternoon hours.
Mean mass loss (% of initial mass) of the cellulose strips incubated in soil June–September 2013 with (LRP, crosses) and without (CTRL, squares) logging residue piles at sites A, B and C, and with artificial piles (ART1–3, circles) at site A. Error bars are standard deviations.

Piles increased significantly ($p = 0.0001$) decomposition of cellulose, on average by 40 %

Artificial piles did not affect decomposition of cellulose

\Rightarrow Strong chemical-biological enhancement of decomposition in soil due to piles
Decomposition of humus and peat was not affected at all!

And we definitely should have seen something here!

Mean mass loss (% of initial mass) of the humus layer (surface) and peat incubated in soil with (LRP) and without LRP (CTRL) June–September 2013 (4 months) and June 2013 – May 2015 (2 years). Error bars are standard deviations.
Conclusion from the two studies: Big emission of CO$_2$ from soil, enhanced decomposition in soil, and no loss of soil C

• C was released, yet it is still there

• Some referees might find it hard to accept this!

• So where did the C come from?
• What’s going on in soil?
A possible explanation

Massive amounts of nutrients and fresh organic carbon compounds available in and under the piles

=> Decomposer fungi translocate resources from elsewhere

=> Growth, maintenance and turnover of hyphae releases CO₂

We did not consider the possibility of horizontal C transport

⇒ we did not try to measure it

⇒ this hypothesis needs to be tested
Conclusions

• Logging residue piles affect physical soil conditions
 • This alone does not enhance decomposer activity

• Added with chemical-biological effects:
 • We see enhanced decomposer activity

• Loss of soil carbon was not observed!

=> Perhaps no risk of CO$_2$ emissions after all?