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This data article shows the expression levels of specific podocyte
injury markers and podocyte slit diaphragm protein nephrin in
obese and lean Zucker rat glomeruli. It also contains information on
the effect of the overexpression of transcription factor FOXC2 on the
ratio of F- and G-actin and the expression level of ZO-1 in differ-
entiated human podocytes. The article also shows data on the effect
of treatments of differentiated podocytes with various factors
associated with obesity and diabetes on the expression level of
FOXC2. The detailed interpretation of these data and other aspects
of podocyte injury mediated by upregulation of FOXC2 can be found
in “Overexpression of transcription factor FOXC2 in cultured human
podocytes upregulates injury markers and increases motility [1].
& 2016 The Authors. Published by Elsevier Inc. This is an open access

article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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ype of data
 Table, figures, description of accompanying methods

ow data was
acquired
Scanning with Odyssey Infrared Imager followed by quantification with the
Odyssey software (LI-COR, Lincoln, NE, USA), performing quantitative RT-PCR
with an iCyclerIQs (BIO-RAD, Hercules, CA, USA).
ata format
 Analyzed

xperimental
factors
N/A
xperimental
features
In vitro-treatment of cultured podocytes with various factors, quantitative
Western blotting, quantitative RT-PCR, definition of F-actin/G-actin ratio
ata source
location
N/A
ata accessibility
 Within this article
D
Value of the data
� The obese Zucker rats show a trend towards upregulation of podocyte injury markers in glomeruli.
� The obese Zucker rats with the highest level of proteinuria express least nephrin in glomeruli.
� Overexpression of FOXC2 in differentiated human podocytes in vitro does not change the F-actin/G-

actin ratio, or the expression level of the tight junction protein ZO-1.
� Several obesity and diabetes-associated factors were found not to upregulate FOXC2 in differ-

entiated human podocytes.
1. Data

Quantitative Western blotting reveals that podocyte injury markers active beta-catenin, desmin
and fibronectin show a trend of upregulation in the glomeruli of 40 weeks old obese Zucker rats
compared to lean controls (Fig. 1A and B). Nephrin, the key protein of the interpodocyte slit dia-
phragm, shows a trend of downregulation in the glomeruli of obese rats (Fig. 1C and D), with the most
albuminuric rats expressing least nephrin (Fig. 1E). Exposure of differentiated human podocytes to
factors associated with obesity, insulin resistance and type 2 diabetes did not increase the expression
of FOXC2 as observed by quantitative RT-PCR for tumor necrosis factor-α (TNF-α) and transforming
growth factor β (TGF-β) (Fig. 2A and B), and by quantitative Western blotting for angiotensin II and a
combination of glucose and palmitate (Fig. 2C-F). The data also show that overexpression of FOXC2 in
differentiated human podocytes by lentiviral transduction does not change the ratio of filamentous
(F) actin and globular (G) actin (Fig. 3A and B) or the expression level of the tight junction protein ZO-
1 (Fig. 4A and B).
2. Experimental design, materials and methods

2.1. Animal model and preparation of glomerular lysates

Obese (fa/fa) and lean (fa/þ) Zucker rats (Crl:ZUC-Leprfa) were obtained from Charles River
Laboratories (Sulzfeld, Germany). Blood glucose values were measured from tail vein samples using
OneTouch Ultra glucometer (Lifescan, Milpitas, CA). The urinary albumin to creatinine ratio was
determined from spot urine samples. Albumin was measured with rat albumin ELISA kit (CellTrend,
Luckenwalde, Germany) and creatinine using CREA plus enzymatic assay (Roche, Basel, Switzerland)
and Roche clinical chemistry analyzer (Table 1). The experiments were approved by the National
Animal Experiment Board. Glomerular fractions were isolated from 40 weeks old rat kidney cortices



Fig. 1. Immunoblotting reveals an increasing trend of key podocyte injury markers and decreasing nephrin expression in obese
Zucker rat glomerular lysates. (A) 75 μg of glomerular lysates were separated by SDS-PAGE and immunoblotted for active β-
catenin, desmin and fibronectin. Actin was used as the loading control. (B) Quantification shows an increasing trend in the
expression of active beta-catenin, desmin and fibronectin in the glomeruli of the obese Zucker rats compared to the lean
controls (n¼5 for lean & n¼4 for obese). (C, D) Immunoblotting for nephrin and subsequent quantification shows a decreasing
trend in the expression of nephrin in the glomeruli of the obese Zucker rats compared to the lean controls. (n¼6 for lean &
n¼6 for obese). None of the changes reached statistical significance because of high individual variation. (E) Comparison of
urine albumin/creatinine ratio to nephrin/actin ratio (C) in Zucker lean and obese rats reveals that the obese rats with highest
albuminuria (415 mg/mg) express less nephrin in the glomeruli than the obese rats with low albuminuria (o15 mg/mg). Data
are mean7SD (n¼3 for lean, n¼2 for obese with low alb/cre, n¼4 for obese with high alb/cre). *r0.05.
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Fig. 2. FOXC2 is not upregulated by TNF-α, TGF-β, angiotensin II (Ang II) or high glucose and palmitate treatment. (A and B)
FOXC2 mRNAs were measured by quantitative RT-PCR and normalized to GAPDH mRNA using the comparative Ct method
(DDCt) after treatment with 10 ng/ml TNF-α for 2–24 h (A) or 4 ng/ml TGF-β (B) for 3 or 6 days during the last days of dif-
ferentiation. The values represent means and range of 3 measurements from two individual experiments. The experiments
were repeated three times with similar results showing no significant change in the expression of FOXC2 mRNA in the treated
cells compared to controls. (C and D) Immunoblotting and quantification of FOXC2 in differentiated podocytes treated with
1 μM angiotensin II for 24 h shows no difference in FOXC2 expression between the control and the treated cells. (E and F)
Immunoblotting and quantification of FOXC2 in differentiated podocytes treated simultaneously with 20 mM glucose and
200 μM palmitate for the last 7 days of the differentiation period reveals no change in the expression of FOXC2 in the treated
cells. Actin is included as the loading control. All data are mean7SEM (n¼3 experiments).
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using the graded sieving method [2]. Cells were lysed in Nonidet P-40 (NP-40) lysis buffer (1% NP-40,
20 mM HEPES, pH 7.5, 150 mM NaCl) supplemented with 50 mM NaF, 1 mM Na3VO4 and 1� Com-
plete Proteinase Inhibitor Cocktail (Roche, Basel, Switzerland) at 4 °C for 30 min. Detergent-insoluble
material was removed by centrifugation (16,000g at 4 °C for 15 min).



Fig. 4. FOXC2 overexpression does not affect the expression level of ZO-1. (A) Immunoblotting for ZO-1 in differentiated
podocytes transduced with control vector (ctrl) and FOXC2 construct. Actin is included as the loading control. (B) Quantification
of the expression level of ZO-1 in three replicate blots and adjusted for actin reveals no difference in the expression level of ZO-
1 in FOXC2 overexpressing podocytes compared to controls. Data are mean7SEM (n¼3 experiments).

Fig. 3. FOXC2 overexpression does not change the ratio between filamentous (F) and globular (G) actin. (A) Immunoblotting for
actin (F- and G-actin) in differentiated podocytes overexpressing FOXC2 or an empty vector (ctrl). Cells were lysed and pro-
cessed into supernatant (F-actin) and pellet (G-actin) fractions and immunoblotted for actin. (B) Densitometry reveals no
difference in the F-actin/G-actin ratio between the control and FOXC2 overexpressing cells. Data are mean7SEM (n¼3
experiments).
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2.2. Quantitative Western blotting

75 μg of glomerular lysates were separated on a 10% SDS-PAGE gel, transferred to PVDF-FL
membranes (Millipore, Billerica, MA) and blocked with Odyssey blocking buffer (LI-COR, Lincoln, NE,
USA) diluted 1:1 with phosphate buffered saline (PBS). The membranes were incubated with mouse
anti-active β -catenin (Millipore, Darmstadt, Germany), mouse anti-desmin 37EH11 [3], rabbit anti-
fibronectin (Abcam, Cambridge, UK), guinea pig anti-nephrin (Progen Biotechnik,Heidelberg, Ger-
many), rabbit anti-ZO-1 IgG (Zymed Life Technologies, San Francisco, CA, USA), sheep anti-FOXC2
(R&D Systems, Minneapolis, MN, USA) and rabbit anti-actin (Abcam) IgGs, followed by Alexa Fluor



Table 1
Weight, blood glucose and urinary albumin to creatinine values of 40 weeks old lean and obese Zucker rats. The weights and
blood glucose levels were not significantly different between the obese and lean rats, but the obese rats had significantly higher
urine albumin to creatinine ratios.

Zucker rats Weight (g) Blood glucose
(mmol/l)

Urine albumin to crea-
tinine (mg/mg)

Obese 596797.0 (n¼6) 6.171.1 (n¼6) 25.0713.6n(n¼3)
Lean 547781.7 (n¼6) 5.270.7 (n¼6) 2.672.3(n¼ 6)

n po0.05.
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680 (Invitrogen) and IRDye 800 (LI-COR) anti-mouse, anti-rabbit, anti-guinea pig or anti-sheep IgGs.
The signal was detected using an Odyssey Infrared Imager (LI-COR) and subsequently quantified using
Odyssey software.

Treatment of cultured human podocytes with obesity- and diabetes-associated factors
Conditionally immortalized human podocytes (AB8/13) were cultured as described in Datta et al.

[1]. Differentiated podocytes were serum starved for 12 h in medium supplemented with 1% fetal
bovine serum (FBS) and independently treated with 10 ng/ml TNF-α (R&D Systems) for 2–24 h, 4 ng/
ml TGF-β (R&D Systems) for 3 or 6 days, 1 μM angiotensin II (Sigma-Aldrich, St. Louis, MO, USA) for
24 h, or 20 mM glucose (Sigma-Aldrich) together with 200 μM palmitate (Sigma-Aldrich) for the last
7 days of the differentiation period. Sodium palmitate was conjugated with fatty acid-free low
endotoxin BSA (Sigma-Aldrich) as described earlier [4]. Solvent only was used as a control for all
treatments. Cells were either lysed and immunoblotted as described above or used for preparation of
total RNA and quantitative RT-PCR as described below.
2.3. Total RNA preparation and quantitative RT-PCR

Total RNA was isolated, treated with DNase I and reverse transcribed into complementary DNA
(cDNA). The quantitative PCR was performed using TaqMan gene expression assays (Applied Bio-
systems, Foster City, CA) for hFOXC2 (Assay ID: Hs00270951_s1) and hGAPDH (glyceraldehyde 3-
phosphate dehydrogen- ase; Assay ID: Hs99999905_m1) as in [5]. Measurements were performed in
triplicate using an iCyclerIQ

s

(BIO-RAD, Hercules, CA, USA). The expression levels of FOXC2 mRNA
were normalized to GAPDH using the comparative Ct method (DDCt).
2.4. Quantification of G-actin and F-actin

FOXC2 was lentivirally overexpressed in differentiated human podocytes as described in Datta
et al. [1]. The G-actin and F-actin quantification in FOXC2 and control vector-transduced podocytes
was performed as described in the G-actin/F-actin in vivo Assay Kit (Cytoskeleton Inc., Denver, CO,
USA). Briefly, cells were lysed in a detergent-based lysis buffer that stabilizes and maintains the G-
and F- forms of cellular actin. This was followed by a 100,000g centrifugation at 37 °C for 1 h that
pellets the F-actin and leaves the G-actin in the supernatant. Samples of supernatant and pellet were
separated by SDS-PAGE and actin was quantified by Western blotting using the rabbit polyclonal anti-
actin antibody provided in the kit.
2.5. Statistical analysis

Results are presented as mean7SD. Statistical analysis was performed using Student's t test
(Microsoft Excel, Redmond, WA).
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