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Abstract We define a variant of team semantics called multiteam semantics based
on multisets and study the properties of various logics in this framework. In
particular, we define natural probabilistic versions of inclusion and independence
atoms and certain approximation operators motivated by approximate dependence
atoms of Väänänen.
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1 Introduction

Dependence logic was introduced by Väänänen in 2007 [34]. It extends first-order
logic with dependence atomic formulas (dependence atoms) =(~x, y) with the
meaning that the value of the variable y is functionally determined by the values of
the variables ~x. The notion of dependence has real meaning only in plurals. Thus,
in contrast to the usual Tarskian semantics, in dependence logic, the satisfaction
of formulas is defined not via single assignments but via sets of assignments. Such
sets are called teams and the semantics is called team semantics. In this article, we
take a further step of replacing structures and teams by their multiset analogues.
Multiteams have been considered in some earlier works [22,21,36] but so far no
systematic study of the subject in the team semantics context has appeared. In
the temporal logic setting (in the context of computation tree logic) multiteam
semantics has been introduced and studied recently [30]. In this article we define
the so-called lax and strict multiteam semantics and study properties of various
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logics under these semantics. Moreover, we show how the shift from sets to multisets
naturally gives rise to probabilistic and approximate versions of dependence logic.

The idea of team semantics goes back to Hodges [20] whose aim was to define
compositional semantics for independence-friendly logic [19]. The introduction of
dependence logic and its many variants has manifested that team semantics is a very
interesting and versatile semantical framework. In fact, team semantics has natural
propositional, modal, and temporal variants. The study of modal dependence logic
was initiated by Väänänen [35] in 2008. Shortly after, extended modal dependence
logic was introduced by Ebbing et al. [5] and modal independence logic by Kontinen
et al. [29]. In purely propositional context the study was initiated by Yang and
Väänänen [40] and further studied, e.g., by Hannula et al. [17]. One of the most
important developments in the area of team semantics was the introduction of
independence logic by Grädel and Väänänen [12] in which dependence atoms of
dependence logic are replaced by independence atoms ~y ⊥~x ~z. The natural meaning
of the independence atom ~y ⊥~x ~z is that, when the value of ~x is fixed, knowing
the value of ~z does not tell us anything new about the value of ~y. Soon after the
introduction of independence logic Galliani [7] showed that independence atoms
can be further analysed, and alternatively expressed, in terms of inclusion and
exclusion atoms. The inclusion atom ~x ⊆ ~y expresses that each value taken by ~x in
a team X appears also as a value of ~y in X. The meaning of the exclusion atom
~x|~y is that ~x and ~y have no common values in X.

Independence, inclusion, and exclusion atoms have very interesting computa-
tional properties in the team semantics setting. For example, in lax semantics
inclusion atoms give rise to a variant of dependence logic that corresponds to the
complexity class P over finite ordered structures [9]. On the other hand, under
strict team semantics inclusion logic captures the complexity class NP [8,14]. In
the context of two-variable logics, the complexity of the satisfiability and validity
problems of several team based logics have been studied in [26,27]. The complexity
theoretic aspects of propositional, modal, and first-order logics with team semantics
have been studied extensively during the past few years; see the survey of Durand
et al. [4] and the references therein.

A team X over variables x1, . . . , xn can be viewed as a database table with
x1, . . . , xn as its attributes. Under this interpretation, dependence, inclusion, exclu-
sion, and independence atoms correspond exactly to functional, inclusion, exclusion,
and embedded multivalued dependencies, respectively. These dependencies have
been studied extensively in database theory. The close connection between team
semantics and database theory has already led to fruitful interactions between these
areas [15,16,28]. It is worth noting that multiset semantics (also known as bag
semantics) is widely used in databases [1,24,31]. On the other hand, independence
atoms, embedded multivalued dependencies, and the notion of conditional inde-
pendence ~Y ⊥ ~Z| ~X in statistics have very interesting connections, see, e.g., [13,38].
In this article we establish that, in the multiteam semantics setting, independence
atoms can be naturally interpreted exactly as conditional statistical independence.
Probabilistic versions of dependence logic have been previously studied by Galliani
and Mann [6,10].

In practice dependencies such as functional dependence do not hold absolutely
but with a small margin of error. In order to logically model such scenarios,
Väänänen introduced approximate dependence atoms [36]. The corresponding
approximate functional dependencies have been studied in the context of data
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mining [23]. In this article we define a general approximation operator which, in
particular, can be used to express approximate dependence atoms. In the last
section of the article, we study the computational aspects of logics extended by
the approximation operator.

Previous work on multisets in team semantics. The idea of generalising team
semantics by the use of multisets has been discussed in several articles. Hyttinen et al.
[22] study multiteams and their generalisations called quantum teams. Quantum
teams are used to give semantics to a propositional logic called quantum team logic,
that can be used for the logical analysis of phenomena in quantum physics. Moreover
Hyttinen et al. [21] define a notion of a measure team and measure team logic. The
latter is a logic for making inferences about probabilities of first-order formulas in
measure teams. Furthermore Krebs et al. introduced team semantics with multisets
for the temporal logic CTL [30]. Finally the fact that under multiteam semantics
approximate dependence atoms have the locality property (compare to Proposition
37) is discussed by Väänänen [36].

Organisation. This article is organised as follows. Section 2 briefly discusses the
basic concepts and definitions. The generalisation of team semantics to multisets
is presented in Section 3. Section 4 defines the approximation operators, and
in Section 5 the complexity-theoretic aspects of logics with the approximation
operators are studied.

2 Preliminaries

We assume familiarity with standard notions in computational complexity theory
and logic. We will make use of the complexity classes NP and P. For an introduction
to this topic, we refer to the excellent textbook of Papadimitriou [33].

2.1 Team Semantics

Vocabularies τ are finite sets of relation symbols with prescribed arities. For
each R ∈ τ , let ar(R) ∈ Z+ denote the arity of R. A τ -structure is a tuple
A =

(
A, (RA

i )Ri∈τ
)
, where A is a set and each RA

i is an ar(Ri)-ary relation on A

(i.e., RA
i ⊆ Aar(Ri)). We use A, B, etc. to denote τ -structures and A, B, etc. to

denote the corresponding domains. In this article we restrict attention to finite
structures.

Let D be a finite set of first-order variables and A be a nonempty set. A function
s : D → A is called an assignment. The set D is the domain of s, and the set A the
codomain of s. For a variable x and a ∈ A, the assignment s(a/x) : D ∪ {x} → A is
obtained from s as follows:

s(a/x)(y) :=

{
a if y = x,

s(y) otherwise.

A team is a finite set of assignments with a common domain and codomain.
Let X be a team, A a finite set, and F : X → P(A) \ {∅} a function. We denote
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by X[A/x] the modified team {s(a/x) | s ∈ X, a ∈ A}, and by X[F/x] the team
{s(a/x) | s ∈ X, a ∈ F (s)}. Let A be a τ -structure and X a team with codomain
A, then we say that X is a team of A.

Let τ be a set of relation symbols. The syntax of first-order logic FO(τ) is given
by the following grammar, where R ∈ τ , ~x is a tuple of variables, and x and y are
variables. Note that in the definition the scope of negation is restricted to atomic
formulas.

ϕ ::= x = y | x 6= y | R(~x) | ¬R(~x) | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | ∃xϕ | ∀xϕ.

Let ~x, ~y be tuples of variables and ϕ a formula. We write Var(ϕ) for the set of
variables that occur in ϕ, and Var(~x) for the set of variables listed in ~x. We also
write ~x~y for the concatenation of ~x and ~y, ~x ∩ ~y for any tuple listing the variables
in Var(~x) ∩Var(~y), and ~x \ ~y for any tuple listing the variables in Var(~x) \Var(~y).
For an assignment s, we write s(~x) to denote the sequence

(
s(x1), . . . , s(xn)

)
.

Next, we define the lax and strict team semantics of first-order logic. It is
worth noting that the disjunction has a non-classical interpretation. The classical
disjunction of team semantics A |=X ϕ > ψ ⇔ A |=X ϕ or A |=X ψ does not
correspond to the classical disjunction of first-order logic. E.g., > does not satisfy
the law of the excluded middle and consequently is sometimes referred to as the
intuitionistic disjunction. In turn, the non-classical disjunction of team semantics
does correspond to the classical disjunction of ordinary first-order logic; extensions
of first-order logic in team semantics are conservative extensions of ordinary first-
order logic.

Definition 1 (Lax team semantics) Let A be a τ -structure and X a team of
A. The satisfaction relation |=X for first-order logic is defined as follows:

A |=X x = y ⇔ ∀s ∈ X : s(x) = s(y)
A |=X x 6= y ⇔ ∀s ∈ X : s(x) 6= s(y)

A |=X R(~x) ⇔ ∀s ∈ X : s(~x) ∈ RA

A |=X ¬R(~x) ⇔ ∀s ∈ X : s(~x) 6∈ RA

A |=X (ψ ∧ θ) ⇔ A |=X ψ and A |=X θ
A |=X (ψ ∨ θ) ⇔ A |=Y ψ and A |=Z θ for some Y,Z ⊆ X s.t. Y ∪ Z = X
A |=X ∀xψ ⇔ A |=X[A/x] ψ
A |=X ∃xψ ⇔ A |=X[F/x] ψ holds for some F : X → P(A) \ {∅}.

The so-called strict team semantics is obtained from the previous definition by
adding the following two requirements.

(i) Disjunction: Y ∩ Z = ∅.
(ii) Existential quantification: F (s) is singleton for all s ∈ X.

For a model A and a sentence ϕ (i.e., a formula with no free variables), the
satisfaction relation |= is defined as:

A |= ϕ if A |={∅} ϕ,

where {∅} denotes the singleton team of empty assignment.
Team semantics enables extending first-order logic with various dependency

notions. The following dependency atoms were introduced in [34,7,12].
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Definition 2 (Dependency atoms) Let A be a model and X a team of A. If
~x, ~y are variable sequences, then =(~x, ~y) is a dependence atom with the satisfaction
relation:

A |=X =(~x, ~y) if for all s, s′ ∈ X s.t. s(~x) = s′(~x), it holds that s(~y) = s′(~y).

If ~x, ~y are variable sequences of the same length, then ~x ⊆ ~y is an inclusion
atom with the satisfaction relation:

A |=X ~x ⊆ ~y if for all s ∈ X there exists s′ ∈ X such that s(~x) = s′(~y).

If ~x, ~y, ~z are variable sequences, then ~y ⊥~x ~z is a conditional independence atom
with the satisfaction relation:

A |=X ~y ⊥~x ~z if for all s, s′ ∈ X such that s(~x) = s′(~x) there exists s′′ ∈ X
such that s′′(~x) = s(~x), s′′(~y) = s(~y), and s′′(~z) = s′(~z).

Note that in the previous definition it is allowed that some or all of the vectors
of variables have length 0. For example, A |=X =(∅, ~x) (written often as A |=X =(~x)
in the literature) holds if and only if ∀s ∈ X : s(~x) = ~c holds for some fixed tuple
~c, and A |=X ~y ⊥~x ~z holds always if either of the vectors ~y or ~z is of length 0.

We write FO for first-order logic, and given a set of atoms C, we write FO(C)
(omitting the set parentheses of C) for the logic obtained by adding the atoms of
C to FO. Here we denote dependence atoms by =(·), inclusion atoms by ⊆, and
conditional independence atoms by ⊥c (the atoms introduced later will be denoted
similarly). For instance, FO(=(·)) denotes dependence logic.

Often in literature dependence atoms are defined such that ~y is a single variable,
i.e., the widely used form is =(~x, y). The definition above yields the strongest form
of functional dependence. Moreover the atom =(~x, ~y) can be equivalently rewritten
as a conjunction of dependence atoms of type =(~x, y).

3 Multiteam Semantics

In this section we generalise team semantics with the concept of multisets. Multisets
and multiteam semantics can be used, e.g., in applications to database theory
to model reasoning with databases with duplicates. In practice, for a multitude
of reasons, the existence of duplicates in databases is very common. Again as
previously noted, we restrict attention to finite sets and finite multisets.

In Section 3.1, the basics of multiteam semantics are given. In Section 3.2, we
introduce probabilistic versions of inclusion and independence atoms, and in Section
3.3 the fundamental properties locality, flatness, and union closure are discussed in
the multiteam setting. In Sections 3.4 and 3.5, nonprobabilistic dependency notions
in multiteam setting and probabilistic dependency notions in team semantics setting
are studied, respectively.
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3.1 Foundations

In the following definition, occurrences of “zero multiplicities” are allowed for
notational convenience.

Definition 3 (Multiset) A multiset is a pair (A,m) where A is a set and m : A→
N is a (multiplicity) function. The function m determines the multiplicities of the
elements in the multiset (A,m). A multiset (X,m) is a multiteam if the underlying
set X is a team. The domain (or the codomain) of the multiteam (X,m) is the
domain (codomain) of the team X.

For each multiset (A,m), we define the canonical set representative [(A,m)]cset of
(A,m) as follows:

[(A,m)]cset := { (a, i) | a ∈ A, 0 < i ≤ m(a) }.

We say that (A,m) is finite whenever [(A,m)]cset is finite. We say that a
multiset (A,m) is a submultiset of a multiset (B,n), and write (A,m) ⊆ (B,n), if
and only if [(A,m)]cset ⊆ [(B,n)]cset. Furthermore, we define that (A,m) = (B,n)
if and only if both (A,m) ⊆ (B,n) and (B,n) ⊆ (A,m) hold.

The disjoint union (A,m) ] (B,n) of (A,m) and (B,n) is the multiset (C, k),
where C := A ∪B and k : C → N is the function defined as follows:

k(s) :=


m(s) + n(s) if s ∈ A and s ∈ B,
m(s) if s ∈ A and s 6∈ B,
n(s) if s 6∈ A and s ∈ B.

We write |(A,m)| to denote the size of the multiset (A,m), i.e., |(A,m)| :=∑
a∈Am(a). The set of non-empty submultisets of a multiset (A,m) is the set

P+((A,m)
)

:= {(C, l) | (C, l) ⊆ (A,m) s.t. l(c) ≥ 1 for each c ∈ C} \ {(∅, ∅)}.

Let (X,m) be a multiteam, (A,n) be a finite multiset, and F : [(X,m)]cset →
P+
(
(A,n)

)
be a function. We denote by (X,m)[(A,n)/x] the modified multiteam

defined as ⊎
s∈X

⊎
a∈A

{ (
s(a/x),m(s) · n(a)

) }
.

By (X,m)[F/x] we denote the multiteam defined as⊎
s∈X

⊎
1≤i≤m(s)

{ (
s(b/x), l(b)

)
| (B, l) = F

(
(s, i)

)
, b ∈ B

}
.

Example 4 Figure 1 depicts a canonical set of a team (X,m) with domain {x, y}
and codomain A = {α, β}. Observe that (X,m) is a multiteam where X = {s, t, u}
and m : X → N is a multiplicity function such that m(s) = 2, m(t) = 1, and
m(u) = 1. Note that s and t agree on y but disagree on x. Figure 1 also depicts
the canonical set of (X,m)[F/x] where F is defined as follows:

F
(
(s, 1)

)
= (A,n), F

(
(s, 2)

)
= (A,n),

F
(
(t, 1)

)
= (A,n), F

(
(u, 1)

)
= ({β}, n),
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[(X,m)]cset

y x

(s, 1) α α
(s, 2) α α
(t, 1) α β
(u, 1) β α

[(X,m)[F/x]]cset

y x

(s1, 1) α α
(s1, 2) α α
(s1, 3) α α
(s1, 4) α α
(s1, 5) α α
(s1, 6) α α
(s2, 1) α β
(s2, 2) α β
(s2, 3) α β
(u1, 1) β β

Fig. 1 A set [(X,m)]cset and its associated [(X,m)[F/x]]cset for function F of Example 4

where n is a multiplicity function such that n(α) = 2 and n(β) = 1. The assignments
s1 and s2 arise from (s, 1), (s, 2), and (t, 1); the assignment u1 arises from (u, 1).
Furthermore, note that [(X,m)[F/x]]cset \ {(u1, 1)} is the canonical set of (X \
{u},m)[(A,n)/x].

A τ -multistructure is a tuple A =
(
(A,m), (RA

i )Ri∈τ
)

where (A,m) is a non-

empty multiset and, for each Ri ∈ τ , RA
i is an ar(Ri)-ary relation over the set

{a ∈ A | m(a) ≥ 1}. A multiteam (X,m) over A is a multiteam with codomain A.
Next we define lax multiteam semantics for first-order logic.

Definition 5 (Lax multiteam semantics) Let A be a τ -multistructure, (A,n)
the domain of A, and (X,m) a multiteam over A. The satisfaction relation |=(X,m)

is defined as follows:

A |=(X,m) x = y ⇔ ∀s ∈ X : if m(s) ≥ 1 then s(x) = s(y)
A |=(X,m) x 6= y ⇔ ∀s ∈ X : if m(s) ≥ 1 then s(x) 6= s(y)

A |=(X,m) R(~x) ⇔ ∀s ∈ X : if m(s) ≥ 1 then s(~x) ∈ RA

A |=(X,m) ¬R(~x) ⇔ ∀s ∈ X : if m(s) ≥ 1 then s(~x) 6∈ RA

A |=(X,m) (ψ ∧ θ) ⇔ A |=(X,m) ψ and A |=(X,m) θ
A |=(X,m) (ψ ∨ θ) ⇔ A |=(Y,k) ψ and A |=(Z,`) θ for some multisets

(Y, k), (Z, `) ⊆ (X,m) s.t. (X,m) ⊆ (Y, k) ] (Z, `).
A |=(X,m) ∀xψ ⇔ A |=(X,m)[(A,n)/x] ψ
A |=(X,m) ∃xψ ⇔ A |=(X,m)[F/x] ψ holds for some function

F : [(X,m)]cset → P+
(
(A,n)

)
.

The so-called strict multiteam semantics is obtained from the previous definition
by adding the following two requirements.

(i) Disjunction: (Y, k) ] (Z, l) = (X,m).
(ii) Existential quantification: for all s ∈ X and 0 < i ≤ m(s), F

(
(s, i)

)
= (B,n)

for some singleton B = {b} and n(b) = 1.

In most parts of this paper, the choice of semantics (strict or lax) for existen-
tial quantifiers and disjunctions does not have any effect. Thus, if not explicitly
mentioned, all the results hereafter work for both strict and lax semantics. Note
also that the multiset nature of domains of multistructures manifest itself only in
the truth conditions of the quantifiers.
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As demonstrated by the following proposition, the multiteam semantics and
team semantics for first-order logic coincide when the multisets in multistructures
and multiteams are essentially sets. Furthermore the semantical clauses of lax
(strict, resp.) multiteam semantics collapse to the semantical clauses of lax (strict,
resp.) team semantics. The proof of the proposition is self-evident.

Proposition 6 Let A be a multistructure with domain (A, 1), and (X, 1) a multi-
team over A, where 1 denotes the constant 1 function, i.e., 1(a) = 1(s) = 1 for all
a ∈ A and s ∈ X. Define B := (A, (RA)R∈τ ). Then for every ϕ ∈ FO it holds that

A |=(X,1) ϕ if and only if B |=X ϕ.

We point out that multiteam semantics is reminiscent of the bag semantics
in relational databases. For instance, the disjoint union of multiteams and the
restriction of a multiteam (introduced in Sect. 3.3) align with the union and projec-
tion operators of the bag relational algebra [32]. Similarly, the query containment
problem in bag semantics is formulated using a notion of bag containment that is
analogous to the containment relation of multiteams. It is well known that bag
semantics, although being relevant for database practise where duplicates are toler-
ated for computational reasons, renders the query containment problem difficult.
Already for conjunctive queries this problem becomes, from being NP-complete
in set semantics, ΠP

2 -hard with decidability remaining an open problem when
considering bag semantics instead [2]. Similar increase in complexity should be
anticipated for multiteam semantics, although the vantage point here is somewhat
different from that of bag semantics as the focus is not on queries over but on
properties of multisets of relations.

3.2 Probabilistic Dependency Notions

Next we generalise inclusion and conditional independence atoms to multiteams by
introducing their probabilistic versions. For a multiteam (X,m) of codomain A,
a tuple of variables ~x from Dom(X), and ~a ∈ A|~x|, we denote by (X,m)~x=~a the
multiteam (X,n) where n agrees with m on all assignments s ∈ X with s(~x) = ~a,
and otherwise n maps s to 0.

Definition 7 Let A be a multistructure with domain (A,n), and (X,m) a mul-
titeam over A. If ~x, ~y are variable sequences of the same length, then ~x ≤ ~y is a
probabilistic inclusion atom with the following semantics:

A |=(X,m) ~x ≤ ~y if |(X,m)~x=s(~x)| ≤ |(X,m)~y=s(~x)| for all s : Var(~x)→ A.

It is worth noting that for finite multiteams A |=(X,m) ~x ≤ ~y implies that

|(X,m)~x=s(~x)| = |(X,m)~y=s(~x)| for all s : Var(~x)→ A.

Otherwise, the inequality below would be rendered strict:

|(X,m)| = Σs : Var(~x)→A|(X,m)~x=s(~x)| ≤ Σs : Var(~x)→A|(X,m)~y=s(~x)| = |(X,m)|.
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If ~x, ~y, ~z are variable sequences, then ~y ⊥⊥~x ~z is a probabilistic conditional
independence atom with the satisfaction relation defined as

A |=(X,m) ~y ⊥⊥~x ~z

if for all s : Var(~x~y~z)→ A it holds that

|(X,m)~x~y=s(~x~y)| · |(X,m)~x~z=s(~x~z)| = |(X,m)~x~y~z=s(~x~y~z)| · |(X,m)~x=s(~x)|. (1)

We call atoms of the form ~x ⊥⊥∅ ~y probabilistic marginal independence atoms,
written as the shorthand ~x ⊥⊥ ~y. Note that we obtain the following satisfaction
relation for ~x ⊥⊥ ~y:

A |=(X,m) ~x ⊥⊥ ~y if for all s : Var(~x~y)→ A, (2)

|(X,m)~x=s(~x)| · |(X,m)~y=s(~y)|
|(X,m)| = |(X,m)~x~y=s(~x~y)|.

Multiteams (X,m) induce a natural probability distribution p over the assign-
ments of X. Namely, we define p : X → [0, 1] such that

p(s) =
m(s)∑
s∈X m(s)

. (3)

The probability that a tuple of (random) variables ~x takes value ~a, written
Pr(~x = ~a), is then ∑

s∈X,
s(~x)=~a

p(s).

It is now easy to see that A |=(X,m) ~y ⊥⊥~x ~z if and only if, for all ~a~b~c,

Pr(~y = ~b, ~z = ~c|~x = ~a) = Pr(~y = ~b|~x = ~a) Pr(~z = ~c|~x = ~a),

that is, the probability of ~y = ~b is independent of the probability of ~z = ~c,
given ~x = ~a. Analogously, a probabilistic inclusion atom ~x ≤ ~y indicates that
Pr(~x = ~a) = Pr(~y = ~a) for all values ~a, and a probabilistic independence atom of
the form ~x ⊥⊥ ~x that Pr(~x = ~a) = 1 for some value ~a. Note that such atoms have
been studied in the literature under the name of constancy atoms [7].

Example 8 Strict and lax multiteam semantics give rise to different interpretations
of multiteams. Consider the formula φ := ∃xψ where ψ := y ≤ x ∧ x ⊥⊥ y and the
question whether a given multiteam (X,m) satisfies φ.

In the strict semantics framework, it is natural to perceive (X,m) as a table
in which each s ∈ X occurs m(s) many times and the values for x are missing.
For instance, (X,m) may store incomplete discrete information about events of
an experiment. Then (X,m) satisfies φ if and only if the missing values of x can
be filled in such a way that ψ holds. In the strict semantics setting, however,
satisfaction of a formula is sensitive to the actual multiplicities of assignments, not
only their proportions in the multiteam. Fig. 2 represents two multiteams (X,m)
and (X,n) where X = {s1, s2} with si : y 7→ i, m(si) = i, and n(si) = 3 · i. Then
(X,m) falsifies φ, since y ≤ x enforces two occurrences of x = 1 and one occurrence
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(X,m)

y x

s1 1
s2 2
s2 2

(X,n)

y x

s1 1
s1 1
s1 1
s2 2
s2 2
s2 2
s2 2
s2 2
s2 2

(X,n)[F/x]

y x

s′1 1 1
s′′1 1 2
s′′1 1 2
s′2 2 1
s′2 2 1
s′′2 2 2
s′′2 2 2
s′′2 2 2
s′′2 2 2

Fig. 2 Representations of multiteams (X,m), (X,n), and (X,n)[F/x] with “missing informa-
tion”.

(X,m) and (X,n)

y p(si)

s1 1 1/3
s2 2 2/3

(X,m)[G/x] and (X,n)[G/x]

y x p(si)

s′1 1 1 1/9
s′′1 1 2 2/9
s′2 2 1 2/9
s′′2 2 2 4/9

Fig. 3 Representations of multiteams (X,m), (X,n), (X,m)[G/x], and (X,n)[G/x] using the
induced probability distribution from (3).

property logic lax strict

locality FO(=(·)) X X
FO(⊆,⊥c), FO(⊆), FO(⊥c) X ×

flatness FO X X
FO(=(·)), FO(⊆), FO(⊥c) × ×

union closure FO X X
FO(⊆) X ×
FO(=(·)), FO(⊥c) × ×

Fig. 4 Structural properties overview in team setting.

of x = 2, in which case x ⊥⊥ y cannot hold. On the other hand, (X,n) satisfies φ,
since (X,n)[F/x], depicted in Fig. 2, satisfies ψ.

In the lax semantics framework, it is more natural to identify (X,m) with its
induced probability distribution p obtained from Eq. (3) (see Fig. 3), for satisfaction
by (X,m) is more often invariant of the multiplicities m(s) depending only on the
ratios p(s). In our example case (X,m) and (X,n) share the same distribution
and both satisfy φ. For both multiteams, satisfaction of φ is verified by taking a
constant function G that maps everything to ({1, 2}, `), where ` is a multiplicity
function that associates 1 and 2 with multiplicities 1 and 2, respectively.
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property logic lax strict

locality FO(≤,⊥⊥c,=(·),⊆,⊥c) X X
flatness FO X X

FO(C), ∅ 6= C ⊆ {≤,⊥⊥c,=(·),⊆,⊥c} × ×
weak flatness FO(=(·)) X X

FO(=(·),⊆,⊥c), FO(⊆), FO(⊥c) X ×
FO(⊥⊥c), FO(≤) × ×

union closure FO(≤,⊆) X X
FO(⊥⊥c), FO(=(·)), FO⊥c) × ×

Fig. 5 Structural properties overview in multiteam setting.

3.3 Basic Properties

The set of free variables of a formula ϕ ∈ FO(C), denoted by Fr(ϕ), is defined in
the obvious manner as in first-order logic. In particular, we define

Fr(~x ⊆ ~y) := Fr(~x ≤ ~y) := Fr
(

=(~x, ~y)
)

:= {~x, ~y}
Fr
(
~y ⊥⊥~x ~z

)
:= Fr

(
~y⊥~x~z

)
:= {~x, ~y, ~z}.

For V ⊆ Dom(X), we define (X,m) � V := (X � V, n), where

n(s) :=
∑
s′∈X,
s′�V=s

m(s′).

We briefly recollect from the literature of team semantics the definitions and
results of the basic properties locality, union closure, and flatness. For an overview
on the structural properties in team semantics and multiteam semantics setting,
see Figures 4 and 5, respectively.

Definition 9 Let L be a logic under team semantics, ϕ be a formula, X,Y be
teams, and V be a set of variables such that Fr(ϕ) ⊆ V ⊆ Dom(X). Then L is

– local if A |=X ϕ if and only if A |=X�V ϕ,
– union closed if A |=X ϕ and A |=Y ϕ implies A |=X∪Y ϕ, and
– flat if A |=X ϕ if and only if A |={s} ϕ for all s ∈ X.

Proposition 10 Under lax team semantics

– FO(⊆,=(·),⊥c) is local [7,34],
– FO(⊆) is union closed [7], and
– FO is flat [34].

Under strict semantics

– FO(=(·)) is local [34],
– FO is union closed, and
– FO is flat [7].

Note above that union closure follows from flatness. It is now easy to show that
the logics having the above properties are maximal with respect to the used atoms
⊆,=(·),⊥c. The only nontrivial case is to show that under strict semantics FO(⊆)
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x y z

s1 a b b
s2 a a a
s3 b a b

Fig. 6 Illustration of assignments s1, s2, and s3 for Example 11.

is not union closed. The analogous result was recently established for propositional
inclusion logic in [18]. The following example, a modification of [18, Example 4],
shows that under strict semantics FO(⊆) is not union closed.

Example 11 Let P be a unary proposition symbol and consider a model A of
vocabulary {P} and domain {a, b} such that PA = {a}. Assignments s1, s2, and
s3 are depicted in Figure 6. Define ϕ := (P (x)∧ x ⊆ z)∨ (P (y)∧ y ⊆ z). Note that
under strict semantics A |={s1,s2} ϕ and A |={s2,s3} ϕ but A 6|={s1,s2,s3} ϕ.

Observe that under strict team semantics FO(⊆) does not satisfy locality [7],
whereas we will see that (Prop. 13), by moving to multiteam semantics, locality can
be regained for both semantics. Consequently, the shift from teams to multiteams
fixes a problematic property of strict team semantics.

Definition 12 (Locality) Let L be some logic, A be a multistructure, (X,m)
be a multiteam, and V be a set of variables such that Fr(ϕ) ⊆ V ⊆ Dom(X).
We say L is local (in the multiteam setting) if for all ϕ ∈ L the equivalence
A |=(X,m) ϕ ⇔ A |=(X,m)�V ϕ holds.

The following result holds by easy structural induction.

Proposition 13 Under lax and strict multiteam semantics, FO(≤,⊥⊥c,=(·),⊆,⊥c)
is local.

Example 14 Let us illustrate why locality fails for strict team semantics whereas it
holds for its multiteam variant. Consider a disjunction φ := x ⊆ y∨y ⊆ z. The team
X from Fig. 7 clearly satisfies φ according to the strict team semantics. However,
the formula is not true over X � {x, y, z} which merges two assignments from
X into one. In multiteam semantics, strict or lax, such collapses do not happen,
since the definition of restriction in multiteam setting preserves multiplicities. The
restriction of a multiteam thus bears resemblance to the marginalisation of a
probability distribution where probabilities are preserved analogously.

The flatness property translates also to the multiteam setting. Recall that over
teams this property indicates that for checking the satisfaction of a formula it
suffices to consult only the singleton subsets of teams.

Definition 15 (Flatness) We say that a formula ϕ is flat (in multiteam setting)
if for all multistructures A and for all multiteams (X,m) it holds that

A |=(X,m) ϕ ⇔ ∀s ∈ X : A |=({s},1) ϕ,

where 1 is the constant fuction that maps everything to 1. A logic is called flat if
every formula of this logic is flat.
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X

x y z v

1 0 3 0
0 1 2 1
0 1 2 2
3 2 1 3

X � {x, y, z}
x y z

1 0 3
0 1 2
3 2 1

Fig. 7 A team X and its restriction to variables x, y, z for Example 14.

It is easy to prove that, analogous to the team semantics setting, the logic
FO(C), C ⊆ {≤,⊥⊥c,=(·),⊆,⊥c}, is flat (in the multiteam setting) only when
C = ∅. It turns out that by weakening the concept of flatness an interesting
property of multiteams emerges. We call a formula weakly flat if it is insensitive to
multiplicatives other than 0 and 1.

Definition 16 (Weak flatness) We say that a formula ϕ is weakly flat if for all
multistructures A and for all multiteams (X,m) it holds that

A |=(X,m) ϕ ⇔ A |=(X,n) ϕ,

where n agrees with m on all s with m(s) = 0, and otherwise maps all s to 1. The
multiteam (X,n) is then called the weak flattening of (X,m). A logic is called
weakly flat if every formula of this logic is weakly flat.

Intuitively, the flatness property precludes the possibility of expressing any de-
pendencies (standard or probabilistic), while the weak flatness precludes only
the possiblity of expressing probabilistic dependencies. An example of this is the
following proposition which can be proved by structural induction (see also Fig. 5).

Proposition 17 Under lax multiteam semantics, FO(=(·),⊆,⊥c) is weakly flat.
Under strict multiteam semantics, FO(=(·)) is weakly flat.

On the other hand, under strict multiteam semantics, the logics FO(⊥c) and
FO(⊆) are not weakly flat as illustrated in Examples 18 and 19. Likewise, prob-
abilistic dependencies do not satisfy weak flatness as shown in Example 20. Thus
the logics FO(⊥⊥c) and FO(≤) are weakly flat in neither strict nor lax multiteam
semantics. Also consequently, neither the atom ⊥⊥c nor ≤ can be expressed in
FO(=(·),⊆,⊥c).

Example 18 The multiteam (X,m), illustrated in Fig. 8, satisfies (x ⊆ z)∨ (y ⊆ z)
in strict semantics but its weak flattening (X,n) does not.

Example 19 The multiteam (Y,m), illustrated in Fig. 9, satisfies (x⊥x′) ∨ (y⊥y′)
in strict semantics but its weak flattening (Y, n) does not.

Example 20 The multiteam (Z,m), illustrated in Fig. 10, does not satisfy x ⊥⊥ y
but its weak flattening (Z, n) does. Likewise (Z,m) does not satisfy x ≤ y but its
weak flattening (Z, n) does.
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(X,m)

x y z m(si)

s1 0 0 1 2
s2 1 2 0 1
s3 2 1 0 1

(X,n)

x y z n(si)

s1 0 0 1 1
s2 1 2 0 1
s3 2 1 0 1

Fig. 8 Assignments for teams in Example 18.

(Y,m)

x x′ y y′ m(si)

s1 1 1 1 1 2
s2 1 0 2 2 1
s3 0 1 3 3 1
s4 0 0 4 4 1
s5 2 2 1 0 1
s6 3 3 0 1 1
s7 4 4 0 0 1

(Y, n)

x x′ y y′ n(si)

s1 1 1 1 1 1
s2 1 0 2 2 1
s3 0 1 3 3 1
s4 0 0 4 4 1
s5 2 2 1 0 1
s6 3 3 0 1 1
s7 4 4 0 0 1

Fig. 9 Assignments for teams in Example 19.

(Z,m)

x y m(si)

s0 0 0 1
s1 0 1 2
s2 1 0 1
s3 1 1 1

(Z, n)

x y n(si)

s0 0 0 1
s1 0 1 1
s2 1 0 1
s3 1 1 1

Fig. 10 Multiteams (Z,m) and (Z, n) for Example 20.

Definition 21 (Union closure) A formula ϕ is called union closed (in the
multiteam setting) if for all multistructures A and all multiteams (X,m), (Y, n): if
A |=(X,m) ϕ and A |=(Y,n) ϕ, then A |=(Z,h) ϕ, where (Z, h) = (X,m) ] (Y, n). A
logic is called union closed if all its formulas are union closed.

It is easy to show, by induction on the structure of formulas, that FO(≤,⊆)
satisfies union closure.

Proposition 22 Under lax and strict multiteam semantics, FO(≤,⊆) is union
closed.

It is trivial to establish that none of the atoms ⊥⊥c,=(·),⊥c is in general union
closed as singleton multiteams always satisfy these atoms.

3.4 Database and Probabilistic Dependencies

One can also study the usual dependency notions of database theory in the
multiteam semantics setting.

Definition 23 Let A be a multistructure with domain (A,n), (X,m) a multiteam
over A, and ϕ of the form =(~x, ~y), ~x ⊆ ~y, or ~y ⊥~x ~z. Then the satisfaction relation
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|=(X,m) is defined as follows:

A |=(X,m) ϕ ⇔ A+ |=X+ ϕ,

where X+ is the team {s ∈ X | m(s) ≥ 1} and A+ is the first-order structure with
domain {s ∈ A | n(s) ≥ 1} obtained from A in the obvious manner.

First we notice that the known translation of dependence atoms to independence
atoms (see Grädel et al. [12]) works also in the probabilistic case.

Proposition 24 Let A be a multistructure, (X,m) a multiteam over A, and ~x, ~y
tuples of variables. Then A |=(X,m) ~y ⊥⊥~x ~y ⇔ A |=(X,m) =(~x, ~y).

Proof From the truth definition we obtain that

A |=(X,m) ~y ⊥⊥~x ~y ⇔ for all s : Var(~x~y)→ A with (X,m)~x~y=s(~x~y) 6= ∅, (4)

|(X,m)~x~y=s(~x~y)| = |(X,m)~x=s(~x)|.

The result then follows since A |=(X,m) =(~x, ~y) if and only if the right-hand
side of (4) holds. For this, first note that the right-hand side of (4) fails if and
only if there is a function s : Var(~x~y) → A with (X,m)~x~y=s(~x~y) 6= ∅ such that
|(X,m)~x~y=s(~x~y)| < |(X,m)~x=s(~x)|. This holds if and only if there exists two dis-
tinct functions s, s′ : Var(~x~y) → A with s(~x) = s′(~x) and (X,m)~x~y=s(~x~y) 6= ∅ 6=
(X,m)~x~y=s′(~x~y). ut

Note that the restriction of Proposition 24 to marginal independence states that

A |=(X,m) ~x ⊥⊥ ~x ⇔ A |=(X,m) =(~x).

It is left open whether one can define inclusion or conditional independence
atoms in FO(⊥⊥c,≤). However, it can be show that over constant multiplicity
functions conditional independence atoms ϕ coincide with their probabilistic coun-
terparts whenever Var(ϕ) = Dom(X). To this end, let us first prove the following
simple lemma. This lemma entails that any probabilistic independence atom can be
expressed as a conjunction of ~y ⊥⊥~x ~z and ~v ⊥⊥~x ~v where ~x, ~y, ~z,~v are pairwise dis-
joint sequences of variables. Note that by ~xA we denote the team of all assignments
Var(~x)→ A.

Lemma 25 Let A be a multistructure and (X,m) a multiteam over A. Then

(i) A |=(X,m) ~y ⊥⊥~x ~z ⇔ A |=(X,m)

(
~y \ ~x ⊥⊥~x ~z \ ~x

)
,

(ii) A |=(X,m) ~y ⊥⊥~x ~z ⇔ A |=(X,m)

(
~y \ ~z ⊥⊥~x ~z \ ~y

)
∧
(
~y ∩ ~z ⊥⊥~x ~y ∩ ~z

)
.

Proof Item (i) The truth definition in (1) is symmetric, and hence it suffices to
show that A |=(X,m) ~yx ⊥⊥~x ~z ⇔ A |=(X,m) ~y ⊥⊥~x ~z whenever x is listed in ~x.

This follows since ~x~yx~zA = ~x~y~zA, and the equation in (1) remains the same after
removing x.
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Item (ii) First show that A |=(X,m) ~y ⊥⊥~x ~z implies A |=(X,m)

(
~y ∩ ~z ⊥⊥~x ~y ∩ ~z

)
.

For this, it suffices to show that A |=(X,m) ~yu ⊥⊥~x ~z implies A |=(X,m) ~y ⊥⊥~x ~z,

for u not listed in ~x~y~z. This follows since for all s ∈ ~x~y~zA,

|(X,m)~x~z=s(~x~z)| · |(X,m)~x~y=s(~x~y)|
= |(X,m)~x~z=s(~x~z)| ·Σa∈A|(X,m)~x~yu=s(~x~y)a|
= Σa∈A(|(X,m)~x~z=s(~x~z)| · |(X,m)~x~yu=s(~x~y)a|)
= Σa∈A(|(X,m)~x=s(~x)| · |(X,m)~x~y~zu=s(~x~y~z)a|)
= |(X,m)~x=s(~x)| ·Σa∈A|(X,m)~x~y~zu=s(~x~y~z)a|
= |(X,m)~x=s(~x)| · |(X,m)~x~y~z=s(~x~y~z)|,

where in the third equation we apply the assumption that A |=(X,m) ~ya ⊥⊥~x ~z.
For the claim it now suffices to show that A |=(X,m) ~y ⊥⊥~x ~z ⇔ A |=(X,m)(
~y \ ~z ⊥⊥~x ~z \ ~y

)
whenever A |=(X,m)

(
~y ∩ ~z ⊥⊥~x ~y ∩ ~z

)
. This follows directly

from the truth definition since by (4) for all s ∈ ~x~vA with (X,m)~x~v=s(~x~v) 6= ∅:

|(X,m)~x~v=s(~x~v)| = |(X,m)~x=s(~x)|,

for ~v := ~x ∩ ~y. ut

If ~x, ~y, ~z are pairwise disjoint, then ~y ⊥⊥~x ~z corresponds to the generalised
embedded multivalued dependency ~x (→ ~y | ~z that is defined over extended
relational data models (i.e., relational data models equipped with a multiplicity
function) using semantics that coincide with that of Definition 7 [37,38]. It was
shown by Wong [37] that the generalised multivalued dependency ~x(→ ~y holds
in an extended relational data model if and only if the underlying relational model
satisfies the multivalued dependency ~x� ~y. This is stated in the following theorem
reformulated into the framework of this article.

Theorem 26 ([37]) Let A be a multistructure, X a team over A, and ~y ⊥⊥~x ~z
a probabilistic conditional independence atom such that Var(~y ⊥⊥~x ~z) = Dom(X)
and ~x, ~y, ~z are pairwise disjoint. Let 1 denote the constant function that maps all
assignments of X to 1. Then A |=(X,1) ~y ⊥⊥~x ~z ⇔ A |=(X,1) ~y ⊥~x ~z.

Using Lemma 25 the restriction that ~x, ~y, ~z are disjoint can be now removed.

Proposition 27 Let A be a multistructure, X a team over A, and ~y ⊥⊥~x ~z a
probabilistic conditional independence atom such that Var(~y ⊥⊥~x ~z) = Dom(X).
Then A |=(X,1) ~y ⊥⊥~x ~z ⇔ A |=(X,1) ~y ⊥~x ~z.

Proof First note that by Proposition 24 and Lemma 25, ~y ⊥⊥~x ~z is equivalent in
multiteam semantics to

(
~y \ ~x~z ⊥⊥~x ~z \ ~x~y

)
∧ =(~x, ~y ∩ ~z). Moreover, it is known

that in team semantics ~y ⊥~x ~z is equivalent to (~y \ ~x~z ⊥~x ~z \ ~x~y)∧=(~x, ~y ∩ ~z) [12].
Hence the claim follows by Theorem 26. ut

Note that ~y ⊥⊥~x ~z implies ~y ⊥~x ~z also over arbitrary multiplicity functions,
since non-emptiness of (X,m)~x~y=s(~x~y) and (X,m)~x~z=s(~x~z) implies non-emptiness
of (X,m)~x~y~z=s(~x~y~z) by the truth definition in (1). The converse however does not
hold; the multiteam (Y,m) depicted in Fig. 11 satisfies x ⊥ y but violates x ⊥⊥ y.
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(Y,m)

x y m(si)

s0 0 0 2
s1 0 1 1
s2 1 0 1
s3 1 1 1

Fig. 11 A multiteam (Y,m) satisfying x ⊥ y but violating x ⊥⊥ y.

3.5 Probabilistic Notions in Team Semantics

In this section we examine probabilistic independence and inclusion logic in the
team semantics setting. We restrict attention to lax semantics. Note that all the
models considered in this section are usual first-order structures.

Satisfaction of probabilistic atoms in team semantics setting is defined by adding
a constant multiplicity function.

Definition 28 Let A be a model, X be a team over A, and ϕ be a probabilistic
atom of the form ~y ⊥⊥~x ~z or ~x ≤ ~y. Then the satisfaction relation |=X is defined as
follows:

A |=X ϕ⇔ A |=(X,1) ϕ,

where 1 is the constant function that maps all assignments of X to 1.

The next theorem shows that, since probabilistic inclusion and independence
atoms are expressible (in the team semantics setting) in FO(⊥c) relative to teams
of fixed domain, their addition does not increase the expressive power of FO(⊥c).

Theorem 29 Let ϕ ∈ FO(≤,⊥⊥c,=(·),⊆,⊥c) be a sentence. Then there exists a
sentence ϕ′ ∈ FO(⊥c) such that for all models A the equivalence A |= ϕ⇔ A |= ϕ′

holds.

Proof First note that inclusion and dependence atoms can be expressed in FO(⊥c)
[7,12]. Also it is easy to see that one can construct existential second-order logic
sentences that capture probabilistic inclusion and conditional independence atoms
over teams of fixed domain. Namely, for all ϕ of the form ~y ⊥⊥~x ~z or ~x ≤ ~y and
all V ⊇ Fr(ϕ), there exists an ESO sentence ϕ∗(R), where R is a k-ary relation
symbol for k = |Var(ϕ)|, such that for all A and X with Dom(X) = V ,

A |=X ϕ⇔ (A,Rel(X)) |= ϕ∗(R),

where Rel(X) = {(s(x1), . . . , s(xk)) | s ∈ X}. All ESO-definable properties of
teams translate into FO(⊥c) [7], and hence the formula ϕ′ can be constructed from
ϕ by replacing each probabilistic atom with a correct FO(⊥c)-translation. ut

Note that probabilistic inclusion atoms are not closed under (set) unions in
team semantics, and hence they cannot be expressed in FO(⊆) as shown in the
following example.

Example 30 Let A be a first-order structure with domain {0, 1, 2}, and the following
three assignments given s := {(x, 0), (y, 1), (z, 0)}, s′ := {(x, 1), (y, 0), (z, 1)}, and
s′′ := {(x, 0), (y, 1), (z, 2)}. DefineX := {s, s′} and Y := {s′, s′′}. Now A |=X x ≤ y,
A |=Y x ≤ y, but A 6|=X∪Y x ≤ y.
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(X, 1)

x y z 1(si)

s1 0 0 1 1
s2 0 1 0 1
s3 0 1 2 1

(Y, 1)

x y z 1(si)

s2 0 1 0 1
s3 0 1 2 1

(Z, ·)
x y m(si) n(si) k(si) `(si)

s1 0 1 1 0 1 0
s2 1 0 1 1 1 0
s3 0 0 1 1 0 1

Fig. 12 Assignments for multiteams in Examples 34 and 35.

4 Approximate Operators

Next, we define an existential and a universal approximate operator which allows
one to state truth of formulas not with respect to the full team but with respect to a
ratio of the team. The main motivator for this approach is the important application
in database theory to be able to model the truth of properties in databases that
may contain some faulty data. Moreover, in practice, duplicates occur frequently
in databases for a multitude of reasons. Thus the study of database dependencies,
such as inclusion dependencies and foreign key constraints, in combination with
approximate operators is an important topic as it explains inherent properties of a
given dataset. In this section we consider multiteam semantics.

Definition 31 Let A be a multistructure, and (X,m) a multiteam over A, and
p ∈ [0, 1] a rational number.

A |=(X,m) 〈p〉ϕ⇔ ∃(Y, n) ⊆ (X,m), |(Y, n)| ≥ p · |(X,m)| : A |=(Y,n) ϕ,

A |=(X,m) [p]ϕ⇔ ∀(Y, n) ⊆ (X,m), |(Y, n)| ≥ p · |(X,m)| : A |=(Y,n) ϕ.

The notion of an approximate dependence atom =p(·), introduced by Väänänen
[36], can be now seen as a special instantiation of the existential approximate
operator: =1−p(~x, y) is equivalent to the formula 〈p〉=(~x, y). The difference to
Väänänen’s proposal is the scope of approximation which is now extended to
arbitrary formulae.

In the following we observe that distributivity does not hold in general with
respect to 〈p〉.

Proposition 32 It is not true that 〈p〉(ϕ ∨ ψ) ≡ 〈p〉ϕ ∨ 〈p〉ψ.

Proof Let A be the multistructure over the empty vocabulary with the domain
({0, 1, 2}, 1), where 1 is the constant 1 multiplicity function. Then A |=(X,1) 〈23 〉(x =

y ∨ x = z) but A 6|=(X,1) 〈23 〉(x = y) ∨ 〈23 〉(x = z), where (X, 1) is the multiteam
depicted in the Figure 12. ut

The next simple observation states the distributivity of [p] with respect to
conjunction ∧, as well as the merger of two 〈p〉-operators and two [q]-operators,
respectively.
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Observation 33 The following equivalences hold:

1. [p](ϕ ∧ ψ) ≡ [p]ϕ ∧ [p]ψ,
2. 〈p〉(〈q〉ϕ) = 〈p · q〉ϕ,
3. [p]([q]ϕ) = [p · q]ϕ.

The next two examples show that both downward closure and union closure
are violated by the approximate operator.

Example 34 Let A be the multistructure over the empty vocabulary with domain
({0, 1, 2}, 1), where 1 is the constant 1 multiplicity function. Then A |=(X,1) 〈13 〉(x =

y) but A 6|=(Y,1) 〈13 〉(x = y), where (Y, 1) ⊆ (X, 1) are the multiteams depicted in
the Figure 12.

Example 35 Let A be the multistructure over the empty vocabulary with domain
({0, 1}, 1), where 1 is the constant 1 multiplicity function. The multiteams (Z,m),
(Z, n), (Z, k), (Z, `) are depicted in the Figure 12. Now A |=(Z,k) [23 ](x ≤ y) and

A |=(Z,`) [23 ](x ≤ y). However A 6|=(Z,n) x ≤ y and thus A 6|=(Z,m) [23 ](x ≤ y), even
though (Z, k) ] (Z, l) = (Z,m).

Proposition 36 Let L be a logic and ϕ ∈ L a formula. Then 〈p〉 preserves union
closure (whereas [p] does not), i.e., 〈p〉ϕ is union closed whenever ϕ is.

Proof Let A be a multistructure and X,Y be multiteams of A. Assume that
A |=X 〈p〉ϕ and A |=Y 〈p〉ϕ where ϕ is closed under unions. Then there are
multiteams X ′ ⊆ X and Y ′ ⊆ Y such that |X ′| ≥ p|X|, |Y ′| ≥ p|Y |, and both
A |=X′ ϕ and A |=Y ′ ϕ. Hence, A |=X′]Y ′ ϕ by union closure, and since |X ′]Y ′| =
|X ′|+ |Y ′| ≥ p|X|+ p|Y | = p(|X|+ |Y |) = p|X ]Y |, it follows that A |=X]Y 〈p〉ϕ.

ut

Yet locality holds for this logic as witnessed by the following proposition. The
proof is by induction.

Proposition 37 (Locality) Let A be a multistructure, (X,m) a multiteam, and V
be a set of variables such that Fr(ϕ) ⊆ V ⊆ Dom(X). Then, for all ϕ ∈ FO(〈p〉, [p],
≤,⊥⊥c,=(·),⊆,⊥c), the equivalence A |=(X,m) ϕ ⇔ A |=(X,m)�V ϕ holds.

5 On the Complexity of Approximate Dependence Logic

In the following we study the computational complexity of model checking in
dependence logic enriched with the operator 〈p〉. The results hold under both team
and multiteam semantics. To simplify notation we work with team semantics in
this section. Analogously to [3], our results can be seen as a first step towards a
systematic classification of the syntactic fragments of approximate dependence
logic for which data complexity of model-checking is tractable/intractable.

We first define the model checking problem in the context of team semantics.
We consider only Boolean queries, that is we define the model checking problem for
a logic L as follows: given a model A, a team X of A, and a formula ϕ of L, decide
whether A |=X ϕ holds. There are three parameters to this problem: the model A,
the team X, and the formula ϕ. Depending on which of these parameters are fixed,
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a different variant of the model checking problem arises. Here we consider two of
these variants: the variant with a fixed formula (this is called data complexity),
and a variant in which nothing is fixed (this is called combined complexity).

The following two theorems reveal that already very simple formulas of approx-
imate dependence logic witness the NP-completeness of the data complexity of the
logic.

Theorem 38 Model checking for 〈13 〉(=(x, y) ∧=(u, v)) is NP-complete.

Proof For the lower bound we give a polynomial many-one reduction from 3SAT
inspired by a similar proof of Jarmo Kontinen [25]. Start with a formula ϕ =∧m
i=1

∨3
j=1 `i,j where `i,j is the jth literal in the ith clause, i.e., either a variable x

(said of parity 0) or its negation ¬x (of parity 1). In the following we will construct
a tuple (X,ψ) from ϕ such that ϕ ∈ 3SAT if and only if A |=X ψ. Here A is the
model over the empty vocabulary such that the domain of A is the codomain of X.
First we define the team X to be the set

X = {(i, j, x, p) | in the ith clause the jth literal is the variable x with parity p},

where (i, j, x, p) denotes the assignment mapping the variables clause, literal, vari-
able, parity to i, j, x, p, respectively. Technically the team X can be seen as an
encoding of the given formula. For instance the formula ϕ = (x1 ∨ ¬x2 ∨ x3) ∧
(¬x1 ∨ ¬x2 ∨ ¬x3) would yield the team

X = {(1, 1, x1, 0), (1, 2, x2, 1), (1, 3, x3, 0), (2, 1, x1, 1)(2, 2, x2, 1), (2, 3, x3, 1)}.

The formula ψ is defined as

〈1
3
〉
(
=(clause, literal) ∧=(variable,parity)

)
.

Then intuitively speaking ψ states that one has to decide for each clause a
satisfying literal and do this consistently, i.e., the corresponding assignment has to
be consistent. At first, one selects exactly one-third of the elements in X such that
for each clause a literal is chosen (i.e., clause will determine the value of literal).
Then the parity of each variable is consistently chosen (i.e., variable will determine
the value of parity). We will next formally prove that ϕ ∈ 3SAT if and only if
A |=X ψ.

We first show that ϕ ∈ 3SAT ⇒ A |=X ψ. Thus assume that ϕ ∈ 3SAT. Let
θ be an assignment such that θ |= ϕ. For each 1 ≤ k ≤ m, let ik ∈ {1, 2, 3} be
a number such that the literal `k,ik in the kth clause of ψ is satisfied by θ, i.e.,
θ |= `k,ik . Let I := {i1, . . . , ik}. In the following we will show that A |=X ψ holds.
Define X ′ := {(k, j, v, p) ∈ X | j = ik}. Clearly |X ′| = 1

3 |X|. Moreover it is easy to
check that for any two (j, i, v, p), (j′, i′, v′, p′) ∈ X ′

(a) j = j′ implies i = i′ (the clause determines the literal) and
(b) v = v′ implies p = p′ (the variable determines the parity).

Hence from (a) is it follows that A |=X′ =(clause, literal) and from (b) it follows
that A |=X′ =(variable,parity). Since |X ′| = 1

3 |X|, we obtain A |=X ψ.
Now turn to the direction A |=X ψ ⇒ ϕ ∈ 3SAT and assume that A |=X ψ.

Thus there exists a team X ′ ⊆ X such that |X ′| ≥ 1
3 |X| is true and also it holds
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that A |=X′ =(clause, literal) ∧ =(variable,parity). Since A |=X′ =(clause, literal)
we have that

(j, i, v, p), (j′, i′, v′, p′) ∈ X ′ and j = j′ imply i = i′. (5)

Analogously, since A |=X′ =(variable, parity) we have that

(j, i, v, p), (j′, i′, v′, p′) ∈ X ′ and v = v′ imply p = p′. (6)

From (5) we can deduce that |X ′| ≤ 1
3 |X|. Since |X ′| ≥ 1

3 |X|, we obtain that
|X ′| = 1

3 |X|. This together with (6) ensures that

for each clause j of ψ there exits some i, v, p such that (j, i, v, p) ∈ X ′. (7)

It is now easy to construct from X ′ an assignment θ such that θ |= ϕ. Define

θ(v) :=

{
1 if (j, i, v, 0) ∈ X ′ for some j, i ∈ N,
0 if (j, i, v, 1) ∈ X ′ for some j, i ∈ N.

From (6) it follows that θ is well-defined, whereas (5) and (7) ensure that every
clause of ϕ is satisfied by θ. Hence we have ϕ ∈ 3SAT.

For the NP upper bound, first observe that we can simply guess a subset
X ′ of X such that |X ′| ≥ 1

3 |X|. Then we just have to check whether A |=X′

=(clause, literal)∧=(variable,parity) holds. This can be clearly done in polynomial
time. ut

The next theorem shows that NP-hard properties can be defined using very
simple formulas even if the operator 〈p〉 is restricted to appear only in front
of dependence atoms. It is worth noting that the data complexity of formulas
addressed in Theorem 39 without the operator 〈p〉 is in NL by the results of [25].

Theorem 39 Model checking for =(x, y)∨ (〈 7
10 〉=(x, y)∧=(u, v)) is NP-complete.

Proof The upper bound is established analogously to the proof of Theorem 38.
Now we turn to the lower bound. Here we will reduce from 3SAT through

Max-2SAT, a well-known NP-hard optimisation problem whose decision variant is
NP-complete. The problem asks given a 2CNF-formula ϕ and a number k ∈ N,
if at least k of the clauses of ϕ can be simultaneously satisfied [11]. Garey et al.
describe a reduction f from 3SAT to the decision variant of Max-2SAT such that
ϕ ∈ 3SAT if and only if at least 7

10 of the clauses of f(ϕ) can be satisfied.
We will exploit this known reduction in the following way. The team X is

constructed in the same way as in the proof of Theorem 38. The formula then is

=(clause, literal) ∨ (=(clause, literal) ∧ 〈 7

10
〉=(variable, parity)).

Let us briefly sketch the proof as it is quite similar to the one of Theorem 38.
The first ∨ just “removes” the not needed half of the literals in the clauses. Then
=(clause, literal) takes care of that in each clause exactly one literal is chosen
whereas 〈 7

10 〉=(variable, parity) allows us to get down to the fraction of clauses
which have to be satisfied, hence have to obey the dependence atom stating that
the remaining variables have to be consistently chosen, i.e., variable determines
parity. ut
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Currently the 〈p〉 operator is defined with respect to some value of p ∈ [0, 1].
We saw that it depicts the behaviour of a ratio. Yet we want to shortly discuss
a different approach for this setting. Instead, we define 〈p〉 for values of p ∈ N
hence p is now a natural number with the following meaning. A team X satisfies a
formula 〈p〉ϕ if there exists a team Y ⊆ X of size ≥ p such that Y |= ϕ—similarly
for [p] the meaning would be that every team Y ⊆ X of size ≥ p satisfies ϕ.

Sticking to this approach would allow one to state a similar result as for
Theorem 38 and Theorem 39 but now for combined complexity as follows. Here one
would just explicitly state the number of rows to be removed from the team, i.e.,
setting p to m in the constructed formula in the proof of Theorem 38. Regarding
Theorem 39 in this setting the formula f(ϕ) increases the number of clauses by
factor 10 and therefore requires to set p to 7

10 ·10 ·m = 7 ·m where m is the number
of clauses of the given 3CNF formula ϕ.

Remark 40 The lower bounds of Theorems 38 and 39 transfer directly to the
multiteam setting. For the upper bounds, it might matter how the multiplicity
functions of multiteams are encoded. However, if the multiplicities are encoded
in any reasonable way, such as in unary or binary, then also the upper bounds
of Theorems 38 and 39 transfer to the multiteam setting. In the unary case they
transfer immediately; instead of guessing subsets of the team, we may directly
guess subsets of the canonical set representative. In the binary case, for example, a
subset of a multiteam (A,m) can be guessed by guessing, for each a ∈ A, a binary
number smaller than m(a). The NP upper bound then follows, since addition and
comparison of binary numbers can be done in polynomial time.

6 Conclusion and Future Issues

To the best of the authors’ knowledge, this article is the first serious approach
to defining team semantics with respect to multisets for first-order dependence
logic. We also initiate the study of probabilistic analogues of independence and
inclusion logic. Additionally the paper provides a first step into the study of a
general approximation operator in the team semantics framework. We show several
foundational properties of these newly defined formalisms and present some first
computational complexity results for dependence logic with the approximation
operator. We show that the introduction of the approximate operator enables us to
encode NP-hard properties into the model checking problem (data complexity) of
this logic even with only two dependence atoms, a single approximate operator, and
a single conjunction. It is an interesting open question to study the computational
properties of the analogously defined approximate inclusion logic.

It is often argued that, in team semantics setting, the strict semantics for
disjunction is not natural for the failure of locality. In strict multiteam semantics,
however, locality is regained. In team semantics setting, the lax disjunction ϕ ∨ ϕ
is equivalent with ϕ if and only if ϕ union closed (with respect to set unions). The
disjunction of lax multiteam semantics has a similar, but weaker, property: for
multisets (X,m) and (Y, n), we call the set

{(X ∪ Y, t) | ∀s ∈ X ∪ Y : n(s),m(s) ≤ t(s) ≤ n(s) +m(s)}

the set of weak unions of (X,m) and (Y, n). In the multiteam setting, the lax
disjunction ϕ ∨ ϕ is equivalent with ϕ if and only if ϕ is union closed with respect
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to weak unions. However, in multiteam setting, unions of multiteams are most
naturally defined by using disjoint unions. In fact, in multiteam semantics, the
strict disjunction ϕ ∨ ϕ is equivalent with ϕ if and only if ϕ is union closed with
respect to disjoint unions. This suggests that the combination of strict disjunctions
and lax existential quantifiers deserves to be studied as a possible candidate for a
base of probabilistic logics in multiteam setting.

Heretofore a broad field around intuitionistic logic has developed. Intuitionistic
logic can be seen as classical propositional logic without the law of excluded middle.
One of the main concepts here is the intuitionistic implication →. In the setting of
team semantics it is defined as follows. Let A be a structure and X be a team. Then
A |=X ϕ→ ψ is true if and only if for all subsets X ′ ⊆ X it holds that A |=X′ ϕ
implies A |=X′ ψ. The intuitionistic implication has been studied in the context
of dependence logic, see, e.g., the work of Yang [39]. An approximate variant of
this operator in our setting will yield a nice resemblance to the [p] operator. The
slight and quite natural adjustment of intuitionistic implication to our setting is
then: A |=X ϕ→p ψ if and only if for all subsets X ′ ⊆ X with |X ′| ≥ p · |X| (and
p ∈ [0, 1] ∩Q) it holds that A |=X′ ϕ implies that A |=X′ ψ. The operator [p] can
now be expressed with the help of the intuitionistic approximate implication. One
can easily verify that [p]ϕ is equivalent to > →p ϕ.

In this article we have considered approximation in the context of multiteam
semantics when restricted to the finite. However our definitions can be generalised
in a straightforward manner to deal with arbitrary cardinalities.
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