
Understanding WiFi Cross-Technology
Interference Detection in the Real World

Teemu Pulkkinen†∗, Jukka K. Nurminen∗ and Petteri Nurmi∗
†Ekahau Oy, Finland

∗Department of Computer Science, University of Helsinki, Finland
†first.last@ekahau.com ∗first.[initial.]last@helsinki.fi

Abstract—WiFi networks are increasingly subjected to cross-
technology interference with emerging IoT and even mobile
communication solutions all crowding the 2.4 GHz ISM band
where WiFi networks conventionally operate. Due to the diversity
of interference sources, maintaining high level of network perfor-
mance is becoming increasing difficult. Recently, deep learning
based interference detection has been proposed as a potentially
powerful way to identify sources of interference and to provide
feedback on how to mitigate their effects. The performance
of such approaches has been shown to be impressive in con-
trolled evaluations; however, little information exists on how they
generalize to the complexity of everyday environments. In this
paper, we contribute by conducting a comprehensive performance
evaluation of deep learning based interference detection. In
our evaluation, we consider five orthogonal but complementary
metrics: correctness, overfitting, robustness, efficiency, and inter-
pretability. Our results show that, while deep learning indeed has
excellent correctness (i.e., detection accuracy), it can be prone to
noise in measurements (e.g., struggle when transmission power
is dynamically adjusted) and suffers from poor interpretability.
To compensate for weaknesses of deep learning, as our second
contribution we propose a novel signal modeling approach for
interference detection and compare it against the deep learning.
Our results demonstrate that, in terms of errors, there are some
differences across the two approaches, with signal modeling being
better at identifying technologies that rely on frequency hopping
or that have dynamic spectrum signatures but suffering in other
cases. Based on our results, we draw guidelines for improving
interference detection performance.

I. INTRODUCTION

IEEE 802.11 technology, better known as WiFi, has
achieved tremendous success and has become the de-facto so-
lution for most communications. Most WiFi networks operate
within the 2.4GHz ISM (industrial, scientific and medical) fre-
quency band that is fast becoming increasing crowded, making
WiFi prone for cross-technology interference. Indeed, besides
traditional sources of interference – such as microwave ovens
and proprietary short-range wireless technologies used in baby
monitors, gaming consoles, video cameras, and so forth –
new devices that operate within the ISM band are continually
emerging. For example, most IoT systems, including smart
homes and smart industries, operate using ISM frequency for
communication and emerging mobile technologies, such as
LTE-U, take advantage of ISM bands to increase capacity.
Addressing interference is critical particularly for enterprise
settings where it can result in bandwidth issues and hamper
performance of operation-critical systems.

The increased significance of ISM band interference has
fueled both academic and commercial interest in developing
methods for identifying and classifying sources of cross-
technology interference. For example, Airshark uses features
extracted from spectrum sweeps to train a classifier that
can identify different types of interference sources [1] and
recently several solutions that take advantage of deep learning
have been proposed [2]–[4]. Simultaneously, a wide range of
commercial systems have emerged, such as Cisco CleanAir
[5], AirMagnet Spectrum XT [6], and netAlly EtherScope
nXG [7]. Besides IEEE 802.11, interference detection has also
been widely explored in emerging IoT environments [8]–[13].

Commercial interference detection systems need to be ca-
pable of operating robustly across diverse environments, and
often with little or no domain knowledge. This can be highly
challenging as the RF environments often contain considerable
variation across different deployment sites [14]. Despite the
significant commercial and academic interest in interference
detection, currently little information exists on how well
interference detection techniques generalise to the complex-
ity of everyday environments. Indeed, existing research has
largely focused on evaluating performance in individual test
environments [1]–[3] without systematically assessing how
differences in training and testing environments affect the
performance of these techniques.

In this paper, we contribute by conducting a comprehensive
performance evaluation of deep learning based interference
detection. In our evaluation, we consider five orthogonal but
complementary metrics: correctness, overfitting, robustness,
efficiency, and interpretability. We carry out our evaluation
using measurements from two environments, a RF-shielded en-
closure with minimal external interference, and a typical office
environment. We systematically investigate effects of environ-
mental variations by injecting noise into the measurements
and measuring performance variations. Our method offers us
a controlled way to assess how similar training and testing
environments need to be for the system to operate robustly.
Our results show that, while deep learning indeed has excellent
correctness (i.e., detection accuracy), it can be prone to noise
in measurements (e.g., struggle when transmission power is
dynamically adjusted) and suffers from poor interpretability.
To compensate for weaknesses of deep learning, as our second
contribution we propose a novel signal modeling approach
for interference detection and compare it against the deep



learning. Our results demonstrate that, in terms of errors, there
are some differences across the two approaches, with signal
modeling being better at identifying technologies that rely on
frequency hopping or that have dynamic spectrum signatures
but suffering in other cases. Based on our results, we draw
guidelines for improving interference detection performance.
Summary of Contributions
• Systematic evaluation. We critically assess deep learning

based interference detection using measurements from a
noise-free environment and a typical everyday environment
using five different criteria.

• Novel insights. By systematically injecting noise into the
measurements, we evaluate how resilient deep learning
based approaches are, demonstrating that they can easily
break as the environments differ.

• Novel approach. We develop a signal modeling based inter-
ference detection technique, which offers better robustness
than deep learning, and provides more interpretable results
with only slightly decreased accuracy.

• Novel Guidelines. Based on our results, we draw guidelines
for the use of different interference techniques and their use
in commercial deployments.

II. MEASUREMENT SETUP

We evaluate the effectiveness of deep learning based in-
terference detection using extensive measurements collected
from two environments: a controlled testbed with minimal
external interference and a typical office environment. Our
testbed was carefully crafted to ensure we can control the
interference sources and avoid external artefacts influencing
the measurements. We next describe our measurements, the
overall measurement setup, and the devices that were used to
create interference.
Measurement Setup. We collected measurements in two
settings: a testbed where external interference was minimized,
and an office environment. Our testbed environment consists
of a Ramsey Electronics STE3600 RF shielded enclosure,
illustrated in Fig. 1. The use of RF shielded enclosure ensured
control over the radio spectrum and allowed minimizing noise
for the interference measurements. In our experiments, we
systematically inject noise into the measurements to assess
how differences in testing and training environments affect in-
terference detection performance. The controlled setup ensures
we can better separate the effects of interference and noise.
Our second environment consists of a typical office environ-
ment. In both setups the sources of interference were kept 1
meter apart from the spectrum analyzer to ensure consistent
RF decay while having differing noise characteristics.
Sources of Interference. We consider eight different sources
of interference, consisting of seven everyday devices and a
baseline consisting of background noise. The devices consid-
ered in the evaluation were chosen as representative examples
of common everyday objects that cover different types of
connectivity patterns. Specifically, we consider devices with
constant frequency and those performing frequency hopping,

Fig. 1. RF shielded enclosure where training set measurements were per-
formed.

2400 2420 2440 2460 2480

0.0

5.0

10.0

15.0

20.0

25.0

30.0

a) Baby monitor (babymon)

2400 2420 2440 2460 2480
Frequency (MHz)

0.0

5.0

10.0

15.0

20.0

25.0

30.0

Ti
m

e 
(s

)

b) Video camera (hamy)

Fig. 2. Spectrogram of training data for two of the target devices.

and devices having constant communication frequency and
those that only transmit periodically. The devices considered
in the experiments are summarized in Table I. We specifically
target everyday devices with limited networking functionality
as these are most likely to have least support for interference
avoidance built-in. For example, BLE has built-in adaptive fre-
quency hopping support which has been designed to mitigate
interference [15], [16]. Thus, the sources of interference in our
setup correspond to a bad case scenario where the interference
would have the most significant effect on WiFi performance.
Data description. As data we consider spectrum sweeps
collected over the 2.4 GHz frequency band. The measurements
were taken using the Ekahau Sidekick spectrum analyzer [17].
As sampling resolution we use 39 kHz, which covers the
relevant portion of the 2.4 GHz band. This results in 2500
spectrum bins per sweep, each containing a power value in
dBm, ranging between -100 dBm and -20 dBm. The samples
are taken at 25Hz frequency, and in the comparison we use



TABLE I
DEVICES USED FOR STUDY

Identifier Description Transmitter type
babymon Baby monitor Frequency hopping
motorola Baby monitor Frequency hopping
huhd Headset Frequency hopping
boya Lapel microphone Frequency hopping
hamy Analog video camera Continuous, fixed frequency
skatco Intercom Continuous, fixed frequency
rc RC transmitter Periodic, fixed frequency
none No device Background noise

data frames of 1 second, i.e., the measurements are matrices
of size 25 x 2500. Fig. 2 illustrates the measurements for two
sources of interference. The sweeps were labeled according to
the device that was currently transmitting, and we collected in
total 1500 spectrum sweeps per class. The background noise
model was constructed similarly, but having all sources of
interference turned off.

III. MEASURES FOR INTERFERENCE DETECTION

Commercial viability of interference detection techniques
requires robust performance across different everyday environ-
ments with potentially limited knowledge of the deployment
domain. At the same time, simply focusing on detection
accuracy is not sufficient as network administrators need to be
able to identify and isolate sources of interference. In the fol-
lowing we introduce measures for comprehensively assessing
interference detection techniques, including their generality
and usability for network administrators. Our metrics are
inspired by measures designed for testing machine learning
algorithms [18], which we have adapted to suit interference
detection techniques.

A. Correctness

Correctness is the most common metric for machine learn-
ing testing, and the primary measure that has been used
for assessing interference detection performance. Correctness
measures how well an algorithm’s predictions match reality,
which in the context of interference detection entails com-
paring the predicted class labels (i.e. detected devices) with
known (ground truth) data labels. Formally, correctness is
defined as the ratio

1

m

m∑
i=1

1(h(xi) = yi), (1)

where 1 is the indicator function returning 1 for true state-
ments and 0 for false, m is the number of data samples, xi
are the (unknown) data labels, h(xi) the algorithms predictions
of those labels and yi the known actual labels.

B. Overfitting

Overfitting measures tendency to emphasize fit to training
data, usually to the detriment of unseen cases. This may
happen because the model has learned to fit against the noise
in the data by becoming too complex [18], which results in
poor generalization performance. In the context of interference

detection, overfitting means that the system performs well in
testing, but poorly when it is being adopted in other setups.

We assess overfitting using Perturbed Model Validation
(PMV) [19], which operates by injecting noise into samples
used for training the model used by the interference detection
approach. The intuition is that overfitted models can only see
a small decrease in accuracy because they are able to fit to the
noise in the data. A larger change suggests the model is fitting
to the actual properties of the domain at hand instead of fitting
the model to the noise. We use the so-called PMV Accuracy
Decrease Rate, which is represented by the absolute value of
the gradient of the best fitting – in the least squares sense –
line formed by points (ri, Sri), where ri is the ratio of noise in
the training set and Sri is the accuracy of the re-trained model
on the perturbed dataset. An ideal model is one with a large
gradient; i.e., one where perturbing the training sets quickly
causes a decrease in training accuracy. Our implementation of
PMV follows an adversarial approach where a fraction of the
data labels are permuted into other labels [20].

C. Robustness

Robustness refers to the algorithm’s capacity to handle
noise. Whereas overfitting measures how much the model fits
on noise, robustness examines how it fares in testing when
noise is injected. In the simplest instance, testing robust-
ness entails injecting noise to test samples and remeasuring
correctness. We measure robustness by adopting a measure
originally proposed for image recognition [21]. The intuition
in the measure is to measure two aspects: pointwise robustness,
which refers to the smallest level of noise where the solution
fails; and adversarial frequency, which refers to the rate
at which the approach fails when input is perturbed. For
estimating pointwise robustness, we add Gaussian noise of
increasing standard deviation until labels change, and for
estimating adversarial frequency we then proceed to measure
how many labels are changed at this threshold. We use zero-
mean Gaussian with varying levels of standard deviation for
noise injection as this approximates additive white Gaussian
noise (AWGN), which is a widely used noise model for
information channels [22]

D. Efficiency

We consider two complementary measures of efficiency:
information efficiency which measures how the amount of
training data affects interference detection performance; and
timing efficiency which measures the difference in re-training
a model and running predictions as a number of classes
(i.e., types of interference sources) that are being modeled.
Information efficiency is estimated by selecting a subset of
the training data and measuring how accuracy changes as
the number of training samples is reduced. As loss-based
subset selection is used by deep learning for optimizing model
parameters, we instead use random subset selection to have a
fair baseline, in line with current best practice [23].



E. Interpretability

Interpretability is concerned with the transparency of the
model and its capability to offer post-hoc explanations. In-
terpretability is essential for interference detection as it offers
network administrators insights into the possible type of device
that is causing disturbances, including the frequency band that
is most affected. Evaluating interpretability of individual mod-
els, however, is not meaningful in isolation and hence we adopt
a scenario-based approach where interpretability is assessed by
looking at classification results in a confounding case where
two different devices are transmitting simultaneously. We also
compare predictions of interference detection model with a
theoretical model of signal propagation.

IV. DEEP LEARNING-BASED INTERFERENCE DETECTION

Deep learning models have recently emerged as powerful
solutions for interference detection and classification [2]–[4].
In this section we examine how well deep learning solutions
support everyday environments by critically evaluating them
using the measurements described in Sec. II and the measures
described in Sec. III.

A. Network Structure

Kulin et al. [3] showed that a spectrum sweep (FFT) based
representation offers best performance, particularly for models
using convolutional layers as the interference signatures can
be easily identified from them, which in turn simplifies that
feature learning performed by the model. Motivated by this
result, we consider a CNN-based interference detection and
classification approach. The structure of our model in shown
in Fig. 3 and has been adapted from our previous work [4].
Our previous work focused on using CNN’s for alleviating
re-training on new devices, and in this work we consider a
simplified model that incorporates only the interference detec-
tion and classification parts of the model without considering
device adaptation. In this model, classification is performed
in a dense softmax layer which has one node per device
(interference source) and which uses the magnitude of the
values to determine the final classification result. Our model
was implemented using Python TensorFlow, keras and NumPy.
The model uses non-overlapping windows of 25 sweeps as
input, a stochastic gradient descent (SGD) learning rate of
0.001, a batch size of 1, a stride and max pool size of
2x2 and training over 100 epochs. These parameters were
based on previous results for the model [4] which showed
high performance. As the focus of our work is on evaluating
suitability of deep learning for everyday setups, we did not
perform additional extensive parameter tuning to try to maxi-
mize model performance.

In both training and testing, all samples were Z-score
normalized using background measurements (i.e., where no
device was turned on). Formally, each sample s − S was
normalized by

sZ =
s− µnone

σnone
. (2)

2500x25
C

onv2D

M
axPooling2D

2x2

C
onv2D

M
axPooling2D

2x2

D
ropout 0.8

Flatten
D

ense: Softm
ax

argmax

Fig. 3. Interference detection CNN architecture

For our data, the corresponding values are µnone ≈ −101.5
dBm and σnone ≈ 5.88 dB. For testing, we fix the random
seed before training and testing the model to ensure variance
in behavior can be attributed to our experimental setup, and
to ensure reproducible results.

B. Evaluation

We first motivate the use of a deep-learning approach by
validating its accuracy. Focusing only on a single quantifiable
metric like accuracy, however, can lead further development
astray if other aspects of the solution are not properly con-
sidered. We thus further show that this approach can face
severe issues in terms of robustness and efficiency even though
the initial estimated accuracy is satisfactory. We postpone
discussion about overfitting until the next section where we
compare deep learning against a signal modeling approach
that we propose.
Accuracy Accuracy was measured by training the algorithm
on measurements from the RF shielded testbed and performing
predictions based on measurements from the office environ-
ment. The results of this evaluation are shown in the form of
a confusion matrix in Table II. Total accuracy was calculated
as the proportion of the entries located in the diagonal of the
matrix, which corresponds to the formulation in III-A. The
overall accuracy of the our deep-learning approach was 80%,
which is in line with previous evaluations [2]–[4]. The sole
exception is the headset (huhd) which is often confused with
the intercom (skatco) despite having different connectivity pa-
rameters. This suggests that the performance of deep learning
can degrade when the environments differ, particularly if the
frequency signatures of the devices are unambiguous.
Robustness We next show how the algorithm performs when
the noise in the environment increases – a reasonable as-
sumption of any real-world application – we inject synthetic
noise into dataset as described in Sec. III-C. We inject test
data with noise that has increasing standard deviation in the
range [0, 20] dB, in steps of 0.5 dB. This testing mechanic is
similar to [3], where the testing accuracy’s sensitivity to noise
was measured w.r.t. to the signal-to-noise ratio (SNR) in a
range from -20 to 20 dB. However, whereas Kulin et al. [3]
perturbed measurements collected from a single environment,
our data has been collected from two distinct environments and
thus offers better insights into cross-environment performance
of deep learning. At each iteration, new predictions were



TABLE II
CORRECTNESS: CONFUSION MATRIX FOR PREDICTIONS WITH CNN. ACCURACY: 0.80

truth/predicted babymon boya hamy huhd motorola skatco rc none
babymon 19 0 1 3 4 0 3 0

boya 1 29 0 0 0 0 0 0
hamy 1 0 29 0 0 0 0 0
huhd 0 0 0 29 0 1 0 0

motorola 0 0 0 0 30 0 0 0
skatco 0 2 0 21 0 7 0 0

rc 0 9 0 0 0 0 21 0
none 0 0 0 0 0 0 0 30

made based on the perturbed test set and all predicted classes
were recorded. To calculate a normalized score, each set of
predictions was compared to the initial set (containing no
injected noise) and the number of disagreeing labels was
summed and scaled by the known number of test samples
(240). The results are displayed in Fig. 4.

0 2 4 6 8 10 12 14 16 18 20
Standard deviation of Gaussian noise

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
op

or
tio

n 
of

 u
np

er
tu

rb
ed

 la
be

ls

CNN
CNN-Z

Fig. 4. Robustness: Proportion of changed labels with respect to increased
SD σ of zero-mean Gaussian noise. First point of failure: σ = 1.5dB

In terms of pointwise robustness (first point of failure),
CNN fails already at very modest noise (standard deviation of
1.5 dB) changing 4 labels. Thereafter robustness (in terms of
adversarial frequency) decreases rapidly, reaching zero at σ =
10 dB, after which it only predicts the same label for the rest
of the iterations. Part of the reason for the poor robustness of
CNN is the fact that changes in domain can affect the range of
values, making the normalisation of measurements ineffective
and prone to failure. This is highlighted by the CNN-Z line
in the figure, which shows results when values were re-
normalized after each noise injection. However, overcoming
this in practical deployments would require constant sampling
and recalculation of the normalization parameters, as well as
to establish a mapping across training and testing domains.
In practice, this is difficult to perform reliably as outliers or
changes in the environment could affect the required parameter
values. To put our results into context, fading factors used in
propagation models vary between 5− 14 dB [24], suggesting
that model performance should not decrease significantly with
noise levels below 9 dB as this is the expected range of
variation for measurements collected from different everyday
environments. In theory, performance should generalise as
long as training and testing environments are sufficiently
similar. However, this is difficult to guarantee in practice. As

an example, office environments can experience over 10 dB
variations within the same floor, depending on the building
materials, furniture and material used for partitioning the
space [24]. Re-normalization can improve robustness, but also
starts to suffer from 6− 7 dB onward.

Efficiency As described in Sec. III, we measure learning ef-
ficiency using random subset sampling and measuring perfor-
mance of the deep learning algorithm with datasets where sam-
ple size had been reduced. Since our measurements contained
30 measurements per device, we evaluated the performance of
the approach by progressively removing more samples until
only one sample was used for training per device. For each
sample removal count, we repeated the experiment 30 times
removing different randomly chosen subsets of measurements.
Thus, in total we performed 870 trials (30 trials per removal
level and 29 different removal counts).

The results of the evaluation are shown in Fig. 5. Even
with small sample removal counts, the performance of the
deep learning model fluctuates considerably, suggesting that
the model would require more training samples to be able to
train a robust model. Indeed, accuracy can be as low as 30%
when just a single sample is removed. Conversely, the model
can occasionally reach high performance even when little data
is available. For example, the best case performance is close
to 80% even when only 7 measurements are used. Thus, data
quantity alone does not govern performance as quality of data
also clearly plays a significant role. In practice, this means
that the deep learning model would either require considerable
amounts of training data or an effective subset selection
strategy that can (correctly) identify the most informative
training measurements. Neither is easy to achieve, as training
data collection is highly laborious – and even impossible in
many enterprise settings – whereas the effectiveness of subset
selection techniques is difficult to guarantee ex-ante as the
complex structure of deep learning models makes it difficult
to understand effects of individual data samples.

V. SIGNAL MODELING-BASED INTERFERENCE DETECTION

Thus far we have shown that deep learning can indeed reach
good interference detection performance, but the underlying
models are highly sensitive to noise and amount of training
data. In practice these are significant issues, particularly for
commercial enterprise detection systems, which must operate
with limited knowledge of the deployment domains. To mit-



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Training set size
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Te

st
 a

cc
ur

ac
y

Maximum
Minimum
Average

Fig. 5. Efficiency: Testing accuracy as number of samples are added to
training set. Summary statistics from 30 trials of randomly sampled labels.

igate these issues, we next describe a novel signal modeling
based approach for interference detection and classification.

A. Signal Modeling using Non-Negative Multiple Regression

Our approach models interference using non-negative multi-
ple regression, which allows describing all possible interfering
devices through their frequency-specific spectrum contribu-
tion. In our approach, the spectrum signature of the signal
model is estimated by averaging relevant spectrum sweeps
over time in the milliwatt domain and then scaling values
by the strongest spectrum bin. Specifically, for each possible
interferer, we define a vector v = [s1, s2, ..., sn], where n is
the number of bins in a spectrum sweep, and each si contains
a value between 0 and 1. Fig. 6 shows example signatures
created out of spectrum samples in Fig. 2.

2400 2420 2440 2460 2480
Frequency (MHz)

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e 

po
we

r

babymon
hamy

Fig. 6. Device spectrum signatures for the spectrum samples in Fig. 2.

These signatures are collected into a design matrix X ,
which acts the model for interference sources over the specific
frequency band. Using standard least squares, given a new
spectrum sweep y (specifically, the average spectrum sweep
over the measurement window) we can solve the weights for
each source of interference simply using

w = (XTX)\(XT y). (3)

The fitted weights wi can be interpreted as the estimated power
of device i, which can then be used to find the strongest – in
our application the most likely – source of interference. In
practice, devices cannot transmit with negative range, so we

modify the equation into a non-negative least squares (NNLS)
form which forces the solution to have only positive weights.

B. Comparison to Deep Learning
Our signal modeling approach has designed as a method

that alleviates and overcomes issues deep learning has while
generalising to different types of environments, rather than as
an approach that would provide superior interference detection
performance. We next demonstrate that our approach indeed
improves robustness against noise, model interpretability, and
information efficiency in terms of amount of training data
is needed. To accomplish this, we repeat our evaluation and
compare our approach against the deep learning approach
considered in the previous section.
Accuracy The classification accuracy of NNLS is summarized
in Table III. At an overall accuracy of 73%, this is similar
to the accuracy of CNN, though CNN performs slightly
better. On average, this difference is somewhat smaller than
this specific scenario because of the stochastic nature of the
training process (as discussed in Sec. IV-B). Nevertheless,
both approaches clearly suffer from the noisy real-world
measurements used for testing.

Comparing the predicted classes to the true labels, the
approaches agreed on the true class in 62.5% of cases .
This suggests that in about 10% of the cases one of the
algorithms succeeded where the other did not. In 5 test cases
the algorithms agreed on the predicted class but disagreed
with the true label. Part of the reason for disagreement might
be down to training and testing labels, which label the entire
spectrogram as one device even if the device is not transmitting
constantly for the entire duration. In three of those cases, the
approaches predicted rc when the true label was babymon.
This understandable confusion stems from the fact that the rc
device only transmits periodically on a fixed frequency, while
babymon performs frequency hopping (see Fig. 2). At suitable
time frames, their spectrum samples can seem similar.
Overfitting We assessed overfitting by implementing per-
turbed model validation (PMV, see Sec. III-B). In our im-
plementation, we permute 1 to 15 labels per class, which
corresponds to noise ratios ri in the range of [0.0333..., 0.5]
following terminology of Zhang et al. [19]. Both algorithms
used the same perturbed training labels to ensure comparison
was fair. Additionally, we elected to fix the random seed
between each training session to ensure any change in training
accuracy could be attributed uniquely to the injected noise and
not the underlying stochastic gradient descent.

We calculate PMV decrease rate as the absolute polynomial
coefficient of the best fitting line, which was determined
through simple least squares. Results from this evaluation are
shown in Fig. 7. Both algorithms seem to handle overfitting
quite well, clearly decreasing in accuracy as more noise is
injected. The rates, as described in the original paper [19], are
mostly interesting in a relative sense as what constitutes a good
fit depends on application context. Nevertheless, rates above
0.5 typically indicate that the algorithms have no significant
issues with overfitting.



TABLE III
CORRECTNESS: CONFUSION MATRIX FOR PREDICTIONS WITH NNLS. ACCURACY: 0.73

truth/predicted babymon boya hamy huhd motorola skatco rc none
babymon 12 3 7 0 0 0 4 4

boya 0 21 0 0 0 0 0 9
hamy 0 0 30 0 0 0 0 0
huhd 0 0 0 29 0 1 0 0

motorola 4 1 1 0 13 0 2 9
skatco 0 3 0 1 1 19 0 6

rc 0 0 0 0 0 0 22 8
none 0 0 0 0 0 1 0 29

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Labels perturbed (out of 30)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ai

ni
ng

 a
cc

ur
ac

y

NNLS

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Labels perturbed (out of 30)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0 CNN

Fig. 7. Overfitting: PMV accuracy decrease rate curves (and best fitting line)
calculated for NNLS and CNN, with rates (k̂s) of 0.60 and 1.35, respectively.

CNN clearly has the better accuracy decrease rate in our
case (CNN: k̂s = 1.35, NNLS: k̂s = 0.60). It is possible that
parameters of the CNN that would cause overfitting have been
overcome during the initial construction, where correctness has
been the metric for tuning them. Nevertheless, this calculation
shows that both of our implementations are reasonable, at least
in terms of overfitting.
Robustness The first clear difference between interference
detection methods is apparent when measuring robustness.
The previous noise injection procedure was repeated, but
extended up to 50 dB to cover the full range of the NNLS
behavior. Whereas CNN was unable to perform prediction
after noise levels reached 10 dB, NNLS still provides non-
random predictions at noise levels above 20 dB.

Though NNLS is better in an absolute sense, it suffers from
a larger amount of variance in its robustness. This can likely
be attributed to the scaling of the signatures which means a
large importance is given to individual spectrum bins for each
signature. This is exacerbated by the fact that signatures reside
in linear instead of logarithmic space; the relative difference
between strong and weak parts of the spectrum signature can
differ on the order of magnitudes. Because of this, random
noise can occasionally make an irrelevant device seem like
a better candidate simply because power was attributed to
a location that strongly corresponds with the specific device
signature. However, a simple averaging over time can mitigate
some of these variations.
Efficiency In stark contrast to the CNN, NNLS achieves an

0 5 10 15 20 25 30 35 40 45 50
Standard deviation of Gaussian noise

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
op

or
tio

n 
of

 p
er

tu
rb

ed
 la

be
ls

NNLS
CNN
CNN-Z

Fig. 8. Robustness: Proportion of changed labels with respect to increased
standard deviation of zero-mean Gaussian noise. First point of failure: σ =
1.5dB

accuracy of almost 70% with only one carefully selected
sample per device. It reaches its optimal accuracy with only
5 samples in the best case. In addition to providing a more
stable performance over permutations, it also converges to its
optimum level of performance faster.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Training set size
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 a
cc

ur
ac

y

NNLS

Mean
Maximum
Minimum

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Training set size
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0 CNN

Fig. 9. Efficiency (Information): Testing accuracy as number of samples are
added to training set. Summary statistics from 30 trials of randomly sampled
labels.

In terms of time, CNN required approximately 400-500 ms
for the entire testing set on a 2015 MacBook Pro1, or roughly
2 ms per testing sample. NNLS performed prediction in 70-80
ms for the whole testing procedure meaning it could predict at
a rate of 0.3 ms per sample. Though NNLS was clearly faster,
it is important to note that the measurement device sampled

1CPU: 2.5 GHz Intel Core i7. RAM: 16 GB 1600 MHz DD3. Graphics:
AMD Radeon R9 M370X 2 GB.



the spectrum at a speed of 40 ms per sweep, meaning both
approaches are well within the limits of the input data rate
even if they were to base their prediction on a single sweep
of spectrum (let alone the 25 in our experimental setup).

For training, CNN used roughly 5-120 seconds to iterate
over 100 epochs, depending on the sample size used. Since the
number of training epochs needed depends on the training set,
parameters and optimization algorithm, this is reasonable as
training time can be amortized in real world applications and is
usually a one-time cost that can be performed independently of
the application. NNLS performed training in 1-30 ms, which
can be attributed to its use of non-iterative matrix operations.

To understand how the algorithms perform as classes are
added to the models, an experiment was performed where
the original training and testing labels were replaced with
labels for an increasing amount of classes. In other words, the
first training/testing iteration used only 2 labels (i.e. binary
classification) for the same set of training and testing data
as used in other experiments. The number of classes was
increased until it reached a total of 102, giving a range of 100
added classes. For CNN, re-training involved reconfiguring the
final dense layer to contain the tested number of classes. The
number of epochs was restricted to 10 because accuracy was
not a concern in this setup and we were concerned with the
increase in relative time used, specifically.

For each training and testing, the time was recorded and
normalized by dividing it by the time used for binary classi-
fication (first iteration). This allowed for a fair comparison of
the tendency of the algorithm performance as the number of
learned and predicted classes increased. In addition, we found
that NNLS initialization caused training to be slower for the
first few iterations, so calculation was primed by running 5
iterations before the actual testing proceeded.

2 25 50 75 100
Number of classes

0.9

1.0

1.1

1.2

1.3

1.4

1.5

Sp
ee

d 
re

la
tiv

e 
to

 b
in

ar
y 

cla
ss

ifi
ca

tio
n

Training
CNN
CNN-LSQR
NNLS
NNLS-LSQR

2 25 50 75 100
Number of classes

0

10

20

30

40

50

60

70

80

90

100

110
Testing

CNN
CNN-LSQR
NNLS
NNLS-LSQR

Fig. 10. Efficiency (Performance): Relative time spent in training and testing
as number of classes increases. Best fitting curve for NNLS testing is ≈
0.01n2

The results of this test are displayed in Fig. 10. Both
algorithms have a similar linear increase in training time
as the number of classes increases, with NNLS increasing
slightly faster. As described earlier, however, NNLS has a
faster absolute training time. The major difference between
algorithms is apparent in testing performance. Whereas CNN
is essentially not impacted by the number of the classes in the
prediction phase, NNLS displays a time complexity of O(n2).

Specifically, the best fitting curve for the testing time points
is 0.01n2. Solving for a desired speed of 1 Hz (a reasonable
requirement for an interactive application), we find that on
the tested hardware NNLS could perform prediction with 900
classes before crossing this threshold. Though this would cover
a broad range of devices – especially since many will display
the same transmitting patterns – it is one potential limiting
factor of this approach.
Interpretability To test interpretability, the algorithms were
applied to a new set of test data (n=30) where devices hamy
and huhd were transmitting concurrently. The intuition here
was that the final weight vector of a highly interpretable model
should reflect this multi-label scenario even it has never been
trained on a combination of devices.

To establish a CNN model with multi-label classification
capabilities, another configuration was trained where the last
layer used sigmoid activation, loss was measured with binary
cross-entropy and optimization was performed with Adam.
This allows the CNN to predict more than one label per test
sample. Training otherwise proceeded in the same way as
before. As a form of comparison, the softmax-activated CNN
was also allowed to predict labels for the new test cases. The
results are displayed in Fig. 11. Weights for NNLS were scaled
by the largest detected power to bring them into the same [0,1]
range as the CNN approaches.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

babymon
boya

hamy
huhd

motorola
skatco

rc
none

NNLS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

babymon
boya

hamy
huhd

motorola
skatco

rc
none

CNN-Softmax

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

babymon
boya

hamy
huhd

motorola
skatco

rc
none

CNN-Sigmoid

Fig. 11. Interpretability (Multi-class): Heatmaps of weight vectors for clas-
sification results when two devices (hamy, huhd) are transmitting concurrently.

It is apparent that NNLS more smoothly predicts both
classes concurrently, albeit huhd with less distinction. This is
likely due to its frequency hopping nature, transmitting less
power at any one instance than the continuous transmitter
hamy. Interestingly, the sigmoid version of CNN is able to
detect huhd more consistently than hamy.

Because CNN-Softmax has been trained to classify one
label at a time it struggles with multi-label scenarios. Its
fluctuation between the two true labels is relatively consistent,



however, whereas CNN-Sigmoid is not able to detect hamy
to any discernable degree in the early samples. In our inter-
pretation, this behavior – though not as robust as NNLS – is
more easily managed in an end user application. A smoothing
of labels over time, for instance, could easily perform to a
necessary degree of accuracy.

Finally, a set of measurements were made while moving
towards and away from the hamy device, in order to determine
the correlation between predicted weights and the distance
from – and by proxy the transmit power of – the target
device. The results are displayed in Fig. 12. Note that the
distance along X-axis turns back around the mid point. The
measurements were performed in this manner to ensure that
the results were robust with respect to the orientation of the
measurement device, in terms of antenna directionality or
polarization, for instance.

0 5 10 15 20 25 30 25 20 15 10 5 0
Distance (m)

-90
-85
-80
-75
-70
-65
-60
-55
-50
-45
-40
-35
-30
-25

Po
we

r (
dB

m
)

NNLS

NNLS prediction
Theoretical path loss

0 5 10 15 20 25 30 25 20 15 10 5 0
Distance (m)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

So
ftm

ax
 w

ei
gh

t

CNN

Fig. 12. Interpretability (Distance): Relationship between predicted weight
and distance from interfering device (hamy). Note the travelled path loops
back around the mid point.

Both algorithms have a clear tendency to recognise when
they are close to the target device, but CNN’s confidence in its
prediction falls rapidly, reaching 10% after less than 5 meters.
In other words, the only real-world interpretation that the soft-
max weight allows for is a vague measure of proximity. Due
to the domain-aware configuration of the NNLS algorithm,
however, the predicted weight can be interpreted as the target
device’s transmit power. This allows for a smoother estimate
over distance, as well as a good fit to the theoretical power
level. This real-world interpretation of the prediction result
means that not only is thresholding a detection instance to a
specific power level easier, it also allows for a more principled
approach to locating the interferer in the target environment
since the detected power level can be assumed to follow the
standard distance-based path loss formulation.
Summary of Comparison Table IV summarises the results of
the comparison. Deep learning has slightly better performance
than the signal modeling approach, which is mostly due to the
signal modeling failing to recognize devices in some cases. In
terms of overfitting, the approaches are similar. However, the
signal modeling approach is more resilient against noise (better
robustness) and offers significantly better interpretability. Deep
learning has slightly better runtime complexity, but is in
turn highly sensitive to the amount of data that is available

TABLE IV
CONCLUSION: RESULTS OF COMPARISON BETWEEN DEEP LEARNING

(CNN) AND LINEAR REGRESSION (NNLS).

Metric Winner Notes
Correctness CNN NNLS is close but has blind spots [4]
Overfitting Tie CNN has better absolute score
Robustness NNLS CNN struggles with high noise values
Efficiency (Info.) NNLS CNN especially sensitive to data size
Efficiency (Time) CNN NNLS has high prediction complexity
Interpretability NNLS NNLS conforms to theoretical model

for training. Thus, the signal modeling approach provides
a competitive alternative to deep learning based techniques,
particularly for enterprise environments where collecting ex-
tensive amounts of training measurements is difficult or even
next to impossible.

C. Recommendations

Based on our results, we can draw the following guidelines
for interference detection techniques:

1) Deep-learning approaches require use of efficient training
subset selection schemes whenever the available dataset
is limited. If training and testing domains have signif-
icantly different measurement distributions, sample re-
normalization or other more elaborate techniques are re-
quired for adapting performance across domains.

2) Deep-learning approaches either require testing or training
sets to have similar levels of noise, or to have a large
amounts of data with different noise levels from multiple
environments. Models created or tested using data from
individual environments are unlikely to generalize well.

3) Signature-based approaches are highly effective for devices
with clearly identifiable and unambiguous fingerprints,
being able to work with very small training data size
(even one sample for some devices in our experiments).
However, they are not effective for devices that have non-
decodable frequency content, such as microwave ovens [4].
Thus, signature-based approaches are likely to work most
effectively for common types of transmitting devices, and
other solutions are needed for broad frequency interference,
and adversarial scenarios such as frequency jamming.

4) Regression-based methods can provide estimates of inter-
ference power levels, which can be used for estimating
the impact on network throughput, as well as a proxy for
distance when locating a source of interference.

5) Algorithms should be trained, from the start, for multi-label
classification. Techniques based on spectrum unmixing
can provide this as part of their solution, but a deep-
learning network might need to optimize with a sigmoid
loss function to discover concurrent transmitters.

6) Algorithm efficiency should be evaluated with respect to
the number of devices detected. Even simple approaches
might display polynomial time complexity as the number
of devices increases.



VI. DISCUSSION

Naturally our work has room for improvements, below we
discuss some points.
Transfer learning Deep-learning approaches have shown a
great capability for transfer learning. For instance, in image
recognition it is common to train the initial – feature learning
– layers of the network separately, after which they can be re-
used in future training sessions [25]. This can greatly improve
robustness, since the network is not randomly initialized every
time new training occurs. A possible way to improve robust-
ness of deep learning then is to use transfer learning to map
measurements across training and testing domains, similarly to
what has been explored in WiFi sensing domain [14]. Another
benefit of transfer learning is that it can be used to reduce
model training time, as shown in our previous work [4].
Unintentional radiators Our previous work [4] suggests
that signal modeling approaches may have difficulties with
devices that have ambiguous spectrum signatures, such as
microwave ovens which emit across a broad spectrum range
and which are not designed to transmit a decodable signal. In
this particular case, however, the signal is known to correlate
with AC frequency (60Hz), which could be exploited using
autocorrelation [26].
Learning device classification in the wild. The signal model
approach proposed in this worked showed great capability to
learn from limited data. This would allow new interference
sources to be added to the model by end users – e.g., poten-
tially as part of a standard wireless survey. Due to improved
robustness offered by our model, it is also likely that this
learned signature is easier to apply to other environments.
Deep learning for complex cases Because a deep-learning
technique such as a convolutional neural network can learn
features over both the frequency and time domain, it has the
capability of modelling devices whose output cannot strictly be
described through their frequency output. Unexpected sources
of interference like USB 3 hardware [27] are likely easier to
learn with a technique that can take into account non-linearities
in the time domain. From a security perspective, deep-learning
could also be used to detect anomalies in packet traffic, or
work in concert with existing approaches [28] by providing a
physical layer perspective on potentially adversarial devices.

VII. RELATED WORK

Interference Detection The main idea in interference de-
tection and classification approaches is to examine radio
frequency spectrum sweeps and to classify signatures or fin-
gerprints that can be identified from them. An early example
of such systems is AirShark which detects and classifies
interference sources using commodity WLAN hardware, a
combination of generic and device-specific features and a
decision tree for each device [1]. Importantly, for many classes
of devices, a separate classifier and a set of features needs to
be learned. WiSlow [29] also uses commodity hardware, but
performs detection based on communication characteristics,
such as packet analysis. Another work that uses device-specific

features, such as the 60 Hz periodicity of microwave ovens, is
presented in [26]. Though all these approaches more or less
work on commodity hardware, they either require separate
classifiers and features for each device, or have only been
verified to work for known transmission protocols such as
Bluetooth and ZigBee.
Deep Learning for Interference Detection The most recent
interference techniques are based on deep learning. Our work
considers a model based on our previous work [4]. Kulin et
al. [3] examined different types of data representations for
deep learning based interference detection, but found spectrum
sweeps to be the most suitable. In terms of deep learning
architecture, most approaches build on convolutional neural
networks as it is often the network of choice in many ap-
proaches. For instance, a CNN has been used to detect specific
radios transmitting WLAN signals from raw IQ samples (as
opposed to FFT) in [30], or to detect transmitters in the 802.x
family of protocols, i.e., Bluetooth and ZigBee, from spectrum
(FFT) samples [2]. Common to these techniques is either the
focus on simulated or lab-controlled signals, and/or technolo-
gies with known transmission protocols. Though works such
as [31] have also been tested in noisy environments, both
test and training measurements were collected from the same
environment. Our evaluation provides the most comprehensive
and realistic assessment thus far, using a systematic approach
for varying training and test measurements, and considering a
wide range of performance metrics.
Traditional Machine Learning cf. Deep Learning Differ-
ences between deep learning and traditional machine learning
algorithms have been explored in several domains, mainly
through different measures of accuracy (i.e., correctness in
Sec. III) [32]–[34], and efficiency (in terms of the number of
training samples) [35]. Mengmeng et al. [36] use three metrics,
but compare robustness only among deep learning approaches.
Closest to our work in terms of scope, Liu et al. [37] compare
deep learning frameworks in terms of accuracy, efficiency and
robustness. Their work focuses on the initial configuration
of the learning frameworks, however, and does not provide
a comparison between algorithms specifically. Our focus is
narrower than most in terms of the absolute number of algo-
rithms compared, but this specialization allows us to perform
comparisons along more modes and with a wider examination
of interpretability than previous works.

VIII. SUMMARY AND CONCLUSIONS

We contributed by performing a comprehensive perfor-
mance evaluation of deep learning based interference detection
using measurements from two highly diverse environments,
and a systematic approach to noise injection that allowed us
to evaluate how differences between training and testing data
affect performance. Our results showed that deep learning is
sensitive to noise, suffering from poor robustness, and sensitive
to the amount of training data that is available. To overcome
weaknesses in deep learning, we also presented a simpler
yet efficient signal modeling based interference detection
technique, which offers better robustness and interpretability



than deep learning, with minimal degradation in detection
performance. As such, both techniques have their uses, with
signal modeling being better suited for enterprise environments
where testing and training measurements can be difficult or
next to impossible to collect, whereas deep learning is better
suited for situations where training data can be easily collected
or where the interference patterns are highly complex, such as
in adversarial scenarios.

REFERENCES

[1] S. Rayanchu, A. Patro, and S. Banerjee, “Airshark: Detecting non-wifi
rf devices using commodity wifi hardware,” in Proceedings of the 2011
ACM SIGCOMM Conference on Internet Measurement Conference,
2011, pp. 137–154.

[2] N. Bitar, S. Muhammad, and H. H. Refai, “Wireless technology identi-
fication using deep convolutional neural networks,” in 2017 IEEE 28th
Annual International Symposium on Personal, Indoor, and Mobile Radio
Communications (PIMRC), Oct 2017, pp. 1–6.

[3] M. Kulin, T. Kazaz, I. Moerman, and E. De Poorter, “End-to-end
learning from spectrum data: A deep learning approach for wireless
signal identification in spectrum monitoring applications,” IEEE Access,
vol. 6, pp. 18 484–18 501, 2018.

[4] K. Longi, T. Pulkkinen, and A. Klami, “Semi-supervised convolutional
neural networks for identifying wi-fi interference sources,” in Proceed-
ings of the Ninth Asian Conference on Machine Learning, vol. 77, 2017,
pp. 391–406.

[5] https://www.cisco.com/c/en/us/solutions/enterprise-networks/
cleanair-technology/index.html, [Online; accessed January 2020].

[6] https://www.netally.com/products/airmagnet-spectrum-xt/, [Online; ac-
cessed January 2020].

[7] https://www.netally.com/products/etherscopenxg, [Online; accessed Jan-
uary 2020].

[8] J. Van Waes, J. Vankeirsbilck, D. Pissoort, and J. Boydens, “Electro-
magnetic interference in the internet of things: An automotive insight,”
in 2017 XXVI International Scientific Conference Electronics (ET), Sep.
2017, pp. 1–4.

[9] N. Promsuk, A. Taparugssanagorn, and J. Vartiainen, “Interference
suppression methods with adaptive threshold in internet of things (iot)
systems,” in 2017 9th International Conference on Information Technol-
ogy and Electrical Engineering (ICITEE), Oct 2017, pp. 1–6.

[10] S. Paris, J. Elias, and A. Mehaoua, “Cross technology interference miti-
gation in body-to-body area networks,” in 2013 IEEE 14th International
Symposium on ”A World of Wireless, Mobile and Multimedia Networks”
(WoWMoM), June 2013, pp. 1–9.

[11] T. Elshabrawy and J. Robert, “The impact of ism interference on lora ber
performance,” in 2018 IEEE Global Conference on Internet of Things
(GCIoT), Dec 2018, pp. 1–5.

[12] K. Wiklundh and P. Stenumgaard, “Emc challenges for the era of mas-
sive internet of things,” IEEE Electromagnetic Compatibility Magazine,
vol. 8, no. 2, pp. 65–74, 2019.

[13] H. Zhang, B. Di, K. Bian, and L. Song, “Iot-u: Cellular internet-of-things
networks over unlicensed spectrum,” IEEE Transactions on Wireless
Communications, vol. 18, no. 5, pp. 2477–2492, May 2019.

[14] J. Zhang, Z. Tang, M. Li, D. Fang, P. Nurmi, and Z. Wang, “Crosssense:
towards cross-site and large-scale wifi sensing,” in Proceedings of
the 24th Annual International Conference on Mobile Computing and
Networking. ACM, 2018, pp. 305–320.

[15] R. Gummadi, D. Wetherall, B. Greenstein, and S. Seshan, “Understand-
ing and mitigating the impact of rf interference on 802.11 networks,”
in Proceedings of the 2007 Conference on Applications, Technolo-
gies, Architectures, and Protocols for Computer Communications, ser.
SIGCOMM 07. New York, NY, USA: Association for Computing
Machinery, 2007, p. 385–396.

[16] R. Heydon and N. Hunn, “Bluetooth low energy,”
CSR Presentation, Bluetooth SIG https://www. bluetooth.
org/DocMan/handlers/DownloadDoc. ashx, 2012.

[17] https://www.ekahau.com/products/sidekick/tech-specs/, [Online;
accessed January 2020].

[18] J. M. Zhang, M. Harman, L. Ma, and Y. Liu, “Machine learning testing:
Survey, landscapes and horizons,” arXiv, 2019.

[19] J. M. Zhang, E. T. Barr, B. Guedj, M. Harman, and J. Shawe-Taylor,
“Perturbed model validation: A new framework to validate model
relevance,” arXiv, 2019.

[20] A. Chakraborty, M. Alam, V. Dey, A. Chattopadhyay, and D. Mukhopad-
hyay, “Adversarial attacks and defences: A survey,” arXiv, 2018.

[21] O. Bastani, Y. Ioannou, L. Lampropoulos, D. Vytiniotis, A. Nori, and
A. Criminisi, “Measuring neural net robustness with constraints,” in
Advances in Neural Information Processing Systems 29, D. D. Lee,
M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, Eds. Curran
Associates, Inc., 2016, pp. 2613–2621.

[22] R. G. Gallager, Principles of Digital Communication. Cambridge
University Press, 2008.

[23] H. Spieker and A. Gotlieb, “Towards testing of deep learning systems
with training set reduction,” arXiv, 2019.

[24] T. Rappaport, Wireless Communications: Principles and Practice,
2nd ed. Prentice Hall PTR, 2001.

[25] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” in 3rd International Conference on
Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings, 2015.

[26] Z. Weng, P. Orlik, and K. J. Kim, “Classification of wireless interference
on 2.4ghz spectrum,” in 2014 IEEE Wireless Communications and
Networking Conference (WCNC), April 2014, pp. 786–791.

[27] https://www.intel.com/content/www/us/en/products/docs/io/
universal-serial-bus/usb3-frequency-interference-paper.html, [Online;
accessed January 2020].

[28] M. Miettinen, S. Marchal, I. Hafeez, N. Asokan, A. Sadeghi, and
S. Tarkoma, “Iot sentinel: Automated device-type identification for se-
curity enforcement in iot,” in 2017 IEEE 37th International Conference
on Distributed Computing Systems (ICDCS), June 2017, pp. 2177–2184.

[29] K.-H. Kim, H. Nam, and H. Schulzrinne, “Wislow: A wi-fi network
performance troubleshooting tool for end users,” 04 2014, pp. 862–870.

[30] S. Riyaz, K. Sankhe, S. Ioannidis, and K. Chowdhury, “Deep learning
convolutional neural networks for radio identification,” IEEE Communi-
cations Magazine, vol. 56, no. 9, pp. 146–152, Sep. 2018.

[31] K. Merchant, S. Revay, G. Stantchev, and B. Nousain, “Deep learning
for rf device fingerprinting in cognitive communication networks,” IEEE
Journal of Selected Topics in Signal Processing, vol. 12, no. 1, pp. 160–
167, Feb 2018.

[32] S. Karimi, X. Dai, H. Hassanzadeh, and A. Nguyen, “Automatic di-
agnosis coding of radiology reports: A comparison of deep learning
and conventional classification methods,” in BioNLP 2017. Vancouver,
Canada,: Association for Computational Linguistics, Aug. 2017, pp.
328–332.

[33] N. G. Paterakis, E. Mocanu, M. Gibescu, B. Stappers, and W. van
Alst, “Deep learning versus traditional machine learning methods for
aggregated energy demand prediction,” in 2017 IEEE PES Innovative
Smart Grid Technologies Conference Europe (ISGT-Europe), Sep. 2017,
pp. 1–6.

[34] J. Lago, F. D. Ridder, and B. D. Schutter, “Forecasting spot electricity
prices: Deep learning approaches and empirical comparison of tradi-
tional algorithms,” Applied Energy, vol. 221, pp. 386 – 405, 2018.

[35] B. Dong and X. Wang, “Comparison deep learning method to traditional
methods using for network intrusion detection,” in 2016 8th IEEE
International Conference on Communication Software and Networks
(ICCSN), June 2016, pp. 581–585.

[36] M. Cai, M. Pipattanasomporn, and S. Rahman, “Day-ahead building-
level load forecasts using deep learning vs. traditional time-series
techniques,” Applied Energy, vol. 236, pp. 1078 – 1088, 2019.

[37] L. Liu, Y. Wu, W. Wei, W. Cao, S. Sahin, and Q. Zhang, “Benchmarking
deep learning frameworks: Design considerations, metrics and beyond,”
in 2018 IEEE 38th International Conference on Distributed Computing
Systems (ICDCS), July 2018, pp. 1258–1269.

https://www.cisco.com/c/en/us/solutions/enterprise-networks/cleanair-technology/index.html
https://www.cisco.com/c/en/us/solutions/enterprise-networks/cleanair-technology/index.html
https://www.netally.com/products/airmagnet-spectrum-xt/
https://www.netally.com/products/etherscopenxg
https://www.ekahau.com/products/sidekick/tech-specs/
https://www.intel.com/content/www/us/en/products/docs/io/universal-serial-bus/usb3-frequency-interference-paper.html
https://www.intel.com/content/www/us/en/products/docs/io/universal-serial-bus/usb3-frequency-interference-paper.html

	Introduction
	Measurement Setup
	Measures for Interference Detection
	Correctness
	Overfitting
	Robustness
	Efficiency
	Interpretability

	Deep Learning-Based Interference Detection
	Network Structure
	Evaluation

	Signal Modeling-Based Interference detection
	Signal Modeling using Non-Negative Multiple Regression
	Comparison to Deep Learning
	Recommendations

	Discussion
	Related work
	Summary and Conclusions
	References

