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Abstract—Localization based on premeasured WiFi finger-
prints is a popular method for indoor localization where satellite
based positioning systems are unavailable. In these systems,
privacy of the user’s location is lost because the location is
computed by the service provider. In INFOCOM’14, Li et al.
presented PriWFL, a WiFi fingerprint localization system based
on additively homomorphic Paillier encryption, that was claimed
to protect both the users’ location privacy and the service
provider’s database privacy. In this paper, we demonstrate a se-
vere weakness in PriWFL that allows an attacker to compromise
the service provider’s database under a realistic attack model and
also identify certain other problems in PriWFL that decrease
its localization accuracy. Hence, we show that PriWFL does
not solve the privacy problems of WiFi fingerprint localization.
We also explore different solutions to implement secure privacy-
preserving WiFi fingerprint localization and propose two schemes
based on Paillier encryption which do not suffer from the
weakness of PriWFL and offer the same localization accuracy as
the privacy-violating schemes.

Index Terms—Localization, privacy, security, WiFi fingerprint,
cryptanalysis, homomorphic encryption, attack

I. INTRODUCTION

The ability to determine a user’s location is essential for
many contemporary applications. Global navigation satellite
systems (GNSS) such as GPS are the primary technologies
for obtaining the user’s location. In these systems, a GNSS
chip in the user’s possession locally calculates its position
based on signals received from satellites. Hence, GNSS fully
preserves the privacy of users’ locations. Unfortunately, GNSS
is completely unavailable or has poor service when the user
is indoors or even in certain outdoor environments (e.g.,
urban canyons). Premeasured databases have been proposed
as solutions for accurate localization also in such cases and
they have become a popular method for indoor localization.

In these solutions, a service provider first records received
signal strengths (RSS) of access points (APs) in various
predefined locations and stores them into a database. The
APs are typically WiFi APs (see, e.g., [1], [2], [3], [4], [5],
[6], [7]), but also systems based on cellular [8], RFID [9],
Bluetooth [10], and Zigbee [11] signals have been proposed. A
user measures the RSS values for all APs stored in the database
(some of which are likely to be out of reach) in his/her location
and sends this “fingerprint” to the service provider’s server
hosting the database. The server uses the “fingerprint” and the
database to calculate the location of the user.

Contrary to GNSS, the fingerprint-based schemes violate
users’ location privacy because the locations are calculated
by the server. Users’ locations are high-value information that
may allow learning very sensitive information (e.g., regularly
visited shops, bars, places of worship, etc.) and could be used
for very accurate profiling, e.g., for targeted marketing. On
the other hand, the service provider wants to keep its database
private because it is a central business secret and also because
database updates would be difficult for a distributed database.
Hence, a privacy-preserving localization scheme should derive
the users’ locations without revealing (a) users’ locations and
(b) the service provider’s database to the other party.

Konstantinidis et al. in [12] presented privacy-preserving
localization based on k-anonymity, which is a well-studied
problem, e.g., in privacy-preserving medical data. To simplify,
their solution hides the user’s real location trace among k− 1
fake traces. The service provider is assumed not to use
any auxiliary information including statistics (e.g., average
numbers of users in specific areas) or even to validate the
users’ requests against the building map. Use of such auxiliary
information allows to distinguish real traces and, consequently,
to track the user’s past and future movements. Hence, the
solution essentially trusts the service provider to be ‘honest’.

In INFOCOM 2014, Li et al. [13] presented a privacy-
preserving WiFi fingerprint localization scheme called PriWFL
and claimed that it protects both the users’ locations and the
database when the parties are ‘honest-but-curious’; i.e., they
honestly follow the protocol but can utilize any information
given to them (and also auxiliary information). The scheme
is based on the additively homomorphic Paillier cryptosys-
tem [14], which allows to compute additions and subtractions
with ciphertexts. The user encrypts a fingerprint with Paillier
encryption, the server computes its distances to the database
entries with the ciphertexts, and the user decrypts the distances
and calculates its own location. Because the service provider
does not have the secret keys to decrypt the users’ fingerprints,
PriWFL preserves the privacy of users’ locations. To prevent
the users from calculating the database from the distances, the
server blinds their exact values with some randomness.

In this paper, we have two main contributions:
• We present an attack against PriWFL from [13]. Our

attack fully discloses the service provider’s database to an
attacker (a user) under a realistic attack model. Our attack
shows that PriWFL offers little additional protection



TABLE I
WIFI FINGERPRINT REFERENCE DATABASE D

i Li AP1 AP2 AP3 · · · APN
1 (x1, y1, z1) v1,1 v1,2 v1,3 · · · v1,N
2 (x2, y2, z2) v2,1 v2,2 v2,3 · · · v2,N
3 (x3, y3, z3) v3,1 v3,2 v3,3 · · · v3,N
...

...
...

...
...

...
...

M (xM , yM , zM ) vM,1 vM,2 vM,3 · · · vM,N

compared to the case where the service provider gives
its database to the users. We also identify certain other
disadvantages of PriWFL.

• We explore certain directions to implement privacy-
preserving fingerprint localization schemes. In particular,
we introduce two solutions based on Paillier encryption
and two different multiparty computation approaches that
are secure and feasible for practical deployment.

The rest of the paper is structured as follows. Sect. II
presents the required preliminaries. We present our attack and
discuss other disadvantages of PriWFL in Sect. III. In Sect. IV,
we present new solutions for secure privacy-preserving WiFi
fingerprint localization schemes and discuss their feasibility.
Finally, Sect. V draws conclusions.

II. PRELIMINARIES

A. WiFi Fingerprint Localization

A WiFi fingerprint localization service includes two parties:
a client C, which is, e.g., a user’s smartphone, and the service
provider’s server S. The service utilizes signal strengths of
APs distributed around the area covered by the service (e.g.,
a shopping mall, an exhibition center, etc.). If an AP is close
to a specific location, then its signal is strong whereas if it is
far away, then its signal is either weak or not available at all.

1) System setup and the reference database: During the
system setup, the service provider goes to M specific locations
(xi, yi, zi) for i = 1, . . . ,M and measures RSS values
Vi = (vi,1, vi,2, . . . , vi,N ) for all N APs used in the system. A
reference database is constructed using these values as follows
and stored into S:

D =
〈
i, (xi, yi, zi), Vi = {vi,j}Nj=1

〉M
i=1

. (1)

The structure of D is shown in Table I. The service provider
also publishes the table

T1 = {APj}Nj=1 (2)

where APj is the j-th AP’s unique public identifier (e.g., its
MAC address).

2) Location retrieval: When C wants to know its location, it
measures the RSS of all APs listed in T1 of (2) and constructs
a “fingerprint” F = (f1, f2, . . . , fN ) where fj is the RSS of
APj in C’s location. It then sends F to S who finds the k-
nearest neighbors of F from D by calculating the differences
di between F and the measurements Vi in D for all i =

A wing B wing C wing

AP1

AP2
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Fig. 1. An example of a WiFi fingerprint localization system for a one-story
building with three wings (A, B, C) and seven APs. The white dots show the
M locations in the reference database D and the black dots are highlighted
locations discussed in the text.

1, . . . ,M . While various distance functions can be used, we
assume that di is the following Euclidean distance:

di = ||Vi − F ||2 =

N∑
j=1

(vi,j − fj)2

=

N∑
j=1

v2i,j +

N∑
j=1

(−2vi,jfj) +

N∑
j=1

f2j .

(3)

S finds the indexes of the k smallest distances: π1, π2, . . . , πk
such that dπ1 ≤ dπ2 ≤ . . . ≤ dπk ≤ di for all i 6=
π1, π2, . . . , πk. S then calculates C’s location LC = (x, y, z)
as the centroid of the locations (xi, yi, zi), for i ∈ {πj}kj=1.
Finally, S sends LC to C who then knows its location.

3) Example: Fig. 1 shows an artificial example of a one-
story building with three wings (A, B, C). The building
includes N = 7 APs and the service provider has measured
their RSS values in M = 216 locations. For the sake of
simplicity, we assume in this paper that vi,j are four-bit values
so that vi,j = 0 means that APj is unavailable at location i
where as the value vi,j = 15 is the strongest possible RSS1.
The database entries for the highlighted locations shown in
Fig. 1 could be, e.g., as follows:

〈21, (2, 7, 0), (10, 9, 12, 2, 4, 0, 0)〉 (4)
〈121, (13, 13, 0), (1, 0, 7, 9, 13, 0, 3)〉 (5)
〈162, (21, 2, 0), (0, 0, 0, 1, 5, 14, 11)〉 (6)

In a large building, the signal of a single AP cannot cover the
whole building and, therefore, APs are unavailable in certain
parts of the building; i.e., vi,j = 0 for some i. E.g., in the
above example, AP1 and AP2, which are located in the A
wing, are not available in the C wing. Besides, two nearby
locations are likely to be similar; e.g., for 〈22, (2, 8, 0), V22〉,
V22 ≈ V21, where V21 is given in (4), and, hence, v22,6 and
v22,7 are also zeros with a high probability.

1In practice, it is more common to use power ratios in decibels (dBm) (e.g.,
−30 dBm is a very strong signal whereas −80 dBm implies very low WiFi
functionality). A constant (e.g., +100 in [15]) is typically used for an AP that
is ‘unavailable’. Our attack works equally well also if dBm values are used.



B. Paillier Public-Key Encryption Scheme
Let κ ∈ N be the security parameter and [n] = {1, . . . , n} ⊂

N to denote the set of integers between 1 and n. We use
the notation a $← S to denote the operation which samples a
uniform random element from a set S.

The Paillier public-key encryption (PKE) scheme [14] is
a probabilistic encryption scheme based on the decisional
composite residuosity problem. Let PrimG(κ) be a function
which generates a set of primes of length κ. The Paillier PKE
scheme mainly consists of the following three algorithms:
• Key Generation (KeyGen). Given the security param-

eter κ, the algorithm chooses two large primes p, q $←
PrimG(κ/2), and computes n = p · q. It also selects
a group generator g for the multiplicative group Z∗n2 ,
such that the order of g is a non-zero multiple of n. The
public key pk is a tuple (n, g) and the secret key sk is
λ = lcm(p− 1, q − 1). This algorithm returns (pk, sk).

• Encryption (Enc). This algorithm takes a message m <
n and a public key (n, g) as inputs. It selects a random
r

$← [n− 1], and computes the ciphertext:

C = gm · rn mod n2. (7)

The output of this algorithm is C. For simplicity, we may
omit modulus n2 in the rest of the paper.

• Decryption (Dec). This algorithm takes C < n2 and
the secret key λ as inputs and it outputs the plaintext
m = L(Cλ) mod n2

L(gλ) mod n2 mod n, where L(u) = u−1
n .

Paillier PKE scheme is additively homomorphic over the
group Zn. Namely, for two ciphertext C1 = Enc(pk,m1) and
C1 = Enc(pk,m2), we have that

Dec(sk, C1 · C2 mod n2) = m1 +m2 (mod n) (8)

Dec(sk, C1 · C−12 mod n2) = m1 −m2 (mod n) (9)

where the inverse can be computed via the exponentiation
C−12 = Cn−12 mod n2. Using the above homomorphic ad-
ditions, it is also possible to compute multiplications and
divisions by a scalar t:

Dec(sk, Ct1 mod n2) = t ·m1 (mod n) (10)

Dec(sk, Ct
−1 mod n

1 mod n2) = m1/t (mod n) (11)

where t−1 mod n can be computed with the Extended Eu-
clidean Algorithm.

C. The PriWFL Scheme
In this subsection, we review the complete PriWFL scheme

introduced by Li et al. [13]. Similarly to the basic scheme of
Sect. II-A, also the PriWFL scheme is run between C and S;
i.e., there are no (trusted) third parties.

1) System setup: The system setup remains mostly the
same: S has D as in (1) and Table I. In addition to T1, S
also publishes the following table:

T2 = 〈i, (xi, yi, zi)〉Mi=1 . (12)

When C subscribes to the service, it generates a key pair
(sk, pk) for the Paillier cryptosystem for a sufficiently large
κ (e.g., κ = 2048) and sends pk = (n, g) to S.

2) Location retrieval: PriWFL works in three phases:
• C measures F = (f1, f2, . . . , fN ) with fj for all APj

listed in T1. Instead of sending F directly to S, C
computes

Cj,0 = Enc(pk,−2fj) (13)

Cj,1 = Enc(pk, f2j + uj) (14)

where uj
$← RU , for j = 1, . . . , N ; RU is a random-

ness space of PriWFL (see Sect. III-B for more discus-
sion about PriWFL randomness spaces). Then, C sends
{Cj,0, Cj,1}Nj=1 to S who cannot open the encryption
because it does not have sk.

• When S receives {Cj,0, Cj,1}Nj=1, it selects
1) A random number τ ≤ N ′ ≤ N , where τ is a fixed

threshold (e.g., τ = 6 was suggested in [13], but
see Sect. III-B for more discussion). Using N ′, S
selects a random selection set S = {s1, s2, . . . , s′N}
such that si ∈ [N ] and si 6= sj for all i 6= j. I.e., S
selects a set of N ′ random APs from all N APs.

2) A random offset R $← RR where RR is a random-
ness space of PriWFL (see Sect. III-B).

After this, S computes, for i = 1, . . . ,M :

∆i,1 = Enc(pk,
∑
j∈S

v2i,j) (15)

∆i,2 =
∏
j∈S

C
vi,j
j,0 (16)

∆i,3 =
∏
j∈S

Cj,1 (17)

The terms correspond to the encryptions of the terms
required to compute the distances according to (3) so
that ∆i,2 = Enc(pk,

∑
j∈S(−2vi,jfj)) and ∆i,3 =

Enc(pk,
∑
j∈S(f2j +uj)). However, they have been com-

puted by using the N ′ APs selected in S instead of all N
APs used in (3). Next, S computes the encrypted distance
masked by the random offset R:

Cdi+R = ∆i,1 ·∆i,2 ·∆i,3 · Enc(pk,R) (18)

After this, S sends {Cdi+R}
M
i=1 to C.

• When C receives the encrypted distances {Cdi+R}
M
i=1, it

uses sk to decrypt di + R for i = 1, . . . ,M . Then, it
finds π1, . . . , πk, the indexes of the k smallest distances.
Because each di + R is blinded by the same offset R,
their order is still preserved. It uses the public table T2
to get (xi, yi, zi), for i ∈ {πj}kj=1 and, then, computes
its location LC . Notice that this location calculation is
similar to the basic scheme in Sect. II-A, except that it is
performed by C itself instead of S and that it is calculated
with only a subset of N ′ APs, selected by S.

In [13], PriWFL was claimed to protect (a) C’s location LC
from S thanks to the use of Paillier encryption and randomness
uj and (b) S’s database D from C thanks to the random
selection set S and random offset R. In Sect. III, we show
that the second claim is not true (and that uj is not needed to
get the first claim).



D. Threat Model

In order to show the security problems of PriWFL, we
review the same threat model that was defined in [13] where
four kinds of attacks were considered under the general
‘honest-but-curious’ attack model:
• Client Location Privacy Attack I (CLPA-I): The at-

tacker A directly obtains C’s location after intercepting
C’s queries.

• Client Location Privacy Attack II (CLPA-II): A infers
C’s location after getting C’s sampled WiFi fingerprints.

• Server Data Privacy Attack I (SDPA-I): A obtains a
WiFi fingerprint database D′ which is identical to S’s
database D.

• Server Data Privacy Attack II (SDPA-II): A gets
a WiFi fingerprint database D′ which is close to S’s
database D. Namely, D′ can be used to provide a similar
location service as S’s database D.

Following the ‘honest-but-curios’ attack model, we assume
that both C and S honestly follow the protocol specifications,
but both of them may be interested in compromising the other
party’s private information. I.e., A may masquerade as either
C or S in order to break the counterpart’s privacy and A is
allowed to use fabricated inputs to the protocol as long as they
follow the general format and specifications of the protocol.
In particular, C is allowed to send fabricated queries to S who
cannot notice this because a query is encrypted with Paillier
encryption in PriWFL.

III. ANALYSIS OF PRIWFL
In this section, we analyze PriWFL in detail. In Sect. III-A,

we introduce an attack that implements the threat model
SDPA-I, which is the stronger of the two server data privacy
attacks. Consequently, our attack achieves a complete break of
the server-side security of PriWFL. Furthermore, in Sect. III-B,
we also discuss some other non-trivial issues which were
overlooked in PriWFL.

A. A Practical SDPA-I Attack

In this subsection, we present the first main contribution
of this paper: an attack that fully discloses S’s database D
under a realistic attack condition. In our attack, the attacker A
subscribes to the system as a legitimate client C and faithfully
follows the protocol (honest-but-curios).

1) Precondition for the attack: We assume that A knows
certain “special” RSS values stored in S’s database D. Specif-
ically, A must know two RSS values va,γ and vb,γ to be able
to obtain all other vi,γ for APγ . While this may sound as a
very strong assumption, we will next show that A can easily
obtain this information in practical settings. We assume that
the building is large enough so that APs are unavailable in
parts of the building. This is a realistic assumption because
typically WiFi APs cover only some tens of meters and there
is no point in using a localization scheme in a very small
building.

The above requirement is satisfied if A knows two locations
where APγ is unavailable: va,γ = vb,γ = 0. In PriWFL, the

locations (xi, yi, zi), for i = 1, . . . ,M , are public information
given to C in T2. Hence, A can go to any location ` and
make RSS measurements of all APs listed in T1. Consequently,
A will likely find out many APs which are unavailable at
this location and she has obtained the first required value
for all these APs. E.g., if A makes the measurement in the
highlighted location in the A wing of Fig. 1, then at least
AP6 and AP7 will be unavailable. If an AP is unavailable in
location `, then it is unavailable with high probability also in
the location `′ which is next to the location ` (the eight white
dots surrounding the black dot in Fig. 1). Furthermore, this
assumption is easy to verify by making a new measurement
in `′. Hence, the second required value is found for all APs
that were unavailable in the location `. On the other hand, if
an AP has a very strong RSS value in the location `, then A
knows that they are close to the location ` and, consequently,
deducts that they must be unavailable in a location `′′ which
is far from the location `. E.g., because AP1, AP2, and AP3

are strong in the highlighted dot in the A wing in Fig. 1,
then they must be unavailable in the C wing (e.g., the black
dot and its six neighbor dots in the C wing in Fig. 1). This
gives the required values for all APs with strong signals in
the measurement. Hence, the required values are missing only
for APs which have medium strength signals in the location
`. They can be obtained by making a new measurement in
another part of the building (e.g., in the B wing in Fig. 1).
If A makes an error in the above procedure, then the attack
fails for the affected AP(s), but not for the entire D, and A
can spot such errors during the attack. To summarize, A can
obtain the required values va,γ = vb,γ = 0 for all APs by
making few measurements in a building covered by PriWFL.

2) The attack: The attack arises because all distances
calculated in a query are masked with the same randomness
R (chosen by S). We will extensively exploit the fact that
the randomness R can be removed by subtracting two masked
distances: (di + R) − (dj + R) = di − dj . To get the γ-th
column of D, A makes two types of special location queries
to S as follows:
• All-Zero Query: A generates a fake WiFi fingerprint

with all 0s: F 0 = (0, 0, 0, . . . , 0). Equation (3) shows
that this query yields distances which are computed with
only v2i,j under a random selection set S0, i.e.,

d0i =
∑
z∈S0

v2i,z +R0, (19)

where S0 and R0 can be different between different
queries but remain the same for all i in one query.

• Single-One Query: A generates a fake WiFi fingerprint
where the γ-th value is 1 and all other N − 1 values are
0s; e.g, F 1 = {0, 1, 0, ..., 0} for γ = 2. This query yields
distances which are computed with v2i,j and −2vi,j under
a random selection set S1, i.e.,

d1i =

{∑
z∈S1 v2i,z − 2vi,γ + 1 +R1, when γ ∈ S1∑
z∈S1 v2i,z +R1, when γ 6∈ S1

(20)



TABLE II
INITIAL TARGET WIFI FINGERPRINTS DATABASE

i Li AP1 AP2 AP3 · · · APN
1 (x1, y1, z1) v1,1 0 v1,3 · · · 0
2 (x2, y2, z2) v2,1 0 0 · · · v2,N
3 (x3, y3, z3) 0 v3,2 0 · · · 0
...

...
...

...
...

...
...

M (xM , yM , zM ) 0 vM,2 0 · · · vM,N

Algorithm 1: Collect distance sets
Input: F = {fj}Nj=1 and q
Output: D = {{d1i }Mi=1, {d2i }Mi=1, . . . , {d

q
i }
M
i=1}

1 D← ∅
2 for φ = 1 to q do
3 for j = 1 to N do
4 Cφj,0 ← Enc(pkA,−2fj)
5 Cφj,1 ← Enc(pkA, fj

2)

6 send {Cφj,0, C
φ
j,1}

N
j=1 to S

7 receive {Cφdi}
M
i=1 from S

8 for i = 1 to M do
9 dφi ← Dec(skA, C

φ
di
)

10 append {dφi }
M
i=1 to D

11 return D

where S1 and R1 can be different between different
queries but remain the same for all i in one query.

Note that S cannot distinguish the above special queries
from the ordinary queries of an honest party because they
are encrypted with Paillier encryption which is probabilistic
and semantically secure. Next, we show how these queries
can be used to compromise the γ-th column of S’s database
D, in particular, by finding distances that were computed
using all-zero and single-one queries so that S0 = S1 and
γ ∈ S1. The probability for this collision of the selection sets
is overwhelming after a few queries if N is not large (e.g.,
N = 10 in proof of [13, Theorem 3]).

Our attack basically has two phases: attack preparation and
on-line attack, which are as follows:

Attack Preparation Phase: A finds two unavailable loca-
tions for each AP, according to the public tables T1 and T2
which are provided by S (see Sect. III-A1). Now A has an
initial target database (ITD) with at least two known zeros
in each column. Table II shows an example ITD, where each
vi,j 6= 0 is unknown to A.

On-line Attack Phase:A, who has subscribed to the system
as a legitimate C, has a public/private key pair (pkA, skA) of
the Paillier PKE scheme. Then, A does the following steps:

• Step 1:A sends several all-zero queries to S. Specifically,
A runs Algorithm 1 with input F 0 = {0}Ni=1 and an
integer q0 to collect q0 distance sets and stores them in
D0 = {{d0,1i }Mi=1, {d

0,2
i }Mi=1, . . . , {d

0,q0

i }Mi=1}.
Because each distance set {dti}Mi=1 ∈ D0 is related to
a selection set St, D0 implies a set of selection sets
denoted by S0 = {S0,1, S0,2, . . . , S0,q0} (which can

Algorithm 2: Sort and trim distance sets
Input: D0, D1, a and b such that va,γ = vb,γ = 0

Output: D0′ and D1′

1 q0 ← |D0|; q1 ← |D1|; D0′ ← ∅; D1′ ← ∅
2 for t = 1 to q0 do
3 get {d0,ta , d0,tb } from D0

4 for z = 1 to q1 do
5 get {d1,za , d1,zb } from D1

6 if d0,ta − d0,tb = d1,za − d1,zb then
7 append {d0,ti }

M
i=1 to D0′

8 append {d1,zi }
M
i=1 to D1′

9 break

10 return D0′,D1′

include duplicates). However, A does not need to know
the exact values of N ′ and S0 in our attack.

• Step 2: A sends several queries to S by using single-
one fingerprints F 1 with f1γ = 1. Specifically, A runs
Algorithm 1 with inputs F 1 and q1 to collect distance
sets D1 = {{d1,1i }Mi=1, {d

1,2
i }Mi=1, . . . , {d

1,q1

i }Mi=1}.
Similarly, D1 also implies a set of selection sets S1 =
{S1,1, S1,2, . . . , S1,q1} which were used to compute the
distance sets stored in D1.

• Step 3: Next, A compromises the γ-th column of the
database D. First, A finds out a distance set pair from
D0 and D1 where both sets are computed using the same
selection set.A uses its existing knowledge on D to check
whether {d0,ti }Mi=1 ∈ D0 and {d1,zi }Mi=1 ∈ D1, for some
t, z, were generated using the same selection set. Let the
indexes a and b be such that va,γ = vb,γ = 0. A runs
Algorithm 2 with inputs D0, D1, a and b, to get two
sorted and trimmed distance set variables D0′ and D1′.
Let | · | be an operation that gives the cardinality of a
distance set variable. Note that

d0,ta − d
0,t
b =

∑
j∈S0,t

(v2a,j − v2b,j), (21)

and
d1,za − d

1,z
b =

∑
j∈S1,z

(v2a,j − v2b,j). (22)

Hence, having d0,ta − d0,tb = d1,za − d1,zb on Line 6 of
Algorithm 2 implies that S0,t = S1,z with overwhelming
probability. After executing Algorithm 2, A can get two
distance set variables in which, for 1 ≤ ν ≤ |D0′|,
{d0,νi }Mi=1 ∈ D0′ and {d1,νi }Mi=1 ∈ D1′ are generated
based on the same selection set, i.e., S0,ν = S1,ν .
Finally, to compromise all RSS values in the γ-th column
of D, A runs Algorithm 3 with inputs D0′, D1′ and a.
In Algorithm 3, A first finds a distance set (assuming to
be indexed by θ) {d1,θi }i=M ∈ D1′ which is computed
using the γ-th column of D (i.e. γ ∈ S1,θ). Recall that the
distances d0,θi ∈ D0′ and d1,θi ∈ D1′ with the same index
θ are generated under the same selection set: S0,θ = S1,θ

(due to Algorithm 2). On the other hand, the all-zero
and single-one queries differ only in the γ-th column.



Algorithm 3: Compromise the γ-th column of D
Input: D0′, D1′ and a such that va,γ = 0
Output: {vi,γ}Mi=1

1 q0 ← |D0|; foundγ ← 0; {vi,γ}Mi=1 ← −1
2 for θ = 1 to q0 do
3 for i = 1 to M do
4 get {d0,θi , d0,θa } from D0′

5 get {d1,θi , d1,θa } from D1′

6 if d0,θi − d0,θa 6= d1,θi − d1,θa then
7 foundγ ← 1
8 break

9 if foundγ = 1 then
10 for i = 1 to M do

11 vi,γ ←
d
0,θ
i −d

0,θ
a −d

1,θ
i +d1,θa

2

12 break

13 return {vi,γ}Mi=1

In fact, as shown in (19) and (20), if the γ-th column
is not included in the computation, then the all-zero and
single-one queries result in the same distances, but with
different random offsets R0 and R1. The random offsets
can be removed by computing the differences and, hence,
A can determine whether the γ-th column was involved
in the computation by evaluating the following equation:

d0,θi − d
0,θ
a

?
= d1,θi − d

1,θ
a , (23)

with d0,θi ∈ D0′ and d1,θi ∈ D1′ for i = 1, . . . ,M . If (23)
evaluates ‘false’ for any i, then the γ-th column was used
for calculating {d1,θi }Mi=1; i.e., γ ∈ S1,θ. If all evaluate
‘true’, then it means that all vi,γ = 0 and, hence, the γ-th
column was not used in the calculation; i.e., γ 6∈ S1,θ.
After finding S0,θ = S1,θ so that γ ∈ S1,θ, A obtains all
values in the γ-th column of D (including both zero and
non-zero vi,γ) via the following equation:

vi,γ =
d0,θi − d0,θa − d

1,θ
i + d1,θa

2
. (24)

To obtain S’s whole database D, A repeats the above
procedure (Step 2 and Step 3) for all γ = 1, . . . , N .

3) Analysis of the attack: A only needs to find out a pair of
distance sets {d0,µi }Mi=1 ∈ D0′ and {d1,νi }Mi=1 ∈ D1′ such that
their selection sets S0,µ and S1,ν are equivalent and the γ-th
column is involved in S1,ν . What is the probability of this
case? This is a key problem about choosing the parameters
for running our algorithms (in particular, the parameter q of
Algorithm 1). Next, we show that such probability is non-
negligible by showing that even a special case where N ′

satisfies N ′ = N has non-negligible probability. In this case,
the selection set includes all columns (all APs). Hence, we
can have the following events:
• E1: there is at least one selection set S0,µ ∈ S0 which

includes all N APs.
• E2: there is at least one selection set S1,ν ∈ S1 which

includes all N APs.
• E3: E2 ∩ E1;
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Fig. 2. Lower-bound of success probability.

It is not hard to see that we must have S0,µ = S1,ν and
γ ∈ S1,ν when both events E1 and E2 occur. Suppose A can
send at most q all-zero and single-one queries (i.e., q0 = q1 =
q). Since S0

′ and S1
′ are selected independently, we have the

following probabilities:
• Pr[N ′ = N ] = 1

N−τ ;
• Pr[E1] = Pr[E2] = 1− (1− Pr[N ′ = N ])q;
• Pr[E3] = Pr[E1] · Pr[E2] = (1− (N−τ−1N−τ )q)2;
The probability of E3 basically implies a lower bound for

the success probability of our attack because the real success
probability is higher as also N ′ < N such that S0 = S1 with
γ ∈ S1 leads to a successful attack. Fig. 2 shows the the
probability of E3 with different number of APs N .

With respect to N = 10 and τ = 6 as suggested in [13],
we can choose q = 16 to have a success probability Pr[E3] ≈
0.98. Intuitively, the above attack also works for a large N >
200. In order obtain a high probability Pr[E3], one only needs
to enlarge the number of q which is just linear in N .

B. Other Non-trivial Problems

In this subsection, we point out other non-trivial problems
of PriWFL. While these problems do not have a direct effect
on the security of PriWFL (as the major weakness that we
revealed in Sect. III-A), these problems may dramatically
affect the localization accuracy, even up to a point that makes
PriWFL unusable in practice. The problems are mainly caused
by the randomly chosen values and selection set. Recall that
there are different types of random selections in PriWFL (see
Sect. II-C). C chooses N random values {u1, u2, . . . , uN} to
blind the squared values of its fingerprint: fj2+uj . S chooses
a random offset R and a selection set S with N ′ random APs.
In the following, we discuss the problems related to these
random selections in detail.

1) Problems originating from the random selection set:
The random selection sets cause random localization errors
because distances will be calculated by using only the RSS
values of the APs in the selection sets. It is very likely that
some significant values (i.e., strong RSS values) of either C’s



F or S’s D will be excluded from the calculation. Therefore,
the accuracy of the localization service will decrease due to
the random selection set. In [13], they argued that localization
accuracy remains good if N ′ satisfies τ ≤ N ′ ≤ N with a
threshold τ = 6; the deduction in [13] assumed that N is
small (e.g., N = 10). By observing certain publicly available
research-oriented WiFi fingerprint databases (e.g., [15], [16]),
we notice that, in practice, N � 10 (e.g., N > 200) and many
values in D are vi,j = 0 (“AP unavailable”)2. In such cases,
the argument of [13] is no longer valid and severe increase
of localization errors can be expected to happen as a result of
random selection sets.

2) Problems originating from the other randomness: The
randomness spacesRU andRR, from which {u1, u2, . . . , uN}
and R are drawn, respectively, are not defined in [13]. If an im-
plementer chooses the randomness space RR inappropriately,
it may result in random localization errors. The message space
of the Paillier PKE scheme is Zn (integers between 0 and
n− 1) and if a result of an operation with ciphertexts exceeds
this range, then it gets reduced modulo n when decrypted.
E.g., if we have m1 = 2 and m2 = n − 1 and we compute
Dec(sk,Enc(pk,m1) · Enc(pk,m2)), then we get 1 as an
output instead of n + 1. Hence, if RR is defined so that R
can be close to n, then it may happen that, for some distances
di and dj such that di < dj , an “overflow” occurs for dj and
di + R > dj + R (mod n). This will have a severe effect
on calculating the location because C does not know R and,
consequently, incorrect locations (xi, yi, zi) will be chosen as
the k smallest distances.

The random values {u1, u2, . . . , uN} drawn from the ran-
domness space RU do not seem to serve any real purpose
because the Paillier PKE scheme is already probabilistic: if one
encrypts m1 twice, then the ciphertexts will be different even
without ui because a random r is used for every encryption
as shown in (7). Hence, {uj}Nj=1 are not needed to protect C’s
location. They also cannot protect S’s database because C can
freely choose uj (e.g., uj = 0 for all j).

3) Summary: PriWFL is both insecure and unsuitable for
practical use. Our attack breaks PriWFL for all practical
values of N but is particularly efficient for small N that
were considered in [13]. Even if PriWFL could be fixed
against the attack of Sect. III-A, the problems with localization
accuracy caused by the random selection set would still
prevent its use when N is large. Hence, we believe that
PriWFL is fundamentally flawed and new directions need to
be taken in order to implement a secure privacy-preserving
WiFi fingerprint localization scheme. In Sect. IV, we explore
certain possible directions to achieve this ambitious goal.

2E.g., [16] includes a WiFi fingerprint database (BUILDING1 NEW) which
is measured from a four-story building so that M = 505 and N = 241. In
that database, 85.4 % of all values of D are “AP unavailable” (vi,j = 0).
For specific locations in D, the number of available APs varies from 11 to
67. Hence, most APs are unavailable in any specific location. This validates
both the feasibility of the precondition of our attack (see Sect. III-A) and the
above claim about the unsuitability of PriWFL for practical use cases.

IV. SOLUTIONS

In this section, we explore four solutions to implement a
secure privacy-preserving WiFi fingerprint localization scheme
and discuss their feasibility for practical use.

A. Fully Homomorphic Encryption

Conceptually the most straightforward solution would be to
use Fully Homomorphic Encryption (FHE), first introduced
in Gentry’s seminal work [17] in 2009. FHE allows arbitrary
computations (both additions and multiplications) with cipher-
texts and, consequently, allows S to calculate C’s location LC
homomorphically in the encrypted domain without learning
anything about C’s fingerprint. Unfortunately, the excessive
cost of FHE prevents its use in (almost) all practical use cases.

Even Somewhat (Levelled) Homomorphic Encryption
(SHE) schemes that allow evaluating arbitrary functions up
to certain predefined complexity (number of multiplications)
are too complex for our use case. Lepoint and Naehrig [18]
compared two SHE schemes, YASHE (now broken [19]) and
FV [20], and demonstrated that using FV to homomorphically
compute one execution of a lightweight SIMON-32/64 block
cipher requires 3062 s (51 min) on a 4-core Intel Core i7-
2600 processor at 3.4 GHz. Computations required by WiFi
fingerprint localization are significantly more complex than
SIMON-32/64 and, hence, we conclude that even SHE is
impractical.

B. Garbled Circuits

In a secure multiparty computation (MPC) protocol, two
parties jointly evaluate a function f(x, y) without revealing
their respective inputs x and y to each others. In an MPC
protocol using Yao’s garbled circuits (GC) [21], a party called
the generator G generates a boolean GC f̃ for f(x, y) and
send it together with its own garbled input x̃ to the other party
called the evaluator E . Now, E obtains its garbled input ỹ from
G via an oblivious transfer (OT) extension protocol, which
ensures that G does not learn y, and then evaluates f̃(x̃, ỹ) and
receives the result. An OT extension protocol can be computed
with cheap secret-key cryptography by precomputing PKE
operations [22] and, thus, it adds only a small overhead
consisting of symmetric-key computations at the online phase.

It is easy to see that this MPC protocol can be used for
privacy-preserving WiFi fingerprint localization if S is G with
x = D and C is E with y = F . Evaluating a GC requires
only secret-key cryptography, which is computationally cheap
(compared to PKE). The only problem is the excessive com-
munication overhead that is caused, in particular, by the size
of D. In the above protocol, each bit of x (and y) is replaced
by κ random bits. If we assume κ = 128 (corresponds to,
e.g., AES-128), the database from [16] (with N = 241 and
M = 505) and that vi,j are encoded as four-bit values, then
the size of only x̃ will be about 7.4 MB. Communicating ỹ
and, especially, f̃ will still significantly add to this overhead
(2κ bits for each non-XOR gate in f̃ [23], [24]). Hence, using



straightforward GC-based MPC for privacy-preserving local-
ization suffers from high communication cost which decreases
its practical feasibility.

C. Paillier PKE scheme and the Signs of Differences

The following presents a solution relying on Paillier PKE
scheme. The idea is to let C learn the signs of δi,j = di − dj
but nothing else about their values. This allows C to obtain the
sorting of the distances and, consequently, to find the indexes
π1, . . . , πk of the k smallest distances (those with most minus
signs) without revealing other information about distances.

The protocol was inspired by [25] and works as follows.
First, S computes the differences of all distance pairs by
computing Cδi,j = Cdi/Cdj for all 1 ≤ i, j ≤ M such that
i < j and, then, S aligns the differences (via homomorphic
scalar multiplications by 2t) so that a sign of a difference is
given by the t-th bit of the aligned difference. After this, the
protocol repeats the following steps. S masks a difference with
a (large) random mask and sends the result to C who decrypts
the ciphertext and receives the masked difference. C then takes
the LSB of a masked difference, encrypts it, and sends it back
to S. When S receives the encryption of the masked LSB, it
homomorphically removes the LSB of the mask from it by
computing a homomorphic XOR (via a ⊕ b = a + b − 2ab)
and receives the encryption of the LSB of the difference. Now,
S can subtract this LSB from the full difference and, then,
divide the value homomorphically by two (because the LSB
is now guaranteed to be zero). C and S repeat the above
procedure t − 1 times to remove the t − 1 LSBs from the
aligned difference leaving only the t-th bit (the sign). Finally,
S sends the encrypted sign bit to C without a mask and, after
decryption, C knows which of di and dj is larger.

With respect to the security of this solution under the
honest-but-curious setting, C’s location privacy is protected by
Paillier encryption, whereas S’s privacy is guaranteed by the
freshly chosen large random values and the security of the
LSB sub-protocol for privately calculating the sign bits. We
refer the reader to [25] for more details on the security analysis
of the LSB sub-protocol. It is straightforward to see that the
sign bits alone do not directly help C to compromise D. But
for security consideration, one may need to ensure that each
reference RSS value in D has a large bit-length.

The communication overhead grows quickly with M be-
cause the number of differences δi,j is M(M−1)/2. However,
multiple differences can be packed into a ciphertext (see
Sect. IV-D). Another important factor is the precision of δi,j
because a high precision equals large t and requires multiple
protocol rounds to reach the sign bit. Hence, this solution can
be feasible only in specific cases (with small N and M ).

D. Paillier PKE scheme and Garbled Circuits

A combination of Paillier encryption and garbled circuits
can be used to solve the problem of privacy-preserving WiFi
fingerprint localization by adapting, e.g., Sadeghi et al.’s solu-
tion for privacy-preserving face recognition [26] and Blanton
and Gasti’s solution for privacy-preserving iris and fingerprint

identification [27]. In this hybrid solution, C encrypts the RSS
values using Paillier encryption with (13) from Sect. II-C. S
calculates the distances by computing Cdi = ∆i,1 ·∆i,2 ·∆i,3

by using (15)–(17) with S = [N ], i.e., with all APs. Because
all APs are always used, ∆i,3 depends only on C’s inputs and
is the same for all i and, hence, it can be computed by C:
∆3 = Enc(pk,

∑N
j=1 fj). Now, S packs t distances into one

ciphertext by computing Ccomb =
∏t
i=1 C

2(i−1)m

di
, where m is

the maximum bit-length of di. To prevent C from obtaining
these distances, S selects a random mask R $← RR = [n− 1]
and computes Cm-comb = Ccomb ·Enc(pk,R). Let T denote the
number of ciphertexts needed to pack all M distances. E.g.,
if n is a 2048-bit value and m = 16, then we can fit t = 127
distances in one ciphertext. Consequently, if N = 241 and
M = 505 as in [16], the above Paillier encryption part requires
communication of only N+1 = 242 ciphertexts (121 kB) from
C to S and T = 4 ciphertexts (2 kB) from S to C.

Upon receiving all T ciphertexts, C opens the Paillier en-
cryption with sk and retrieves the masked combined distances.
To remove the mask R and to securely find the k smallest
distances (i.e., so that C does not learn di), C and S run a GC-
based MPC protocol, where x = R, y = Dec(sk, Cm-comb),
and f(x, y) is such that it first computes y−x (mod n) (i.e.,
removes the mask) and, then, finds the k smallest distances.
When C has evaluated f̃(x̃, ỹ), it has the indexes π1, . . . , πk of
the k smallest di and it can calculate its location similarly as
in PriWFL. Songhori et al. [28] presented a memory-efficient
sequential garbled gate for k-nearest neighbors search and
their circuit can be used for our purpose. The communication
overhead of transferring x̃ and ỹ grows linearly with M and
is in the magnitude of some kBs for M = 505 and κ = 128.
The communication overhead of the GC depends on k, M , m,
n, and κ, but can be estimated from [29] and [28, Table 1] to
be about 1 MB for the above parameters.

Theorem 1. Suppose that Paillier encryption and MPC
schemes are both secure. Then, the above solution resists
CLPA-I and CLPA-II.

Proof. (Sketch) Resilience against CLPA-II implies resilience
against CLPA-I. Generally speaking, C’s location privacy is
guaranteed by the security properties of Paillier encryption
and MPC schemes. Without the secret key of C, S (or any
passive adversary) is unable to infer C’s location based on
the encrypted location query and the corresponding encrypted
response Cm-comb. Furthermore, S who produces the GC does
not have access to C’s actual inputs, due to the OT protocol,
or to the output the circuit. These facts protect C’s location
privacy from S. The formal security definitions and analysis
of GC-based MPC can be found in [30].

Theorem 2. Suppose that the MPC scheme is secure and RR
is large. Then, the above solution resists SDPA-I and SDPA-II.

Proof. (Sketch) It is sufficient to show that our solution leaks
no information about D to A. The freshly chosen randomness
R

$← [n−1] prevents A from learning the combined distance.



Since a modular n operation is implicitly involved in the
blinded distance (so that possible “overflows” are handled
in the GC), y = Dec(sk, Cm-comb) is statistically close to
a random value. In a nutshell, C cannot gain non-negligible
advantage to compromise the combined distances and S’s
database. In addition, the non-zero vi,j in D easily sum up
to thousands of unknown bits in practice. E.g., [16] contains
over 70,000 bits for non-zero vi,j if they are four-bit values
(N = 241, M = 505, and 85.4 % of values are zeros).
Therefore, it would be very hard for A to compromise even
half of these non-zero values (to get a similar database).

V. CONCLUSION

In this paper, we showed that PriWFL, a privacy-preserving
WiFi fingerprint localization scheme presented in [13], has
a severe weakness that allows an attacker, who is using the
service as a legitimate client, to obtain the exact database of the
service. Hence, PriWFL does not offer any protection for the
service provider which renders the scheme useless in practice.
We also identified certain other problems which make PriWFL
unpractical especially for large N .

Because of the complete break of PriWFL, there is a need
for new secure privacy-preserving WiFi fingerprint localization
schemes. We explored certain solutions to implement such
a scheme. All of them introduce significant communication
and computation overheads compared to the basic privacy-
violating scheme (see Sect. II-A) and often also to PriWFL.
In particular, we sketched two solutions based on combining
Paillier encryption with a scheme, which allows the client to
learn only the signs of distance differences, or either with
garbled circuits. Especially, the latter solution is a promising
candidate for achieving both secure and practical privacy-
preserving WiFi fingerprint localization and we plan to study
it (and possible other solutions) in the future. This future work
includes both optimizing the preliminary schemes as well as
testing them in practice by integrating them into real indoor
localization systems using WiFi fingerprints.
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