High-dose damage evolution in Fe, FeCr and high-entropy alloys

Fredric Granberg, Emil Levo, Shuo Zhang, Andrea Sand, Flyura Djurabekova and Kai Nordlund

Department of Physics, University of Helsinki, Finland

Mohammad W. Ullah, Yanwen Zhang and Bill Weber

Oak Ridge National Laboratory and University of Tennessee, USA
Group presentation: the Nordlund and Djurabekova groups

Prof. Kai Nordlund
Principal investigator

Doc. Antti Kuronen
Principal investigator

Doc. Flyura Djurabekova
Principal investigator

Dr Andrea Sand
Fusion reactor mat'ls

Dr Andrey Ilinov
Ion beam processing

Dr Fredric Granberg
Dislocations

Dr Vahur Zadin*
Particle physics mat'ls (Univ. of Tartu)

Dr Ville Jansson
Particle physics mat'ls

Dr Andreas Kyritsakis
Particle physics mat'ls

Dr Junlei Zhao
Nanoclusters

M Sc Wei Ren
Carbon nanostructures

M Sc Laura Bukonte
Fusion reactor mat'ls

M Sc Morten Nagel
Nuclear materials

M Sc Elnaz Safi
Fusion reactor mat'ls

M Sc Anders Korsbäck
Particle physics mat'ls

M Sc Ekaterina Baibuz
Particle physics mat'ls

M Sc Mihkel Veske
Particle physics mat'ls

M Sc Simon Vigonski
Particle physics mat'ls

M Sc Alvaro Lopez
Surface ripples

M.Sc Jesper Byggmästar
Fusion reactor mat'ls

Ms Vitoria Pacela
Nanowires

M Sc Henrique Muinoz
Swift heavy ions

M Sc Christoffer Fridlund
Ion beam processing

M Sc Jyri Lahtinen
Machine learning

M.Sc. Anton Saressalo
Arcing experiments
1. Damage overlap effects
 - Experimental basic knowledge
 - Early MD simulations
 - Simulation of massive damage overlap: Si, metals
2. High-dose damage in high-entropy alloys
 - Explanation to high radiation hardness
3. High-dose damage effects in Fe and FeCr
 - Mechanism of 100 loop formation
Molecular dynamics of primary damage event

- The primary damage (ns timescale) produced by neutron irradiation can be readily simulated by molecular dynamics (=simulation of atom motion)

- Simple example: 10 keV recoil cascade in FeCr, cross-sectional view
1. Overlapping damage effects?

- It is well established that overall damage levels in metals saturate on long-term irradiation
- Basic explanation: new cascades recombine some of old damage
- Saturation at ~ 1% defect concentration

Experiment

![Graph showing damage effects in copper](image1.png)

[Copper](image2.png)

Simulation

![Simulation of damage effects](image3.png)

Simulations of high-dose damage in semiconductors

- High-dose damage can be simulated by molecular dynamics by running repetitive cascades in same cell
- If there is no thermally assisted defect migration, this corresponds directly to high-dose radiation experiments
- For semiconductors such simulations have been done already long ago, and gave good agreement with experiments
- E.g. amorphization of silicon
 - Dose about 14 eV/atom in MD, about 12 eV/atom in expt.

Simulations of high-dose damage in metals

- Until recently, there were no corresponding simulations in metals
- We have now carried out numerous such series in Fe, FeCr, Ni and Ni-related high entropy alloys
- Example: 1500 overlapping 5 keV cascades in Ni
- 108000 atom cell, all atoms plotted in projection

Granberg et al. (2015)
2. High-Entropy and Equiatomic multicomponent Alloys

- High-entropy (HEA) and Equiatomic MultiComponent (EAMC) alloys are metal mixtures with multiple elements at equal or roughly equal concentrations, homogeneously distributed, in a single simple crystal.

- Definitions:
 - HEA: 5 or more elements
 - EAMC: 2 or more elements

- Rapidly rising interest to them due to promising mechanical, corrosion-resistant and radiation hardness properties
Damage in high-entropy alloys?

- Experiments by Yanwen Zhang et al (ORNL) show that damage in some FCC high-entropy alloys can be clearly lower than in the corresponding pure elements.
- Standard point of comparison: Ni, which is already quite radiation-hard.

![Graph showing yield vs. depth for different materials at 1.5 MeV Ni.]

- Amorphous level
- Damage free level
- Yield (a.u.)
- Depth (nm)

Single cascades in HEA’s

- It is not *a priori* clear why damage should be lower in high-entropy alloys
- Some alloys, such as NiAl, amorphize on irradiation!
- Single cascades in HEA’s do not really show a difference to pure elements
- Example: 5 keV cascade in model CoNiFeCr HEA:
 - Recombination as usual, very similar to pure Ni
 - Damage slightly *higher* than in Ni
- Cannot explain experiments – something else is needed
To try to understand the damage saturation effects in HEA’s, we ran > 1500 overlapping cascades in them.

Key observation: after about 0.05 dpa, almost all damage is in clusters – and this evolves!

Example: FeNi

The clustered damage shows a similar damage reduction effect as the experiments!

Experiment (RBS)

Simulation (MD)

Analyses of dislocation structures

- We have analyzed all the frames for dislocations with the ovito DXA analysis (constructing Burgers vectors to detect dislocations)

- Ni

- NiCoCr

Stair-rod dislocation => Stacking fault tetrahedron

Shockley partial

Frank loop
Final dislocation state
Ni vs. NiCoCr

- Ni has larger dislocation loops and much more SFT’s than NiCoCr

Ni ~ 0.3 dpa
NiCoCr ~ 0.3 dpa
Dislocation reactions affecting overall damage level

- The dislocations dominate the overall damage level
- Numerous dislocation reactions occur driven by the irradiation
- Example: Shockley partial stepwise becoming a Frank loop
Reason to damage reduction: reduced dislocation mobility

- The reduction in damage level correlates clearly with dislocation mobility
- In the alloys, each atom has a local strain field, and this reduce dislocation mobility
- Lower dislocation mobility keeps dislocations from growing, and the smaller dislocations can recombine easier during cascade overlap

Final damage level vs. Slope of dislocation mobility => Clear correlation

Why is RBS signal so high?

- In the experiments, the RBS/channeling signal appears very high, about "1/2 randomly displaced atoms"
- 50% damage does not at all correspond to TEM, resistivity or MD results, which show <1% defective atom fraction
- Explanation just determined by us: dislocations give a very high RBS signal due to strain effects
- New code RBSADEC to simulate RBS/channeling from arbitrary atom coordinates shows that signal from loop ~50x higher than for same number of randomly displaced interstitial atoms!

Direct comparison of damage structure with experiments

- Using the RBSADEC code we can compare our structures directly with experiments (with no fitting!)
- Agreement is very good considering defect migration is not included in MD simulations and we use a single ion energy

3. High-dose radiation damage in Fe and FeCr

- We have also carried out corresponding series in Fe
- Key question addressed in these simulations: what is the mechanism of 100 loop formation?
Dislocation structure after 1000 5 keV cascades

½ <111> dislocation
<100> dislocation
Unidentified; mainly vacancy clusters
100 loop formation mechanism

- From the simulations, we analyzed the dislocation structure [with Ovito DXA analysis] and sought 100 loops
- We found that they can form spontaneously by transformation from 111 loops by cascade overlap
- Example:

 ![Diagram](image)

 - (a) Before cascade 1026
 - (b) After cascade 1026
 - (c) Before cascade 1288
 - (d) During cooldown
 - (e) During cooldown
 - (f) After cascade 1288

[Granberg et al, EPL (2017) submitted for publication]
Video of final transformation

Note time scale: final loop transformation occurs after heat spike: spike ‘activates’ a locked-in dislocation configuration
Another case…

- Transformation of final $<111>$ segment to $<100>$

- Note time scale: final loop transformation occurs after heat spike: spike ‘activates’ a locked-in dislocation configuration
Conclusions

- Dislocation mobility is reduced in FCC high-entropy alloys
- After about ~ 0.05 dpa, overall damage level is dominated by dislocation structures, and their reactions affect the development
- This reduces the radiation damage in high-entropy alloys compared to the corresponding pure elements
- In Fe, <100> loops can form stepwise by cascade-induced activation of <111> dislocation segments
Thank you for your attention!