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PREFACE

The area of Boolean satisfiability (SAT) solving has seen tremendous progress over the last years.
Many problems (e.g., in hardware and software verification) that seemed to be completely out of
reach a decade ago can now be handled routinely. Besides new algorithms and better heuristics,
refined implementation techniques turned out to be vital for this success. To keep up the driving
force in improving SAT solvers, SAT solver competitions provide opportunities for solver developers
to present their work to a broader audience and to objectively compare the performance of their
own solvers with that of other state-of-the-art solvers.

SAT Competition 2020 (SC 2020; https://satcompetition.github.io/2020/), a competitive
event for SAT solvers, was organized as a satellite event of the 22nd International Conference on
Theory and Applications of Satisfiability Testing (SAT 2020). SC 2020 stands in the tradition of the
previously organized main competitive events for SAT solvers: the SAT Competitions held 2002-
2005, biannually during 2007-2013, and 2014, 2016-2018; the SAT Races held in 2006, 2008, 2010,
2015, and 2019; and SAT Challenge 2012.

SC 2020 consisted of a total of four tracks: Main Track (with Glucose Hack, Planning and No
Limits sub-tracks), Incremental Library Track, Parallel Track, and Cloud Track. The planning
sub-track represents a first instantiation of a more domain-specific track in the SAT competitions,
complementing the otherwise general tracks. The Cloud Track is also a new inclusion into the SAT
competition series for 2020, focusing on evaluating SAT solvers specifically built for running on
cloud computing environments.

There were two ways of contributing to SC 2020: by submitting one or more solvers to participate in
the competition and by submitting interesting benchmark instances on which the submitted solvers
could be evaluated in the competition. Following the tradition put forth by SAT Challenge 2012,
the rules of SC 2020 required all contributors to submit a short, 1-2 page long description as part
of their contribution. This book contains these non-peer-reviewed descriptions in a single volume,
providing a way of consistently citing the individual descriptions and finding out more details on
the individual solvers and benchmarks.

Successfully running SC 2020 would not have been possible without active support from the com-
munity at large. We would like to thank the StarExec initiative (http://www.starexec.org) for
the computing resources needed to run SC 2020. Many thanks go to Aaron Stump for his invalu-
able help in setting up StarExec to accommodate for the competition’s needs. Furthermore, we
thank Amazon for providing the resources and support to develop parallel and distributed solvers
on the AWS cloud and for executing the Cloud and Parallel tracks. Finally, we thank CAS Software
Karlsruhe for sponsoring the awards.

Finally, we would like to emphasize that a competition does not exist without participants: we
thank all those who contributed to SC 2020 by submitting either solvers or benchmarks and the
related description.

Tomás̆ Balyo, Nils Froleyks, Marijn J. H. Heule, Markus Iser, Matti Järvisalo, & Martin Suda
SAT Competition 2020 Organizers
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Cadical-trail, Cadical-alluip, Cadical-alluip-trail, and
Maple-LCM-Dist-alluip-trail at SAT Competition

2020
Randy Hickey

University of Toronto
Nick Feng

University of Toronto
Fahiem Bacchus

University of Toronto

Abstract—This document describes Cadical-trail, Cadical-
alluip, Cadical-alluip-trail and Maple-LCM-Dist-alluip-trail
where two novel techniques ”trail-saving” and ”stable-allUIP”
are implemented.

I. INTRODUCTION

The base solvers we used to implement our techniques into
are cadical v1.2.1, obtained from github as of January 1,
20201, and Maple-LCM-Dist, obtained from the 2017 SAT
Competition [1]. Cadical-trail implements only trail saving
and enhancements, cadical-alluip implements only all-UIP,
cadical-alluip-trail implements both, and Maple-LCM-Dist-
alluip-trail implements both (with fewer trail saving enhance-
ments).

II. TRAIL SAVING

Trail saving is a technique that attempts to avoid doing
repeated propagation steps after backtrack. For deeper analysis
of the techniques and implementation details, please refer to
the paper [2].

When using trail saving, upon each backtrack all literals
that are unassigned are stored in order along with their reason
clauses (implications) on an oldtrail vector. Upon redescent,
whenever the top literal d on the oldtrail becomes true, all
of the literals underneath it up until the next literal with no
reason are also implied by unit propagation. If upon restoring
a literal it has already been falsified, then a conflict is detected.

In addition, the following enhancements to trail saving
were applied. First, each new oldtrail can be appended to
the beginning of the existing oldtrail without discarding the
oldtrail vector that is still there. Once in a while, this will have
to be flushed to avoid growing indefinitely. Second, instead
of only looking at the top of the oldtrail, one can examine
several decision levels down the oldtrail to see if a literal has
become falsified; if it has then following the same sequence
of decisions as those that appear on the oldtrail is guaranteed
to a lead to a conflict. Lastly, restoring literals with their old
reasons might keep a ”bad” reason around. Whenever a literal
about to be restored has a reason above a certain size and/or
lbd, then we stop trail saving and start doing unit propagation.

1https://github.com/arminbiere/cadical

III. STABLE ALLUIP

Stable-allUIP is a novel clause learning scheme to replace
1-UIP learning scheme [3]. Stable-allUIP scheme performs all-
UIP [3] like ordered resolutions on top of 1-UIP learnt clause
against the assertion trail, and it additionally enforces that the
learnt stable-allUIP clause must have the same LBD [4] as the
1-UIP clause. If a literal cannot be resolved without increasing
the clause’s LBD, then the literal is kept in the learnt clause.
The stable-allUIP clause is successfully added to the clause
database if and only if it has smaller size. The solver also
implemented stable-allUIP optimizations, tgap .

a) tgap: We say the gap value of a conflicting clause is
the difference between the clause’s LBD and size. We disable
stable-allUIP for conflicting clauses with gap value smaller
than a floating target, tgap . Initially, tgap = 0, and we count
the number of times stable-allUIP is attempted and the number
of times it successfully yields a shorter clause. On every restart
if the success rate since the last restart is greater than 80%,
we decrease tgap by one (not allowing it to become negative),
and if it is less than 80% we increase tgap by one.

REFERENCES

[1] F. Xiao, M. Luo, C.-M. Li, F. Manya, and Z. Lü, “Maplelrb lcm, maple
lcm, maple lcm dist, maplelrb lcmoccrestart and glucose-3.0+ width in
sat competition 2017,” Proc. of SAT Competition, pp. 22–23, 2017.

[2] R. Hickey and F. Bacchus, “Trail saving on backtrack,” in Theory and
Applications of Satisfiability Testing - SAT 2020 - 23rd International
Conference [to appear], 2020.

[3] L. Zhang, C. F. Madigan, M. W. Moskewicz, and S. Malik, “Efficient
conflict driven learning in boolean satisfiability solver,” in Proceedings
of the 2001 IEEE/ACM International Conference on Computer-Aided
Design, ICCAD 2001, San Jose, CA, USA, November 4-8, 2001,
R. Ernst, Ed. IEEE Computer Society, 2001, pp. 279–285. [Online].
Available: https://doi.org/10.1109/ICCAD.2001.968634

[4] G. Audemard and L. Simon, “Predicting learnt clauses quality in modern
SAT solvers,” in IJCAI 2009, Proceedings of the 21st International Joint
Conference on Artificial Intelligence, Pasadena, California, USA, July
11-17, 2009, C. Boutilier, Ed., 2009, pp. 399–404. [Online]. Available:
http://ijcai.org/Proceedings/09/Papers/074.pdf
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Undominated-LC-MapleLCMDiscChronoBT-DL
Jerry Lonlac

Research Center
IMT Lille Douai - University of Lille

Douai, France
jerry.lonlac@imt-lille-douai.fr

Engelbert Mephu Nguifo
LIMOS, CNRS, UMR 6158

University Clermont Auvergne
Clermont-Ferrand, France

engelbert.mephu nguifo@uca.fr

Abstract—This paper describes our CDCL SAT solver
Undominated-LC-Maple which we submit to the SAT competition
2020.

I. INTRODUCTION

Clause Learning [1], [2] is one of the most important
components of a conflict driven clause learning (CDCL) SAT
solver that is effective on industrial SAT instances. Since the
number of learned clauses is proved to be exponential in the
worst case, it is necessary to identify the most relevant clauses
to maintain and delete the irrelevant ones. As reported in
the literature, several learned clauses deletion strategies have
been proposed. However the diversity in both the number
of clauses to be removed at each step of reduction and the
results obtained with each strategy increase the difficulty to
determine which criterion is better. Thus, the problem to select
which learned clauses are to be removed during the search step
remains very challenging. Our SAT solvers Undominated-LC-
MapleLCMDiscChronoBT-DL presented in this paper integrate
an approach to identify the most relevant learned clauses with-
out favoring or excluding any of the learned clause database
cleaning strategies proposed, but by adopting the notion of
dominance relationship among those measures. These solvers
bypass the problem of results diversity and reach a compro-
mise between the measures assessments. Furthermore, they
also avoid another non-trivial problem which is the number
of deleted clauses at each reduction of the learned clause
database.

II. DOMINANCE RELATIONSHIP BETWEEN LEARNED
CLAUSES IN MAPLELCMDISCCHRONOBT-DL

Undominated-LC-MapleLCMDiscChronoBT-DL was imple-
mented on top of the solver MapleLCMDiscChronoBT-DL-v3
[3] the recent winning SAT solvers of the last SAT Race
2019 by integrating the learned clause database cleaning
approach described in [4] cleaning the clauses in LOCAL set.
Indeed, MapleLCMDiscChronoBT-DL-v3 solver organises the
learnt clauses in three sets: CORE, TIER2 and LOCAL. The
clauses of LBD [7] (Literal Block Distance) not greater than
a threshold t1 are stored in CORE and are never removed,
the clauses of LBD greater than t1 but not greater than
another threshold t2 are stored in TIER2, the remaining learnt
clauses are stored in LOCAL. Clauses in TIER2 are moved into
LOCAL under some conditions and half clauses in LOCAL

are removed periodically according to their CVSIDS [8]. Our
solver removes the clauses in LOCAL using the dominance
approach.

More precisely, this approach is obtained by selecting at
each cleaning step of the learned clauses database, a set of
current undominated learned clauses [4]) according to a set of
learned clauses relevant measures, and to delete all the learned
clauses dominated by at least one of the current undominated
learned clauses. Undominated-LC-MapleLCMDiscChronoBT-
DL solver avoids another non-trivial problem which is the
amount of learned clauses to be deleted at each reduction step
of the learned clauses database by dynamically determining
the number of learned clauses to delete at each cleaning step
while the state of the art approaches removes half clauses at
each cleaning step. Dominance relationship between learned
clauses is described in more detail in [4].

We submit to the SAT competition 2020 an implementation
of our Undominated-LC-MapleLCMDiscChronoBT-DL solver
integrating three learned clauses relevant measures in the dom-
inance relationship: SIZE [5], [6] that considers the shortest
learned clauses as the most relevant, LBD that considers the
clauses with the smallest LBD measure as the most relevant,
and CSIDS that prefers the learned clauses most involved in
recent conflict relationship.

III. ALGORITHM FOR FINDING UNDOMINATED LEARNED
CLAUSES

During the search process, the CDCL SAT solvers learn a
set of clauses which are stored in the learned clauses database
∆ = {c1, c2, ..., cn}. At each cleaning step, we evaluate
these clauses with respect to a set M = {m1,m2, ...,mk} of
relevant measures. We denote m(c) the value of the measure
m for the clause c, c ∈ ∆, m ∈ M. Since the evaluation
of learned clauses varies from a measure to another one,
using several measures could lead to different outputs (relevant
clauses with respect to a measure). For example, consider the
three learned clauses, c1, c2 and c3 with their values on the
three relevant measures LBD, SIZE and CVSIDS [8]:
• SIZE(c1) = 8, LBD(c1) = 3, CVSIDS(c1) = 1e10;
• SIZE(c2) = 6, LBD(c2) = 5, CVSIDS(c2) = 1e20;
• SIZE(c3) = 5, LBD(c3) = 4, CVSIDS(c3) = 1e30.

It comes from the previous example that c1 is the best clause
with respect to the LBD measure whereas it is not the case
according to the evaluation of SIZE measure which favors
c3. This difference of evaluations is confusing for any process

Proceedings of SAT Competition 2020: Solver and Benchmark Descriptions, volume B-2020-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2020.
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of learned clauses selection. Hence, we can utilize the notion
of dominance between learned clauses to address the selection
of relevant ones.

Algorithm 1: reduceDB_Dominance_Relationship
Input: ∆: the learned clauses database; M: a set of relevant

measures
Output: ∆ the new learned clauses database

1 sortLearntClauses() ; /* by degree of compromise
criterion */

2 ind = 1;
3 j = 1;
4 undoC = 1 ; /* the number of current undominated

clauses */
5 while ind < |∆| do
6 c = ∆[ind] ; /* a learned clause */
7 if c.size() > 2 and c.lbd() > 2 then
8 cpt = 0 ;
9 while cpt < undoC and ¬dominates(∆[cpt], ∆[ind],

M) do
10 cpt++ ;
11 if cpt >= undoC then
12 saveClause() ;
13 j + + ;
14 undoC = j
15 else
16 removeClause() ;
17 else
18 saveClause() ;
19 j + + ;
20 undoC = j
21 ind + +;
22 return ∆ ;

23 Function dominates(cMin: a clause, c: a clause, M)
24 i = 0;
25 while i < |M| do
26 m =M[i] ; /* a relevant measure */
27 if m(c) � m(cMin) then
28 return FALSE ;
29 i + +;
30 return TRUE ;

Algorithm 1 starts by sorting the set ∆ of learned clauses
according to their degree of compromise [4]. It is easy to see
that the first clause of ∆ is not dominated, it is the top-1.
So, at the beginning of the algorithm, we have at least one
undominated clause. In step ind (ind > 1) of the outermost
while-loop, the clause in position ind is compared to at most
ind − 1 undominated clauses. As soon as it is dominated, it
is removed, otherwise, it is kept as undominated clauses.
Degree of compromise: Given a learned clause c, the

degree of compromise of c with respect to the set of learned
clauses relevant measures M is defined by DegComp(c) =∑|M|

i=1 m̂i(c)

|M | , where m̂i(c) corresponds to the normalized value
of the clause c on the measure mi.
dominance value: Given a learned clause relevant

measure m and two learned clauses c and c′, we say that
m(c) dominates m(c′), denoted by m(c) � m(c′), iff m(c) is
preferred to m(c′).
dominance clause: Given two learned clauses c, c′,

the dominance relationship according to the set of learned
clauses relevant measures M is defined as follows: c dom-
inates c′, denoted c � c′, iff m(c) � m(c′), ∀m ∈M.

IV. SUBMITTED VERSIONS

We submit two variants of our solver to the SAT com-
petition 2020 and different scripts to start it with different
parameters. One variant that maintains only the undominated
learned clauses at each cleaning step and another variant Topk-
Undominated-LC-MapleLCMDiscChronoBT-DL that deletes
from the learned clauses database all the clauses dominated by
the k first undominated learned clauses ranked in the increas-
ing order of their degree of compromise at each cleaning step.
To get the Topk-Undominated-LC-MapleLCMDiscChronoBT-
DL version, we replace the lines 14 and 20 of algorithm 1 by
undoC = min(k, j).

How to normalize the values of the learned clauses?

For the two variants of our solver submitted to the SAT
competition 2020, we propose a way for normalizing the
values of the learned clauses. Given a learned clause relevant
measure m and a learned clause c, we normalize the value of
the clause c on the measure m using the approach described
in the following.

• If m higher values are better, then m̂(c) = m(c)
U , where

U is the upper bound of the learned clause values on the
measure m;

• If m smaller values are better, then m̂(c) = 1
m(c) .

For the Topk-Undominated-LC-MapleLCMDiscChronoBT-
DL variant, we submit three versions with respectively the
parameter k = 16, 24, 36 (Top{16, 24, 36}-Undominated-LC-
MapleLCMDiscChronoBT-DL).
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Abstract— this document describes MLCMDChronoBT-
DL-Scavel and its friends at the SAT Competition 2020. 

I. INTRODUCTION 

The community structure exists in the real problems. 
After formalizing the problems, the community structure 
characteristics can still be mined and utilized, although some 
community characteristics will be lost after the transform-
ation[1][2][3]. Making full use of community characteristics 
in limited time is a research hotspot[4]. 

Based on the existing VSIDS and its variants, the 
selection strategy of decision variables continues to the 
selection of the first element of the restart. It make the solver 
unable to achieve a real restart. Our guiding idea is to adjust 
the selection method of starting decision variables so that the 
first variable of restart is generated from another selection 
mode. In this way, the first argument of the reboot may be 
different from the community structure of the part of the 
argument that has been trapped in the local space. 

II. MLCMDCHRONOBT-DL-SCAVEL AND 

MLCMDCHRONOBT-DL-V2.2SCAVELRFV 

Although there are many solvers that will carry out 
community solution in special time period, please make use 
of them, but all of them are aimed at the sample that can 
satisfy the solution time of small community, especially 
when the learning clause set is also involved, it is necessary 
to try to limit the community solution time[5]. 

So we settle for second best, and the competition of the 
solver version, the text will be more a part of the argument 
rough thought contained in one or more of the community, 
they are in the community may be related to solver last 
solving process finally enter the search area of different 
argument community, restart can be selected as the first 
argument optional argument set. Like the inIDGlucose solver, 
the characters of the original clause set text are first analyzed 
and applied to the selection of the first element in the solver 
restart stage. Secondly, one of the alternative arguments is 
taken as the first argument of restart. At the same time, in 
order to ensure the excellent characteristics of the existing 
solvers, the above selection mode of change decision 
variables is only used in a few restart stages, and is limited to 
the selection of the first variable to restart. 

In addition, the ideological Improved learning clause 
management strategy we proposed in 2018 has also been 
considered[6]. This time we change the static threshold value 
to the dynamic threshold value, which is given dynamically 

from the distance of the time the learning clause is used .For 
this purpose, we designed a special scoring function as (1). 

 act_delta[ci]=1+log(conflictsi)*log(conflictsi)           (1) 

Where conflictsi is the i-th conflict since the beginning of 
the current search, and the learning clause ci is used for 
conflict analysis and gets act_delta[ci] as the incremental 
value of the collision score. 

The above changes are based on the 2019 champion 
solver (MapleLCMDistChronoBT-dl-v2.2). In addition to 
our own improvement ideas above, this revision also adds 
new methods such as PSIDS for polarity selection and 
COREFIRST for core clauses to be propagated first, which 
have already appeared in the 2019 competition.  

III. ABOUT PARALLEL VERSION 

We add the learnt clause used frequency strategy to other 
parallel solvers to see the effect of this strategy in other 
parallel solvers. We build our parallel Solvers based on 
Sryup[7] and abcd_SAT[8], So the name of parallel solvers 
are “ syrup_Scavel” and “ abcd_para18_Scavel”. 
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Abstract—A novel relaxing CDCL method and a new
probability based phase saving technology are described.
Based on this method, we develop three solvers called
Relaxed LCMDCBDL, Relaxed LCMDCBDL noTimeParam
and Relaxed LCMDCBDL newTech, which are based on
MapleLCMDistChronoBT-DL.

I. INTRODUCTION

We improve the relaxing CDCL method [3] using the
information in CCAnr [2] this year. By using some full as-
signments (also named phases) with certain probability before
each inprocessing, the performance of solvers on satisfiable
instances are improved.

II. METHODS

A. Relaxed CDCL Approach

The idea is to relax the backtracking process for protecting
promising partial assignment, where a promising assignment
is defined according to its consistency (no conflict) and length.
When the CDCL process reaches a node with some conditions,
the algorithm enters a non-backtracking phase until it gets a
full assignment β. Then Local search process is then called
to seek for a model near β. If the local search fails to find a
model within certain limits, then the algorithm goes back to the
normal CDCL search from the node where it was interrupted.

For a given conjunctive normal formula (CNF) with V
variables, |V | denotes the number of variables. And for a
partial assignment α in CDCL process without conflicts, |α|
is the number of assigned variables in α, then we name the
max number of |α| in CDCL history as max trail.

Here we control the entrance of local search process by p,
q and c, where p, q presents |α|/|V | and |α|/max trail. And
c presents the inprocessing times between two local search
process.

B. Probability Based Phase Saving

Phase saving is a well-known technique which saves the
assignment of variables when traceback and uses the assign-
ment when variables are selected as decision variables. Like
the rephase technique in CaDiCaL [1], we use vectors to save
different phases, the difference is that we use probability to
select which phase to use after each restart. The probability
of each phase is shown in “Table. I”

* Corresponding author

TABLE I
PROBABILITY OF EACH PHASE

Index Phase Probability(%)
1 The best local search result with minimized

unsatisfied clauses
10

2 The last local search result 30
3 Phase with max trail 30
4 Reverse current phase 5
5 Reverse 1 phase 2.5
6 Reverse 3 phase 2.5
7 Rand phase 14
8 All True phase 0.5
9 All False phase 0.5

10 Keep current phase 5

III. IMPLEMENTATION AND MAIN PARAMETERS

A. Relaxed LCMDCBDL

Relaxed LCMDCBD use both methods mentioned above
and for the relaxing method, algorithms call local search
process when p ≥ 0.4 or q ≥ 0.9 and c ≥ 400.
MapleLCMDistChronoBT-DL [4] is the base of the other
solvers.

B. Relaxed LCMDCBDL noTimeParam

We find there is a switch in MapleLCMDistChronoBT-DL
between VSIDS and CHB when the time reach 2500 seconds,
this method will make the results unstable when tested on
different clusters, or even on the same clusters but at different
times. For the stableness, we replace the time based switch
with a restart based switch, i.e., every n inprocessing, the
algorithm will switch the branching algorithm once between
VSIDS and LRB. For our solvers, n = 500.

C. Relaxed LCMDCBDL newTech

For better utilize the information in Local Search process,
we use a vector occ num to record the number of occurrences
of variables in unsat clauses after each flip. And we see one
percent of occurrences as one conflict in CDCL process.

For example, there is a CNF with two clauses
{v1, x2}, {v2, v3}, which show up in the unsat clauses 10
and 20 times respectively. Assume the Local Search process
conducts 100 flips, then occ num[v1] = 10, occ num[v2] =
30, occ num[v3] = 20, and v1, v2, v3 are considered as
encountering 10, 30 and 20 conflicts respectively. When the

Proceedings of SAT Competition 2020: Solver and Benchmark Descriptions, volume B-2020-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2020.

15



Local Search process ends, the branching heuristic algorithm
will utilize the information.
Relaxed LCMDCBDL newTech adjusts the local

search entrance condition to c ≥ 300 in order to adapt the
local search information.
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Abstract—This document describes the sequential solvers
ExMapleLCMDistChronoBT and upGlucose-3.0 PADC and the
parallel solver PaInleSS ExMapleLCMDistChronoBT submitted
to the 2020 SAT Competition.

I. INTRODUCTION

Today’s SAT solvers are becoming increasingly efficient.
The class of instances that can now be tackled by state-of-the-
art solvers is getting more and more greater. The explanation
is the great advance of the research on SAT algorithms and
heuristics. A lot has been done since the advent of CDCL
(Conflict-Driven Clause Learning) [1]–[4] and today, various
improvements have been integrated to solvers with success
[5]–[13]. However, there is still much room for improvements.

It is common that huge performances gains are achieved
through small modifications of solvers’ sources codes. The
sequential solvers we present in this paper follow this idea
by integrating into some well-performing SAT solvers a
series of simple modifications. The latter include the peri-
odic aggressive learned clause database cleaning (PADC)
strategy [12], [14], the polarity state independent decaying
sum (PSIDS) heuristic [14] and the duplicate learned (DL)
heuristic [15]. Additionally, a heuristic for initializing and
updating variable activities which we refer to as occurrence-
based variable activity update (OVAU in short) is also con-
sidered. All these heuristics are implemented on top of
MapleLCMDistChronoBT [17] with command line options
to individually enable or disable any of them. The resulting
solver is submitted to the main Track of the competition. The
OVAU heuristic is used in combination with the PADC strategy
within Glucose-3.0 to participate in the Glucose Hack Track.
It is worth mentioning that all the above mentioned heuristics
showed good performances during the past competitions. DL
was implemented in MapleLCMDistChronoBT-DL [15] which
won the Gold medal of the main Track of the SR19. PSIDS
was implemented in PSIDS MapleLCMDistChronoBT [14]
which won the Bronze medal in the UNSAT Track of the
SR19. PADC was integrated in glucose-3.0 PADC [12] that
won the Bronze medal of the Random SAT Track of the SC18

and a special case of OVAU was implemented in inIDGlucose
[16] which won the Silver medal of the Glucose Hack Track of
the SC18. Hence, by integrating these heuristics into a single
solver, we want to evaluate how performances can be affected
by combining some of them. The latter solver is further used
as a sequential engine with the PaInleSS [18] framework to
build a parallel portfolio SAT solver that is submitted to the
parallel Track.

II. OCCURRENCE-BASED VARIABLE ACTIVITY UPDATE
HEURISTIC

Picking the right variables and assigning the right values
to them is an important ingredient that could make a solver
more efficient. This task is achieved by the branching heuristic
based on information such as variable activity [19], learning
rate [20], conflict history [21] etc. But at the beginning of
the search the information is not accurate and therefore might
not help in choosing the most suitable branching variables.
As a consequence, solvers might make bad initial branchings
that might direct them toward unfruitful subspaces and hence,
greatly impacts the solving times. Even during the search,
the branching heuristic could be strengthened by taking into
account more aspects of the instance that is being solved. Ini-
tializing variable activities with good values at the beginning
of the search has shown to be very promising considering
the performance achieved by the solver inIDGlucose [16] at
the 2018 SAT Competition. We follow a similar idea here by
providing a slight generalization.

Given a formula F and a set of learned clauses ∆, the score
of a literal x is computed as follows :

score(x) =
∑

c∈F∪∆,x∈c

1

f(|c|)

where f is an increasing positive function which we call the
penalizing function.

Once the scores computed, the activity of a variable x,
act(x) is updated as follows:

act(x) += score(x)× score(¬x)
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The idea here is similar to that of the MOMS heuristic which
favors branching on variables that occur more frequently in
short clauses. Activities are updated at the beginning of the
search and optionally at specific moments during the search.
This heuristic which we call Occurrence-based Variable Activ-
ity Update (OVAU in short) is implemented in all the solvers
presented in this paper. It is worth noting that OVAU heuristic
does not replace the branching heuristic of the solver, but
just strengthens it. In our implementations, we considered the
following penalizing functions : f : x 7→ x, f : x 7→ x2,
f : x 7→ x3 and f : x 7→ 2x.

Similarly to inIDGlucose [16], the initial polarities of a
variable x is set to the truth value of score(x) > score(¬x).
Note that we only update the polarities in this way at the
beginning of the search.

III. EXMAPLELCMDISTCHRONOBT

We implemented the previously mentioned heuristics
namely PADC, PSIDS, DL and OVAU on top of the 2018
SAT Competition winner MapleLCMDistChronoBT [17] with
the possibility of individually enabling or disabling them. We
called the resulting solver ExMapleLCMDistChronoBT. The
solver ExMapleLCMDistChronoBT was submitted to the 2020
SAT Competition with four different configurations:
• The first configuration : PADC and DL enabled;
• The second Configuration : PSIDS and DL enabled;
• The third configuration: PADC, DL and OVAU enabled,

where the penalizing function for OVAU is f : x 7→ 2x.
• The fourth configuration: PADC, DL and OVAU enabled

with f : x 7→ x as penalizing function for OVAU.
In these versions, the OVAU heuristic is only used at the be-
ginning of the search. Note that in MapleLCMDistChronoBT,
there are three different arrays used to store variable activities:
activity CHB, activity VSIDS and activity distance. Our im-
plementation allows to select which of these types of variable
activities the OVAU heuristic is applied to.

IV. UPGLUCOSE-3.0 PADC

The solver upGlucose-3.0 PADC is a Glucose-3.0 Hack. It
combines the PADC strategy [12], [14] and the OVAU heuristic
where the penalizing function is f : x 7→ 2x. The parameters
of the PADC strategy are the same as those of Glucose-
3.0 PADC 10 [12] submitted to the SAT Competition 2018.
The OVAU heuristic is used at the beginning of the search as
well as during the search after deep cleaning steps.

V. PAINLESS EXMAPLELCMDISTCHRONOBT

PaInleSS ExMapleLCMDistChronoBT is a portfolio paral-
lel solver built with the PaInleSS framework [18] and that uses
the previous solver ExMapleLCMDistChronoBT as sequential
engine. Recall that PaInleSS is a framework that greatly
facilitates the implementation of parallel SAT solvers by
letting developers to concentrate on functional aspects leaving
common issues related to parallelization to the framework.

We submitted two versions of our parallel solver to the 2020
SAT Competition.

For the first version, workers are divided into two groups.
The first group consists of solvers that collaborate by only
exporting their learned clauses to the others. But they do
not import any clause from them. By doing so, we want to
prevent these solvers from being influenced by others which
could impact their performances since shared learned clauses
do not always positively impact efficiency. The second group
consists of workers that export and import clauses to/from
others. This second group leverages the benefit that can be
gained through collaboration. Each worker shares with the
others all its learned clauses having an LBD [22], [23] score
under a certain threshold. Additionally, workers are configured
to use specific combinations of the above mentioned heuristics.
Table I gives the enabled heuristics for the first twelve workers.
For the others, we use the configuration number id%12 (where
id is the identifier of the worker) and random initial activity
scores and polarities for variables.

TABLE I
CONFIGURATIONS OF THE FIRST 12 WORKERS

Configuration PADC DL PSIDS OVAU
0 no no no no
1 no yes no no
2 yes yes no yes
3 yes yes no yes
4 yes yes no no
5 yes no no yes
6 yes no no yes
7 yes no no yes
8 no yes yes no
9 yes no no yes

10 no yes yes yes
11 no no yes yes

In the second version, all solvers are allowed to import and
export clauses and only DL is enabled. Sharing is based on
clause LBD scores as in the first version. Diversification is
achieved through random initial activities and polarities for
variables.
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Abstract—This document describes the
MapleLCMDistChronoBT-DL-v3 solver which is based on the
SAT Competition 2018 winner, the MapleLCMDistChronoBT
solver, augmented with duplicate learnts heuristic.

I. DUPLICATE LEARNTS

During the CDCL inference, some learnt clauses can be
generated multiple times. It is reasonable to assume that they
deserve special attention. In particular, the simple rule for
their processing can look as follows: if a learnt clause was
repeated at least k times (k ≥ 2) during the derivation,
then this clause should be permanently added to the conflict
database. It can be naturally implemented for solvers based
on COMiniSatPS [1], since they store learnt clauses in three
tiers: Core, Tier2 and Local, where the learnts in Core are not
subject for reduceDB-like procedures. Thus we basically can
put duplicate learnts into Core when they satisfy the conditions
outlined below.

In the submitted solver we track the appearances of dupli-
cate learnts using a hashtable-like data structure and process
them based on several parameters. The hashtable is imple-
mented on top of C++ 11 unordered_map associative con-
tainer. The goal of parameters is to ensure that the hashtable
does not eat too much memory, that the learnt clauses are
filtered based on their LBD, and that the learnts repeated a
prespecified number of times are added to Tier2/Core.

• lbd-limit – only learnt clauses with lbd ≤
lbd-limit are screened for duplicates.

• min-dup-app – learnt clauses that repeated
min-dup-app times are put into Tier2, and the
ones repeated min-dup-app+1 times – to Core tier.

• dupdb-init – the initial maximal number of entries in
the duplicate learnts hashtable.

The duplicates database is purged as soon as its size ex-
ceeds dupdb-init. Only the entries corresponding to learnt
clauses repeated at least min-dup-app times are preserved.
With each purge, the value of dupdb-init is increased by
10%.

The research was funded by Russian Science Foundation (project No. 16-
11-10046).

Additionally, we limit core_lbd_cut parameter of the
solver to 2 since duplicate learnts can provide a lot of
additional clauses to store in Core.

II. MAPLELCMDISTCHRONOBT-DL-V3 [2]

MapleLCMDistChronoBT-DL-v3 is based
on the SAT Competition 2018 main track winner,
MapleLCMDistChronoBT [3], which in turn is based on
Maple_LCM_Dist [4], the successor of MapleCOMSPS
[5].

The solver employs lbd-limit=12, min-dup-app=3
(e.g. only learnts repeated 4 times are added to Core), and
dupdb-init=500000. It also uses a deterministic LRB-
VSIDS switching strategy: it starts with LRB [5] and switches
between LRB and VSIDS [6] each time the number of
propagations since the last switch exceeds a specific value.
This value starts at 30000000 propagations and is increased
by 10% with each switch.

This version of the solver is the same as in SAT Race 2019
with several small typos fixed.
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Abstract—This document describes the three deterministic
solvers which are the modifications of the SAT Competition 2018
winner, the MapleLCMDistChronoBT solver, and the SAT Race
2019 winner, the MapleLCMDistChronoBT-DL-v3 solver.

I. INTRODUCTION

The SAT solvers participating in annual competitions in re-
cent years are often heavily biased towards the winner(s) of the
previous competition. For example, among 55 solvers that par-
ticipated in SAT Race 2019 at least 16 were based on the SAT
Competition 2018 winner, the MapleLCMDistChronoBT
solver. The downside of this phenomenon is that some-
times undesirable traits of the solver are inherited and pre-
served in its offsprings just because the algorithm won in
the competition. One of these traits is the nondeterminis-
tic switching between LRB [1] and VSIDS [2] phases at
2500 seconds, first introduced in MapleCOMSPS in 2016
[3], and then inherited by Maple_LCM_Dist in 2017 [4],
MapleLCMDistChronoBT in 2018 [5] and many other
solvers in SAT Competitions throughout 2017-2019.

The goal of this research is to present deterministic variants
of the solvers, that attempt to fix some of the (in our opinion)
unwanted features of the descendants of MapleCOMSPS
without introducing completely new heuristics and techniques.

In more detail the motivation behind this work, along
with vast experimental evaluation and detailed description of
proposed modifications, can be found in [6]. Below is the
technical description.

We work with two underlying solvers: the winner of
SAT Competition 2018, MapleLCMDistChronoBT
[5], and the winner of SAT Race 2019,
MapleLCMDistChronoBT-DL-v3 [7], [8]. Note,
that the main distinction between the latter and the
other solvers with duplicate learnts (DL) heuristic that
participated in SAT Race 2019 is in the use of deterministic
switching between LRB and VSIDS phases. Some of the
improvements detailed below overwrite the switching variant
of MapleLCMDistChronoBT-DL-v3, thus the resulting
solver can be viewed as a modification of any of the three
MapleLCMDistChronoBT-DL solvers from SAT Race
2019.

The research was funded by Russian Science Foundation (project No. 16-
11-10046).

II. MAJOR MODIFICATIONS

The modifications of original solvers include: the deter-
ministic LRB-VSIDS switching scheme, the change to the
handling of Tier2 learnts, and the introduction of reduceDB-
like procedure for Core learnts.

A. Deterministic LRB-VSIDS switching strategy (f2)

After many experiments we chose the scheme
that essentially copies the one first introduced in
MapleCOMSPS_LRB_VSIDS_2 [9]. It uses the
phase_allotment variable to allocate the number
of conflicts for the next VSIDS or LRB phase. The initial
value of phase_allotment is 10000. The solver first
allocates phase_allotment conflicts to the LRB phase,
then the same amount of conflicts to the VSIDS phase,
increases phase_allotment by 1.1 and repeats the cycle
anew.

B. Changes to handling Tier2 and Core learnts (trc)

The initial idea to separate learnt clauses into Core, Tier2
and local is due to Chanseok Oh [10]. In our experiments it
turned out that for ≈ 80% instances from SAT Race 2019,
MapleLCMDistChronoBT-f2 accumulates more than 50
000 core learnts. It slows down the propagation considerably
and that many Core learnts are not always useful. The average
size of Tier2 per instance varies from about 200 to 12000
learnts. Therefore, at times the learnt clause minimization
(LCM) procedure [4], that improves the quality of Tier2
learnts, has nothing to work with. In the trc version there
are two modifications detailed below which are aimed at
improving the solver behavior.

As soon as the Core size exceeds core_size_limit the
reduceDB_Core procedure is invoked. It sorts Core learnts
in the ascending order based on their lbd [11] and the size for
equal lbd. Then all the clauses from the second half (with
larger lbd and size) that did not participate in any of the
most recent 100000 conflicts are moved to Tier2. The value of
core_size_limit is initialized by 50000 and is multiplied
by 1.1 each time the procedure is invoked.

The reduceDB_Tier2 is also reorganized. In the base-
line MapleLCMDistChronoBT the Tier2 is reduced every
10000 conflicts and as a result all clauses that have not
participated in the most recent 30000 conflicts are moved to

Proceedings of SAT Competition 2020: Solver and Benchmark Descriptions, volume B-2020-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2020.

21



Local. In trc the Tier2 learnts are accumulated until a pre-
specified size limit (7000). During the purge only half of the
clauses that participated in the recent conflicts is preserved. In
particular, we order clauses in Tier2 in the descending order
in accordance with the number of the most recent conflict they
participated in, and move the second half to Local.

C. Minor modifications

In order to accommodate the introduced major modifica-
tions, it was necessary to save the touched status for core
learnts. Also, the touched is updated during LCM.

III. RESULTING SOLVERS

The proposed techniques were implemented in three solvers.
Two of them are based on MapleLCMDistChronoBT.
They are MapleLCMDistChronoBT-f2trc and
MapleLCMDistChronoBT-f2trc-s. The third solver
is based on the MapleLCMDistChronoBT-DL-v3
and is called MapleLCMDistChronoBT-DL-f2trc.
The solvers MapleLCMDistChronoBT-f2trc and
MapleLCMDistChronoBT-DL-f2trc implement the
techniques outlined earlier in the configuration described.

A. MapleLCMDistChronoBT-f2trc-s

This solver variant is an experimental implementation.
It uses the same ideas as the other solvers, but in a
slightly more sophisticated manner. In particular, there are
additional parameters for invoking reduceDB_Tier2 and
reduceDB_Core, the procedures use slightly more compli-
cated logic.

The main distinction between f2trc-s variant and f2trc
is that the former uses a kind of hot streak heuristic. The
idea behind it was inspired by the study of the Cadical
solver [12], in particular of how it performs rephasing. How-
ever, the resulting implementation is different from that of
Cadical and has a different purpose. f2trc-s tracks
the maximum trail size that was achieved during the most
recent restart and the overall maximum trail size. If the
current max_trail_size is larger than the previous one
and is at least 0.9× overall_max_trail_size then the
solver doubles the next restart interval during LRB phase and
increases the remaining number of conflicts for the current
LRB/VSIDS phase to 10000 if it falls under this mark.
The motivation here is to encourage the solver to find a
satisfying assignment if it makes progress in this direction.
In the experiments this version shows peculiar behavior, often
resulting in lower runtimes on satisfiable instances. However,
it is not currently clear whether the max_trail_size is
really a good indication of the solver’s progress and if the
(sometimes) better behavior comes solely from the chains of
increased restart intervals.
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Abstract—This document describes four CDCL SAT
solvers: exp V LGB MLD CBT DL, exp V L MLDCBT DL,
exp L MLD CBT DL, exp V MLD CBT DL, which are
entering the SAT Competition-2020. These solvers are based on
three new ideas: 1) Guidance of Learning Rate Based (LRB) and
Variable State Independent Decaying Sum (VSIDS) branching
heuristics via random exploration amid pathological phases of
conflict depression and 2) Activity score bumping of variables
which appear in the glue clauses.

I. GUIDANCE OF CDCL BRANCHING HEURISTICS VIA
RANDOM EXPLORATION DURING CONFLICT DEPRESSION

This approach is based on our observation that CDCL SAT
solving entails clear non-random patterns of bursts of conflicts
followed by longer phases of conflict depression (CD) [1].
During a CD phase a CDCL SAT solver is unable to generate
conflicts for a consecutive number of decisions. To correct
the course of such a search, we propose to use exploration to
combat conflict depression. We therefore design a new SAT
solver, called expSAT, which uses random walks in the context
of CDCL SAT solving. In a conflict depression phase, random
walks help identify more promising variables for branching.
As a contrast, while exploration explores future search states,
LRB and VSIDS relies on conflicts generated from the past
search states.

In [1], we proposed expVSIDS, the exploration based
extension of VSIDS. In addition to expVSIDS, our solvers
submitted to SAT Competition-2020, use expLRB, the explo-
ration based extension of LRB.

A. expSAT algorithm

Given a CNF SAT formula F , let vars(F), uV ars(F)
and assign(F) denote the set of variables in F , the set of
currently unassigned variables in F and the current partial
assignment, respectively. In addition to F , expSAT also accepts
four exploration parameters nW, lW, pexp and ω, where 1 ≤
nW, lW ≤ uV ars(F), 0 < pexp, ω ≤ 1. These parameters
control the exploration aspects of expSAT . The details of these
parameters are given below.

Given a CDCL SAT solver, expSAT modifies it as follows:
(I) Before each branching decision, if a substantially large
CD phase is detected then with probability pexp, expSAT
performs an exploration episode, consisting of a fixed number

nW of random walks. Each walk consists of a limited number
of random steps. Each such step consists of (a) the uniform
random selection of a currently unassigned step variable and
assigning a boolean value to it using a standard CDCL polarity
heuristic, and (b) a followed by Unit Propagation (UP). A walk
terminates either when a conflict occurs during UP, or after a
fixed number lW of random steps have been taken. Figure
1 illustrates an exploration episode amid a CD phase. (II)
In an exploration episode of nW walks of maximum length
lW , the exploration score expScore of a decision variable v
is the average of the walk scores ws(v) of all those random
walks within the same episode in which v was one of the
randomly chosen decision variables. ws(v) is computed as
follows: (a) ws(v) = 0 if the walk ended without a conflict.
(b) Otherwise, ws(v) = ωd

lbd(c) , with decay factor 0 < ω ≤ 1,
lbd(c) the LBD score of the clause c learned for the current
conflict, and d ≥ 0 the decision distance between variable
v and the conflict which ended the current walk: If v was
assigned at some step j during the current walk, and the
conflict occurred after step j′ ≥ j, then d = j′ − j. We
assign credit to all the step variables in a walk that ends
with a conflict and give higher credit to variables closer to the
conflict. (III) The novel branching heuristics expLRB (resp.
expVSIDS) adds LRB (resp. VSDIS) score and expScore of
the variables that participated in the most recent exploration
episode. For both expLRB and expVSIDS, a variable v∗ with
maximum combined score is selected for branching. (IV) All
other components remain the same as in the underlying CDCL
SAT solver.

II. GLUE VARIABLE BUMPING

Let a CDCL SAT solver M is running a given SAT instance
F and the current state of the search is S. We call the variables
that appeared in at least one glue clause up to the current state
S Glue Variables. We design a structure-aware variable score
bumping method named Glue Bumping (GB) [2], based on
the notion of glue centrality (gc) of glue variables. Given a
glue variable vg , glue centrality of vg dynamically measures
the fraction of the glue clauses in which vg appears, until the
current state of the search. Mathematically, the glue centrality
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Fig. 1: The 20 adjacent cells denote 20 consecutive decisions
starting from the dth decision, with d > 0, where a green cell
denotes a decision with conflicts and a black cell denotes a
decision without conflicts. Say that amid a CD phase, just
before taking the (d + 9)th decision, expSAT performs an
exploration episode via 3 random walks each limited to 3 steps
. The second walk ends after 2 steps, due to a conflict. A triplet
(v, i, j) represents that the variable v is randomly chosen at
the jth step of the ith walk.

of vg , gc(vg) is defined as follows:

gc(vg)←
gl(vg)

ng

, where ng is the total number of glue clauses generated by
the search so far. gl(vg) is the glue level of vg , a count of
glue clauses in which vg appears, with gl(vg) ≤ ng.

A. The GB Method

The GB method modifies a CDCL SAT solver M by adding
two procedures to it, named Increase Glue Level and Bump
Glue Variable, which are called at different states of the search.
We denote by Mgb the GB extension of the solver M .

Increase Glue Level: Whenever Mgb learns a new glue clause
g, before making an assignment with the first UIP variable that
appears in g, it invokes this procedure. For each variable vg
in g, its glue level, gl(vg) is increased by 1.
Bump Glue Variable: This procedure bumps a glue variable
vg , which has just been unassigned by backtracking. First a
bumping factor (bf) is computed as follows:

bf ← activity(vg) ∗ gc(vg)

, where activity(vg) is the current activity score of the variable
vg and gc(vg) is the glue centrality of vg . Finally, the activity
score of vg , activity(vg) is bumped as follows:

activity(vg)← activity(vg) + bf

III. SOLVERS DESCRIPTION

We have submitted four CDCL SAT solvers to SAT
Competition-2020, which are based on four combinations
of the two approaches described in the previous sec-
tions. Our solvers are implemented on top of the solver
MapleLCMDistChronoBT-DL-v2.2 [3], the runner up of SAT
Race-2019. In the following, we describe our solvers:

a) exp V L MLD CBT DL: In the baseline solver
MapleLCMDistChronoBT-DL-v2.2, LRB starts execution af-
ter 50,000 conflicts and continues until 2,500 seconds (phase
1). After 2,500 seconds the solver switches over to VSIDS
until the rest of the run of this solver (phase 2). This extended
solver replaces LRB by expLRB in phase 1 and VSIDS by
expVSIDS at phase 2.

b) exp V MLD CBT DL: The system replaces VSIDS
with expVSIDS at phase 2 and does not change any other
aspects of the baseline system.

c) exp L MLD CBT DL: This system replaces LRB
with expLRB at phase 1 and does not change any other aspects
of the baseline system.

d) exp V LGB MLD CBT DL: This system extends
the baseline by implementing the GB method on top of LRB
and Dist heuristics, and replaces VSIDS with expVSIDS at
phase 2.
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Abstract—Based on hybrid and simplified technique, we mod-
ify MapleLCMDistChronoBT-DL and our previous SAT solvers
such as abcdsat and optsat.

I. INTRODUCTION

Various decision variable branching policies have been
proposed, for example, VSIDS (Variable State Independent
Decay Sum), LRB (learning rate based branching heuristic)
and distance branching policy etc. So far, no decision vari-
able branching policy has absolute advantages. Here we mix
various variable branching policies to modify the existing
CDCL SAT solver. Different variable branching policies adopt
different data structures. In order to facilitate unified data
management, we need simplify the exiting data structure
management technique.

II. SIMPLIFIED DATA STRUCTURE

The CoMiniSatPS [3] solver manages separately three d-
ifferent learnt clauses, while we do not adopt the separate
management scheme. We use only one unified data list to store
all learnt clauses, and set a mark flag for each learnt clause to
distinguish which category a learnt clause belongs. Thus, our
data structure is simpler than that of CoMiniSatPS. Except
that each clause has an additional mark, our data structure
storing learnt clauses is the same as that of Glucose. We can
handle dynamics update of learnt clauses more easily than
CoMiniSatPS. This modification seems to have a little bit
impact on the performance of solvers, even if we use the
same database reduction strategies as CoMiniSatPS. However,
if we adopt different solving policies or database reduction
strategies, it seems to gain the performance of solvers. Co-
MiniSatPS calls three different learnt clauses as core, tier2
and local, respectively, we do them as SMALL, MIDSZ and
LONG.

Our definition of different learnt clauses is a little dif-
ferent from that of CoMiniSatPS, but the same as that of
MapleLCMDistChronoBT-DL [4]. LBD (literal block dis-
tance) is defined as the number of decision variables in a
clause. According to LBD values, we define different type
learnt clauses. In detials, a learnt clause whose LBD value is
less than 3 is defined as SMALL. A learnt clause whose LBD
value is greater than 6 is defined as LONG. The other learnt
clauses are called as MIDSZ.

III. MAPLE MIX

Maple mix is built on the top of MapleLCMDistChronoBT-
DL [4]. It is for the main track. We found that the distance
decision variable branching policy was not always efficient.
Therefore, Maple mix sets up two modes: distance and non-
distance. In the distance mode, the running time is limit-
ed usually to 200 seconds. In addition, we make a slight
modification on chronological backtracking [1]. The original
chronological backtracking appears to be stuck in an infinite
loop. our original chronological backtracking is limited to be
at most 100000 conflicts one time.

IV. MAPLE SIMP

Maple simp simplifies the data structure of
MapleLCMDistChronoBT-DL [4]. It participates the main
track. All learnt clauses are stored in one unified data list.
Three mark flags SMALL, MIDSZ and LONG are used to
distinguish different types of learnt clausesFurthermore,
Maple simp simplifies two re-learning subroutines to one
re-learning subroutine. To ensure the performance, we
modify the database reduction subroutine. Like Maple mix,
Maple simp adopts also two two modes: distance and
non-distance.

V. OPTSAT m20

This solver is submitted to the main track. The basic
framework of Optsat m20 is the same as Optsat m19 [5]. The
main difference between them is that Optsat m20 is built on
the top of Maple simp, while Optsat m19 is built on the top
of the smallsat solver. Optsat m20 contains the hyper binary
resolution in-processing.

VI. ABCDSAT i20

This solver participates the incremental library track. Abcd-
sat i20 simplify the original problem by lifting, unhiding,
distilling, Tarjan’s strongly connected components algorith-
m, tautology binary clause deletion and variable elimination
etc. The simplified problem is solved by Maple simp or
Maple mix.
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VII. ABCDSAT n20

Abcdsat n20 is submitted to the no limit track. It is
similar to abcdsat n18 [2], but removes the symmetry breaking
preprocessing. Like Maple simp, its scoring scheme alternates
between Minisat-VSIDS (Variable State Independent Decay
Sum) and LRB (learning rate based branching heuristic).
Abcdsat n20 replaces the tree-based search in abcdsat n18
with the search in Maple mix.

VIII. ABCDSAT p20

This solver is submitted to the parallel track. Abcdsat p20
is the improved version of abcdsat p18 [2]. It uses at most 25
threads. 8 out of 25 threads solve the subproblem F ∧p , where
p and F are a pivot and the original problem respectively.
The other 17 threads solve either the original problem or the
simplified problem. Once the thread of a subproblem ends, we
re-use it to solve the simplified problem with learnt clauses
generated so far. The main difference between threads is that
they use different variable decay rates. Abcdsat p20 is built
on the top of Abcdsat n20.
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I. Introduction

This paper presents the conflict-driven clause-learning
(CLDL) SAT solver CryptoMiniSat (CMS ) augmented with
the Stochastic Local Search (SLS) [4] solver CCAnr as
submitted to SAT Competition 2020.

CryptoMiniSat aims to be a modern, open source SAT
solver using inprocessing techniques, optimized data struc-
tures and finely-tuned timeouts to have good control over
both memory and time usage of inprocessing steps. Cryp-
toMiniSat is authored by Mate Soos.

CCAnr [4] is a stochastic local search (SLS) solver for
SAT, which is based on the configuration checking strategy
and has good performance on non-random SAT instances.
CCAnr switches between two modes: it flips a variable
according to the CCA (configuration checking with aspi-
ration) heuristic if any; otherwise, it flips a variable in
a random unsatisfied clause (which we refer to as the fo-
cused local search mode). The main novelty of CCAnr lies
on the greedy heuristic in the focused local search mode,
which contributes significantly to its good performance on
structured instances

II. Composing the Two Solvers

The two solvers are composed together in a way that
does not resemble portfolio solvers. The system runs the
CDCL solver CryptoMiniSat, along with its periodic inpro-
cessing, by default. However, at every 2nd inprocessing
step, CryptoMiniSat’s irredundant clauses are pushed into
CCAnr (in case the predicted memory use is not too high).
CCAnr is then allowed to run for a predefined number of
steps. This in total leads to about 1% of all solving time
dedicated to CCAnr. In case CCAnr finds a satisfying as-
signment, this is given back to the CDCL solver, which then
performs all the necessary extension to the solution (e.g.
for Bounded Variable Elimination, BVE [6]) and outputs
the final solution.

In case CCAnr does not find a satisfying assignment,
the following takes place. Firstly, the best variable setting
found by CCAnr as measured by the number of satisfied
clauses, is assigned as the polarity of the variables in the
CDCL SAT solver. This idea has been taken from the solver
CaDiCaL [3] as submitted to the 2019 SAT Race by Armin
Biere. Secondly, after every successful execution of CCAnr,
100 variables’ VSIDS are bumped in the following way.

CCAnr uses a clause weighting technique and clauses with
greater weight can be considered more difficult to satisfy.
Once CCAnr finishes, CCAnr’s clauses are sorted according
to their weights. Then, these clauses’ variables’ VSIDS
are bumped, from hardest-to-easiest clause order, until 100
variables’ VSIDS have been bumped. This shows clear
improvement in the combined solver’s performance. We
believe these two integrations point to potential tighter, as-
yet unexplored integration opportunities of the two solvers.

Note that the inclusion of the SLS solver is full in the
sense that assumptions-based solving, library-based solver
use, and all other uses of the SAT solver is fully supported
with SLS solving enabled. Hence, this is not some form of
portfolio where a simple shell script determines which solver
to run and then runs that solver. Instead, the SLS solver is
a full member of the solver, much like any other inprocessing
system, and works in tandem with it. For example, in case
an inprocessing step has reduced the number of variables
through BVE or increased it through BVA [9], the SLS
solver will then try to solve the problem thus modified. In
case the SLS solver finds a solution, the main solver will
then correctly manipulate it to fit the needs of the “outside
world”, i.e. the caller.

As the two solvers are well-coupled, the combination of
the two solvers can solve problems that neither system
can solve on its own. Hence, the system is more than just
a union of its parts which is not the case for traditional
portfolio solvers.

III. Gauss-Jordan Elimination

As per the upcoming paper [12], the Gauss-Jordan elimi-
nation of CryptoMiniSat has been significantly improved.
The average speed increase for moderately sized matrices
is approx 3-6x, allowing the system to be ran at all times
even when the matrix is not contributing as much to the
overall solving. Hence, for the first time in CryptoMiniSat’s
10 year history, Gauss-Jordan elimination is turned on by
default for the NoLimits track.

IV. Symmetry Breaking using BreakID and Bliss

The BreakID [5] system is a cost-effective symmetry
breaking preprocessor for SAT. Classic SAT symmetry pre-
processing [1] detects symmetry by converting the input for-
mula to a graph and computing generators for this graph’s
automorphism group, and adds symmetry breaking clauses
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on a generator-by-generator basis. On top of this, BreakID
heuristically searches for structure in the automorphism
group, detecting row interchangeability symmetry (such as
in the pigeonhole problem) and computing binary symme-
try breaking clauses from orbits arising from the symmetry
group. The resulting symmetry breaking clauses are more
effective at reducing symmetrical assignments from the
search space, both from a theory point of view as well as
in practical experiments.

BreakID has been modified to work as a library. It can
receive the clauses on-the-fly from the SAT solver, and
produce the breaking clauses as a function return value.
Various small bugs have also be fixed, such as memory leaks,
which were not an issue when ran as a single executable,
but created isses when ran as a library. Furthermore, the
underlying highly sophisticated graph automorphism de-
tection system, Bliss [7], has been slightly improved to
allow for time-outs and it, too, has been fixed not to leak
memory. BreakID is fully integrated into CryptoMiniSat
by calling it on every 5th inprocessing iteration, and asked
to contribute breaking clauses. These are always added
with an assumption literal, so they can be removed when
the solving finishes. Hence, symmetry breaking also works
when CryptoMiniSat is used as a library.

V. Phase Selection using LSIDS

LSIDS is a literal activity-based phase selection heuris-
tic [10]. LSIDS activity is maintained for each literal, and
the activity for a literal is updated in a manner similar to
VSIDS. Phase selection is made based on LSIDS activity
only if the last backtrack is chronological. The LSIDS based
phase selection heuristic looks at the activity of both the
literals of a given variable and selects the literal with higher
activity.

VI. Further Improvements Relative to SAT Race
2019

Many of the inprocessing parameters have been tuned.
A few bugs related to clause activities have been fixed.
Clause distillation (or clause vivification) [8] is now used a
lot more, similarly to the previous years’ winning solvers.
The VSIDS and Maple decay factors are now iteratively
changed between 0.70 and 0.90 for Maple and 0.92 and 0.99
for VSIDS. Between each iteration there is an inprocessing
step, as before. This seems to add heterogeneity and avoids
having to tune these parameters to a “single best” value.
Polarity caching is still used, but once in a while, so-called
“stable” polarities are used, as per CaDiCaL [3] in the SAT
Race of 2019. Ternary resolution is also used at every
inprocessing step, thanks to the suggestion by Armin Biere.
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I. Introduction

This paper presents the conflict-driven clause-learning
(CLDL) SAT solver CryptoMiniSat (CMS ) augmented with
the Stochastic Local Search (SLS) [11] solver WalkSAT v56
as submitted to SAT Competition 2020.

CryptoMiniSat aims to be a modern, open source SAT
solver using inprocessing techniques, optimized data struc-
tures and finely-tuned timeouts to have good control over
both memory and time usage of inprocessing steps. Cryp-
toMiniSat is authored by Mate Soos.

WalkSAT [8] is a standard system to solve satisfiability
problems using Stochastic Local Search. The version inside
CryptoMiniSat is functionally equivalent to the “rnovelity”
heuristic of WalkSAT v56 using an adaptive noise heuris-
tic [6]. It behaves exactly as WalkSAT with the minor
modification of performing early-abort in case the “low-
bad” statistic (i.e. the quality indicator of the current best
solution) indicates the solution is far. In these cases, we
early abort, let the CDCL solver work longer to simplify
the problem, and come back to WalkSAT later. The only
major modification to WalkSAT has been to allow it to
import variables and clauses directly from the main solver
taking into account assumptions given by the user.

II. Composing the Two Solvers

The two solvers are composed together in a way that
does not resemble portfolio solvers. The system runs the
CDCL solver CryptoMiniSat, along with its periodic inpro-
cessing, by default. However, at every 2nd inprocessing
step, CryptoMiniSat’s irredundant clauses are pushed into
the SLS solver (in case the predicted memory use is not
too high). The SLS solver is then allowed to run for a
predefined number of steps. In case the SLS solver finds
a solution, this is given back to the CDCL solver, which
then performs all the necessary extension to the solution
(e.g. for Bounded Variable Elimination, BVE [5]) and then
outputs the solution.

Note that the inclusion of the SLS solver is full in the
sense that assumptions-based solving, library-based solver
use, and all other uses of the SAT solver is fully supported
with SLS solving enabled. Hence, this is not some form
of portfolio where a simple shell script determines which
solver to run and then runs that solver. Instead, the SLS
solver is a full member of the CDCL solver, much like any
other inprocessing system, and works in tandem with it.
For example, in case an inprocessing step has reduced the
number of variables through BVE or increased it through

BVA [10], the SLS solver will then try to solve the problem
thus modified. In case the SLS solver finds a solution, the
main solver will then correctly manipulate it to fit the needs
of the “outside world”, i.e. the caller.

As the two solvers are well-coupled, the combination of
the two solvers can solve problems that neither system
can solve on its own. Hence, the system is more than just
a union of its parts which is not the case for traditional
portfolio solvers.

III. Gauss-Jordan Elimination

As per the upcoming paper [13], the Gauss-Jordan elimi-
nation of CryptoMiniSat has been significantly improved.
The average speed increase for moderately sized matrices
is approx 3-6x, allowing the system to be ran at all times
even when the matrix is not contributing as much to the
overall solving. Hence, for the first time in CryptoMiniSat’s
10 year history, Gauss-Jordan elimination is turned on by
default for the NoLimits track.

IV. Symmetry Breaking using BreakID and Bliss

The BreakID [4] system is a cost-effective symmetry
breaking preprocessor for SAT. Classic SAT symmetry pre-
processing [1] detects symmetry by converting the input for-
mula to a graph and computing generators for this graph’s
automorphism group, and adds symmetry breaking clauses
on a generator-by-generator basis. On top of this, BreakID
heuristically searches for structure in the automorphism
group, detecting row interchangeability symmetry (such as
in the pigeonhole problem) and computing binary symme-
try breaking clauses from orbits arising from the symmetry
group. The resulting symmetry breaking clauses are more
effective at reducing symmetrical assignments from the
search space, both from a theory point of view as well as
in practical experiments.

BreakID has been modified to work as a library. It can
receive the clauses on-the-fly from the SAT solver, and
produce the breaking clauses as a function return value.
Various small bugs have also be fixed, such as memory leaks,
which were not an issue when ran as a single executable,
but created isses when ran as a library. Furthermore, the
underlying highly sophisticated graph automorphism de-
tection system, Bliss [7], has been slightly improved to
allow for time-outs and it, too, has been fixed not to leak
memory. BreakID is fully integrated into CryptoMiniSat
by calling it on every 5th inprocessing iteration, and asked
to contribute breaking clauses. These are always added
with an assumption literal, so they can be removed when
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the solving finishes. Hence, symmetry breaking also works
when CryptoMiniSat is used as a library.

V. Further Improvements Relative to SAT Race
2019

Many of the inprocessing parameters have been tuned.
A few bugs related to clause activities have been fixed.
Clause distillation (or clause vivification) [9] is now used a
lot more, similarly to the previous years’ winning solvers.
The VSIDS and Maple decay factors are now iteratively
changed between 0.70 and 0.90 for Maple and 0.92 and 0.99
for VSIDS. Between each iteration there is an inprocessing
step, as before. This seems to add heterogeneity and avoids
having to tune these parameters to a “single best” value.
Polarity caching is still used, but once in a while, so-called
“stable” polarities are used, as per CaDiCaL [3] in the SAT
Race of 2019. Ternary resolution is also used at every
inprocessing step, thanks to the suggestion by Armin Biere.
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Abstract—The presented GLUCOSE 3.0 hack adds formula
simplification during search, namely subsumption and self-
subsuming resolution. Instead of full integration, this hack
initiates required data structures. As learned clauses cannot
be super-sets of existing clauses, each clause is considered for
simplification exactly once.

I. INTRODUCTION

Since the 2009 SAT competition, some SAT solvers [2]
have run formula simplification as part of their search. More
recently, learned clause minimization has been extended to
consider binary clauses [1], as well as vivification for learned
clauses has been driving success [6], [8]. With vivification,
learned clauses are reduced during search, based on other
clauses. While general conflict driven clause learning does not
learn the same clause twice – except a learned clause has been
removed – vivification allows to introduce duplicates. The
winning solver [9] of 2019 countered this effect by blocking
the introduction of duplicate clauses via a hash-map.

With this hack, we take this approach a step further: instead
of checking for duplicates, we check for subsumption as well
as self-subsuming resolution. The subsumption check is more
powerful than the duplicate check. Self-subsuming resolution
allows to shrink learned clauses even further.

II. INTEGRATED TECHNIQUES AND FIXES

Analysis on simplifications in [7] showed that plain sub-
sumption and self-subsuming resolution are as powerful as
bounded variable elimination [4]. Therefore, this implemen-
tation focusses on implementing these two techniques. A
subsumption check is implemented in a linear fashion using
a linear hash table for fast accesses. The self-subsuming
resolution check is implemented in the same loop, essentially
checking whether all except one literals of the simplifying
clause match, and the remaining literal matches as the com-
plement. Each learned clause is considered as a simplification
candidate at most once.

Simplification is scheduled after the clause database has
been cleaned significantly, i.e. after at least 30% of the clauses
have been dropped. Furthermore, simplifications are scheduled
with an exponential back-off, i.e. after 1, 2, 4, 8, . . . attempts.
Additionally, the current limit is increased by 2, in case no
simplification was possible. The schedule is implemented in
this way, because it is simple, and because the operation itself
comes with an upfront cost. There might be more effective
ways to implement this simplification, but given the space
limitations, the proposed one was found to perform better than
the unmodified solver.

A. Preliminary Testing

The modification has been tested on the evaluation bench-
mark for tuning solvers [5] with a timeout of 900 seconds. 190
instead of 185 formulas could be solved within the timeout.

III. AVAILABILITY

The source of the solver is publicly available under
the MIT license at https://github.com/conp-solutions/glucose3.
0-hack-track. The version in the branch “reloc-subsume” has
been submitted to the 2020 competition. While the diff to the
original system is below 1000 characters, as required, there is
a more readable version available as well, in the same branch.
There is an explicit commit (“443ff88: glucose-hack-track: get
diff below 1000”) that reduces the diff. Mechanics to do that
are to reuse variable, define a macro for printing clauses to
drup proofs, and defining constants for common parts of the
code, like “size()” statements. This commit highlights that the
requirement to stay below a predefined distance in characters
as a metric has flaws, and other measures, i.e. number of
different program statements might be better suited.1
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Abstract—To provide a broad variety of solver heuristics while
maintaining clean code and an efficient implementation, CTSat
uses C++ templates to make important components of a CDCL
solver interchangeable. Different configurations are compile-time
defined to ensure a low overhead during runtime, but can also be
dynamically choosen during runtime. Besides our compile-time
approach, we use a multi-clause learning scheme and an extended
in-conflict minimisation to improve solver behaviour during the
search.

Index Terms—sat solver, software design, parallel computing,
distributed computing

I. INTRODUCTION

The number of different approaches to SAT solving in-
creases steadily with every new insight gained about the prob-
lem. Thereby, basic concepts, e.g. CDCL or SLS, and more
often the used heuristics to solve a SAT instance in a specific
way are diversified. Since there is no single dominant approach
to solve every SAT instances fast, portfolio approaches in
sequential SAT solvers become the state of the art. Thus,
modern implementations tend to have a lot of branches to
implement different heuristics in different solving phases. This
leads to dead code regions for most of the solving process
and unnecessarily evaluated branches. But in the first place,
this limits the number of provided heuristics by a specific
implementation, due to the increasing complexity of the code.
To remedy this limitation, we started to abstract basic CDCL
solver components using C++ templates in our solver CTSat
that allows us to provide a wide variety of features without the
need to evaluate complex branching structures or to perform
costly dynamic type checks during runtime.

Our goal is not to create a sequential solver with a high
rate of switches between heuristics during runtime. Our main
targets are to be able to use a high number of different
heuristics in a highly parallel SAT solver and to change
the memory layout dynamically to be more efficient on cer-
tain SAT instances without many redundant code parts. The
solver is based on MapleLCMDistChronoBT [1] and provides,
besides the existing features, a multi-conflict-clause-learning
scheme, we call Level Aware Conflict Analyzes (LAA), an
extended in-conflict clause minimisation and a conflict based
clause import inspired by tier-based clause reduction [2] in the
parallel versions.

II. ABSTRACTED COMPONENTS

We split the base solver into different standalone com-
ponents. The main components are the clause database, the

clause exchange in parallel solvers, the propagation scheme,
the conflict analysis, and also the branching, reduce and
restart heuristics. The submitted version provides only the
most common heuristics, since our current focus is to define
requirements for each component, so that the interfaces are
flexible enough to support most of the current approaches and
as far as possible future ones.

III. LEVEL-AWARE CONFLICT ANALYSIS

Based on the idea used in GRASP [3] and others [4],
CTSat learns multiple clauses during conflict analysis. More
precisely, we create additionally to the first unique implication
point (UIP) cut clauses from a subset of the resolvents of
the first UIP clause (length minimising cut) and from the
resolvents between UIPs (multi UIP learning). To reduce the
added overhead, CTSat only adds multiple clauses when it is
currently below the average decision level.

IV. EXTENDED IN-CONFLICT CLAUSE MINIMISE

Both, state-of-the-art minimisations, i.e. redundancy check
based on self-subsumption [5], and binary clause minimisa-
tion, use additional effort on short clauses and on clauses with
low LBD. CTSat executes redundancy checks on not yet seen
decision levels, which was originally prevented heuristically.
This makes it possible to reduce the clause further, but possibly
increases the LBD value of the clause. The latter minimisation
is by default only executed using the first UIP literal. There,
CTSat performs a binary clause implication check on every
literal. These are minor changes, but have a tremendous impact
in certain cases, while creating a minimal overhead.

V. CONFLICT- AND TIER-BASED CLAUSE EXCHANGE

In the Parallel and Cloud Track, CTSat uses a conflict-based
clause import. Thereby, each imported clause will be deleted
when it did not participate in any of 15,000 conflicts. When a
clause was seen in a conflict, it is added to the learned clause
database and treated as a normal learned clause. Exports are
based on the lazy export policy [6].

VI. SEQUENTIAL TRACKS

The sequential build of CTSat uses the heuristics of
MapleLCMDistChronoBT with the difference that LAA is
used, wherefore additional clauses are learned when the cur-
rent conflict level is 20 levels below the average of the last 20
levels. These are barely tested parameters, but we are eager to
see how they will impact the behaviour.
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VII. PARALLEL TRACK

For the parallel track, we use combinations of well-known
heuristics (LRB, VSIDS, DIST; Tier-based reduction, Glucose
reduction; Luby restart, Glucose restart). Also, LAA is con-
figured to always check for additional learned clauses that are
also asserting and smaller than the first UIP clause. In this
case, the clauses will be swapped, and only the shortest is
learned.

VIII. CLOUD TRACK

Since it is unclear how many threads one should use
on different benchmarks, CTSat uses three different thread
configurations with a different frequency for the MPI nodes.
In six of ten nodes, CTSat uses half of the cores, in three
of ten nodes every core, and in one of ten cases one core
per NUMA-node is used. Each node is configured similar to
the Parallel Track configuration. Imported clauses are filtered
using hashes to identify duplicates. When more clauses are
learned than space is available in the communication buffer
during a communication period, only the clauses with the
lowest LBD and size are exported.
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Abstract—This document describes the experimental SAT
Solver PauSat, which implements an approach combining CDCL
solving with SLS solver characteristics by introducing an addi-
tional assignment procedure.

Index Terms—SAT, SLS, CDCL, Hybrid

I. INTRODUCTION

The search routine of a typical Conflict-Driven-Clause-
Learning (CDCL) solver starts in a state in which the variables
of a subset of the variables used in the problem are assigned
in such a way that there exists no clause in which all occurring
literals are assigned false, i.e. a CDCL solver is at this moment
always in a state of a non-conflicting partial assignment.
A CDCL Solver then assigns one further still unassigned
variable a truth-value and makes use of Boolean Constrain
Propagation (BCP) to find out whether this last decision
leads to a conflicting partial assignment and to infer further
assignments. In the first case conflict analysis is invoked in
order to learn an additional clause from the conflict, which is
added to the problem, and conflicting variables are unassigned
such that the partial assignment of the variables are non-
conflicting. This search routine is repeated until either either a
full non-conflicting assignment is reached or the empty clause
is learned during conflict-analysis, i.e. either a model of the
problem is found or the problem is proven to be unsatisfiable.
The decision which variable to assign next is based on an
activity value assigned to each variable, which is updated
during conflict analysis.

A typical Stochastic Local Search Solver on the other hand
is at any given moment in a state in which all variables are
assigned. If this full assignment is conflicting, i.e. if there
exists a clause in which all occurring variables are assigned
false, a variable is chosen whose assignment is changed from
truth to false or vice versa. We say the truth value of this as-
signment is flipped. In order to choose a variable, first a clause
is chosen in which all occurring literals are assigned false
under the current assignment. In the following we will call
such a clause a conflicting clause1. Afterwards, the variable
whose assignment is to be flipped is chosen randomly among
the variables occurring in this conflicting clause using some
probability distribution. This process is repeated until a non-
conflicting full assignment is reached, in which case a model
of the problem is found. Unlike a CDCL Solver, a typical SLS
Solver cannot prove unsatisfiability of the problem.

1not to be confused with the so-called conflict clauses learned during
conflict analysis.

Among other techniques, both solver types, CDCL and SLS,
make use of regularly scheduled restarts and furthermore a
CDCL solver is forced to regularly delete some of the learned
clauses due to the fact that too many (possibly useless) clauses
in the problem highly affect the speed of BCP (and due to
memory issues).

PauSat is a hybrid solver that tries to combine both Solver
types using a novel approach of differentiating between two
kinds of variable assignments. PauSat is an implementation of
this approach based on the CDCL-Solver Maple LCM Dist
[1].

II. PAUSAT’S HYBRID SEARCH

A. Soft Assignments, Hard Assignments and Dependency Lists

In the following, assignments used by BCP and conflict
analysis in a standard CDCL solver are called hard assign-
ments. Assignments done by our novel approach are called
soft. With respect to all hard assignments PauSat is a typical
CDCL Solver. However, at any given moment any variable
which is not hard assigned, is furthermore assigned an addi-
tional soft truth-value. A variable is never both, soft and hard
assigned concurrently.

So at the beginning of the CDCL search routine of PauSat
the state of the Solver is determined by a potentially conflicting
full assignment of the variables, which consist of a non-
conflicting partial hard assignment used by the CDCL search
routine and a soft assignment of all the variables which are
not assigned hard. Note that at the beginning of the CDCL
search routine no clause is conflicting with respect to all hard
assignments. Thus, at this moment every conflicting clause
contains at least one soft assigned variable.

To each variable a list of references of clauses is assigned.
In the following this list will be called dependency list of
this variable. Whenever in the search routine of PauSat a
clause is found that is satisfied with respect to the current
full assignment (both, soft and hard), one of the true literals
in the clause is chosen and a reference of this clause is stored
in the dependency list of the corresponding variable. This way
it is remembered that this clause remains non-conflicting until
the assignment of the chosen variable is flipped.

B. Initialization of the search

After preprocessing the problem at the very beginning of
the search, for every variable a soft assignment is chosen
randomly. PauSat also makes use of restarts, and after every
restart every variable is soft assigned according to the last hard
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assigned truth-value. Hence, the initial state of the search of
PauSat is determined by a full assignment consisting of soft
assignments only.

With respect to this initial full assignment every clause in
the problem is either satisfied or conflicting, i.e. in every clause
in the problem there either exists a literal in the clause which
is (soft) assigned true or all literals in the clause are (soft)
assigned false. For every non-conflicting clause, a reference
to this clause is stored in the dependency list of the variable
corresponding to one true (soft) assigned literal occurring in
the clause.

All remaining clauses are sorted with respect to the max-
imum of the activities of the variables in the clause and
saved in a stack with the clauses containing the variable with
highest activity on top. At any given moment all clauses in
the original problem that are conflicting are contained in this
stack. However, this stack may contain satisfied clauses. In the
following this stack is called conflicting clause stack (CCS).

C. Alteration of the CDCL Branching Heuristic

The top element of the CCS is removed. If this clause
happens to be satisfied, it is added to the list of depending
clauses of the variable corresponding to some true literal in
the clause. Otherwise, among all soft assigned literals in the
clause the one which has highest activity is chosen to be the
next decision variable. All clauses in the dependency list of the
corresponding variable are removed from this list and copied
onto the top of the CSS. The assignment of this literal is
changed to be hard and flipped. Now, the clause which was
on top of the stack of possibly unsatisfied clauses is satisfied,
and thus a reference to this clause is added to the dependency
of the new decision variable.

D. BCP and Conflic Analysis

After choosing a new decision variable BCP is invoked
in order to check whether the new hard assignment leads
to a conflicting partial assignment with respect to all hard
assignments and in order to infer further hard assignments.
In this process soft assignments are possibly overwritten by
hard assignments. Whenever a soft assignment of a variable is
overwritten by a hard assignment and simultanously the truth-
value of this variable changes, all clauses in the dependency
list of this variable are removed from this list and copied onto
the top of the CCS.

If BCP finds a conflicting clause with respect to all hard
assignments, the conflict is analyzed as in any CDCL solver.
However, in order to restore a non-conflicting partial assign-
ment with respect to all hard assignments, variables are not
unassigned as in a typical CDCL solver, but rather the hard
assignment is turned into a soft assignment and preserved.
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Abstract—This document describes the SAT solvers Maple-
COMSPS LRB VSIDS that implements a machine learning
branching heuristics called the learning rate branching heuristic
(LRB) and a novel machine learning based initialization method
called Bayesian Moment Matching (BMM) based initialization of
variable activity and polarity.

I. INTRODUCTION

Over the last several years, the learning rate branching
heuristic (LRB), which we introduced at SAT 2016 [1], has
confirmed its place alongside VSIDS as one of the leading
branching heuristics for industrial-strength SAT solvers. The
LRB heuristic is designed to branch on variables that maxi-
mize the number of (high-quality) learnt clauses in a given unit
of time that a solver learns during its run. To be more precise,
branching heuristics can be viewed as methods that solve a bi-
objective problem of selecting those branching variables that
simultaneously maximize both the quantity and quality of the
learnt clauses generated by a solver during its run. To simplify
the optimization problem, we assume that the first-UIP clause
learning scheme generates high quality learnt clauses, and thus
we reduced the two objectives down to just one, that is, we
attempt to maximize the quantity of learnt clauses.
Motivation for Machine Learning-based Solver Heuristics:
While a Boolean SAT solver is a decision procedure that
decides whether an input formula is satisfiable, internally it
can be seen as an optimization procedure whose goal is to
minimize its runtime while correctly deciding the satisfiability
of the input formula. Every sub-routine in a SAT solver can
be viewed either as a logical reasoning engine (i.e., a proof
system such as resolution in the case of conflict clause learning
scheme or unit resolution in the case of BCP), or as a heuristic
aimed at optimizing the sequencing, selection, and initializa-
tion of proof rules (e.g., variable selection, polarity selection,
restarts, etc.). These optimization heuristic can in turn be
implemented effectively using machine learning algorithms,
since solvers are a data-rich environment. This philosophy,
that we first articulated in our SAT 2016 paper [1] on the
LRB branching heuristic, has since been widely adopted and
underpins many solver heuristics for branching, restarts, and
initialization developed in recent years.

II. LEARNING RATE BRANCHING

Before we can describe the LRB branching heuristic, we
start by defining a concept called learning rate of a variable

that measures the quantity of learnt clauses generated by
a variable of an input formula I during the run of the
solver on I . The learning rate is defined as the following
conditional probability (see our SAT 2016 paper for a detailed
description [1]):

learningRate(x) = P(Participates(x) |
Assigned(x) ∧ SolverInConflict)

Ideally, if the learning rate of every variable was known a
priori, then we claim that the a very effective branching policy
is to branch on the variable with the highest learning rate in
order to maximize the number of learnt clauses generated by
the solver per unit time. Unfortunately, the learning rate, as
defined above, is too difficult and too expensive to compute
at each branching point (the point in time at which the solver
selects a new variable to branch on). Hence, we cheaply
estimate the learning rate using multi-armed bandits (MAB),
a class of state-less reinforcement learning algorithms.

Briefly, the MAB-based abstraction of the branching prob-
lem can be described as follows: Conceptually, we first record
the number of learnt clauses each variable participates in
generating, under the condition that the variable is assigned
and the solver is in conflict, since the beginning of the solver
run. These observations are averaged using an exponential
moving average (EMA) to estimate the current learning rate of
each variable. The effect of using an EMA is that observations
made in the “distant past” (with respect to a branching point)
contribute very little to the average, while those in the “near
past” contribute much more to the average.

This EMA-based method is implemented using the well-
known exponential recency weighted average algorithm
(ERWA) for multi-armed bandits [2] with learning rate as the
reward. The variables are then ranked according to their ERWA
score and the highest unassigned variable in this ranking is
branched upon when the solver reaches a branching point.

Lastly, we extended the algorithm with two new ideas. The
first extension is to encourage branching on variables that
occur frequently on the reason side of the conflict analysis
and adjacent to the learnt clause during conflict analysis. The
second extension is to encourage locality of the branching
heuristic [3] by decaying unplayed arms, similar to the decay
reinforcement model [4], [5]. We call the final branching
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heuristic with these two extensions the learning rate branching
or LRB heuristic.

III. INITIALIZATION PROBLEM

Many modern branching heuristics in CDCL SAT solvers
assume that all variables have the same initial activity score
(typically 0) at the beginning of the run of a solver. However, it
is well known that a solver’s runtime can be greatly improved
if the initial order and value assignment of variables is not
fixed a priori but chosen via appropriate static analysis of the
formula. By the term initial variable order (resp., initial value
assignment), we refer to the order (resp. value assignment) at
the start of the run of a solver. This problem of determining
the optimal initial variable order and value assignment is often
referred to as the initialization problem.

In this paper, we propose a solution to the initialization
problem based on a Bayesian moment matching (BMM) for-
mulation of solving SAT instances and a concomitant method
we refer to as BMM-based initialization. Our method is used
as a pre-processing step before the solver starts its search (i.e.,
before it makes its first decision).

A. Bayesian Moment Matching (BMM)

The SAT problem, simply stated, is to determine whether a
given Boolean formula is satisfiable. In order to reformulate
the SAT problem in a Bayesian setting, we start by defining a
random variable for each variable of the input formula, where
P (x = T ) shows the probability of setting x to True in a
satisfying assignment, assuming the formula is satisfiable. We
assume that each of these variables has a Beta distribution,
and collectively they form our prior distribution. We have the
constraint that all of the clauses must be satisfied (i.e., it is
assumed that the formula is satisfiable), therefore the clauses
can be seen as evidence as to how the probability distribution
should look like such that they are all satisfied. We then apply
Bayesian inference using each clause as evidence to arrive at
a posterior distribution. Applying Bayesian inference, gives
us a mixture model, and this makes the learning intractable
as the number of components grows exponentially with the
number of clauses. To avoid this blow up, we use the method
of moments to approximate the mixture Beta distribution with
a single Beta distribution.

B. BMM as a Component

We implement an approximate version of the BMM method
described above, since the complete method does not scale
as the size of the input formulas increase. Fortunately, this
approximate method is efficient and arrives at a promising
point, as it attempts to satisfy as many clauses as possible.
We take this starting point and initialize the preferred polarity
and activity scores of each variable of an input formula, and
then let the solver complete its search. The derived posterior
distribution collectively represents a probabilistic assignment
to the variables that satisfies most of the clauses. For polarity
initialization, we used: Polarity[x] = False if P (x = T ) <
0.5 and True otherwise. For activity initialization, we gave

higher priority to variables based on the confidence that BMM
has about their values, i.e., Activity[x] = max(P (x =
T ), 1 − P (x = T )). We initialized both VSIDS and LRB
scores with the aforementioned methods. (As the reader may
have already guessed, the proposed BMM method works much
better for satisfiable formulas than unsatisfiable ones.)

IV. SOLVERS

All solvers in this submission are modifications of Maple-
COMSPS LRB VSIDS [6] that participated in SAT compe-
tition 2018 (which was a modification of COMiniSatPS [7]
itself). The main two modifications in these solvers are: 1)
activity/polarity initialization, described in Section III and 2)
implementation of learnt clause minimization (LCM) [8].

V. AVAILABILITY AND LICENSE

The source code of all versions of our solver have been
made freely available under the MIT license. All the solvers
use the same license as COMiniSatPS. Note that the license
of the M4RI library (which COMiniSatPS uses to implement
Gaussian elimination) is GPLv2+.
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Abstract—This document describes the divide-and-conquer
parallel SAT solver, MaplePainless-DC, that uses Painless par-
allel SAT framework and implements a machine learning base
splitting heuristic.

I. INTRODUCTION

MaplePainless-DC is a divide-and-conquer parallel SAT
solver, which is built on top of Painless parallel SAT frame-
work [1]. The primary change we made to Painless is a new
machine learning (ML) based splitting heuristic. More pre-
cisely, we modified the backend worker solvers to implement
an ML-based splitting heuristic. Briefly, the backend worker
solvers compute search statistical and structural features of
variables of an input formula, query an offline-trained ML
ranking model M , and return the highest ranked variable
according to this ML model. The model M is trained such
that splitting on the top variable predicted by it, ideally mini-
mizes the runtime of solving the sub-formulas thus generated
compared against splitting on any other variable in the input
formula.

II. DESCRIPTION OF PAINLESS-DC

Painless-DC [2] uses a master-slave architecture. The master
is responsible for maintaining the splitting tree, and the slaves
are sequential backend worker solvers (potentially they can
be parallel solvers as well, but in this setting, they are all
sequential workers) that solve the sub-formulas generated by
splitting. The backend worker solvers are also responsible for
computing statistical and structural features of variables of the
input formula that are then used by our ML-based splitting
heuristic.

A. Master Solver and Load Balancing

The master node maintains a queue of idle workers to assign
jobs to. Initially, the master node chooses a variable to split on
and assigns the resultant sub-formulas to two workers. If the
queue of idle workers is non-empty, the master node chooses
a sub-formula from one of the busy workers and splits it into
two sub-formulas, one of which is assigned to the busy worker
and the other to one of the idle ones (work stealing model).
This process is repeated until the queue of idle workers is
empty. If during the solver’s run a core becomes idle and is
added to the idle queue (e.g., if it has established UNSAT for
its input sub-formula), the above-mentioned process is invoked

until the idle queue becomes empty again. This form of load-
balancing ensures that worker nodes are not allowed to idle
for too long.

B. Backend Sequential Solvers and Splitting Heuristic

Each sequential worker receives the formula constrained
with a set of assumptions that represents the sub-formula
assigned to that worker. Workers start solving the sub-formula,
until a threshold is reached. If the sub-formula is solved, they
report back the SAT/UNSAT result to the master. In case
they reach the search limit, and no other worker is idle, they
continue the search, otherwise the problem is deemed too hard
and the sub-formula is split further. The splitting procedure
works as follows: the slave solver queries a ranking method
that returns a total order over the variables in the input formula.
These ranking methods are heuristics that analyze the formula
in order to determine an order over the variables such that the
higher a variable’s rank, the better it is for the solver to split
on it if the goal is to minimize overall solver runtime. The
top-ranked variable v is then returned by the slave solver to
the master, which splits the formula using the variable v into
two sub-formulas. (It goes without saying that there are no
guarantees of optimality here, since determining the optimal
variable to split on is in general an NP-hard problem.)

III. DESCRIPTION OF MAPLEPAINLESS-DC

MaplePainless-DC is an instance of Painless-DC, whose
splitting heuristic component has been replaced with a ma-
chine learning based splitting heuristic.

A. The Splitting Problem and an ML-based Splitting Heuristic

In order to rank splitting variables, we defined a perfor-
mance metric of splitting a formula φ on a variable v as:
pm(φ, v) := The total runtime of the two sub-formulas of
setting v to False and True (φ[v = F ] and φ[v = T ])
in parallel. The splitting problem can be then simply stated
as: SplittingHeuristic(φ) := argminv{pm(φ, v)}. The
runtimes of solving a formula is not known a priori. One
can build a machine learning model that given features of a
formula, predicts the runtime of solving it using a specific SAT
solver (Empirical hardness model). However, building such a
model is well known as a challenging task for a variety of
reasons. Our main observation in this setting is that, instead
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of building an Empirical Hardness Model (i.e., predicting the
runtimes exactly), we only need to provide a ranking of the
runtimes. Therefore we built a machine learning model that ap-
proximates this function: PW (φ, vi, vj) = 1 if pm(φ, vi) <
pm(φ, vj), and 0 otherwise. Because the output of PW is in
{0, 1}, we built a binary classifier using random forest. This
model can then be used as a comparator to find the minimum
from the candidate list of splitting variables, that supposedly
minimizes our performance target.

B. Sequential Solvers and Feature Computation

We used MapleCOMSPS [3] as the backend sequential
worker solvers. We instrumented the worker solver to compute
formula and variable features (e.g., number of times a variable
is assigned, either decided or propagated) on the sub-formula
to be split. Majority of the variable features are dynamic
and their counters are updated whenever there is a related
action performed during the search by the solver, thus their
complexity is amortized over the run of the solver. The
description of the variable features is listed in Table I. When
the features are ready, the model trained for PW is queried as
a comparator operator on the variables to find the minimum in
a linear scan. The minimum variable is returned to the master
node.

C. Other Settings

a) Node switching strategy: Whenever a worker W be-
comes idle and eventually another formula is split, this worker
W is switched to solving one of the generated sub-formulas.
The worker chooses between two solver states to continue: its
own solver state, or the state of another worker solver that was
solving a sub-formula before splitting it. In our version, we
use the clone strategy, which is adopting the state of original
worker solver.

b) Sharing: We use an all-to-all sharing strategy, in
which all workers send and receive conflict clauses with an
LBD of 4 or less.

TABLE I
VARIABLE FEATURES (var features(v)).

Feature name Description
activity VSIDS activity [4]
LRBProduct product of LRB [5] activities of v and ¬v literals
numFlip #times the implied value of v is different than its cached value [6]
propRate average #propagation over #decision [7]
numDecided #times v has been picked in branching
numAssigned #times v got a value through branching/propagation
numLearnt #times v appeared in a conflict clause
decisionLevel average of decision levels of v at the end of the limited search
numInBinary #times v appears in a clause of size 2
numInTernary #times v appears in a clause of size 3
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Abstract—The sequential SAT solver MERGESAT is a fork
of the 2018 competition winner, and adds known as well as
novel implementation and search improvements. MERGESAT is
setup to simplify merging solver contributions into one solver, to
motivate more collaboration among solver developers.

I. INTRODUCTION

When looking at recent SAT competitions, the winner of
the current year was typically last years winner plus a small
modification. However, each year there are several novel ideas
that the next winner does not pick up. Hence, lots of potential
with respect to maximal performance is likely lost, and bug
fixes of previous versions do not make it into novel versions.

The CDCL solver MERGESAT is based on the competi-
tion winner of 2018, MAPLE LCM DIST CHRONOBT [14],
and adds several known techniques, fixes, as well as adds
some novel ideas. To make continuing the long list of work
that influenced MERGESAT simpler, MERGESAT uses git to
combine changes, and comes with continuous integration to
simplify extending the solver further. Furthermore, starting in
2020, code style is enforced during CI as well, allowing to
understand modifications better.

II. INTEGRATED TECHNIQUES AND FIXES

Most recently, backtracking has been improved by [10].
Backtracking improvements during restarts have already been
proposed in [13]. MERGESAT uses the partial trail based
backtracking during restarts.

Learned clause minimization (LCM) [7] is also kept. It is
still open research in which order literals should be considered
during vivification [11]. MERGESAT uses the improvement
from [8], which repeats vivification in reverse order, in case
a clause could be simplified with the first order. The original
implementation of LCM adds a bit to the clause header to
indicate that this clause has been considered already. However,
no other bit has been dropped from the header, resulting in a
65 bit header structure. Along [5], this can result in a major
slow down of the solver. Consequently, MERGESAT drops a
bit in the size representation of the clause.

Large formulas require a long simplification time, even
though simplification algorithms are polynomial. While for a
5000 second timeout, large simplification times are acceptable
for effective simplifications, usually an incomplete simplifi-
cation helps the solver already. Therefore, we introduce a
step counter, that is increased whenever simplification touches
a clause. Next, we interrupt simplification as soon as this
counter reaches a predefined limit, similarly to [2]. To speed up
simplification further, the linear subsumption implementation

and related optimizations from [3] have been integrated into
MERGESAT.

Since the solver MAPLESAT [6], the decision heuristic is
switched back from the currently selected one to VSIDS –
after 2500 seconds. As solver execution does not correlate
with run time, this decision results in solver runs not being
reproducible. To fix this property, the switch to VSIDS is now
dependent on the number of performed propagations as well
as conflicts. Once, one of the two hits a predefined limit, the
heuristic is switched back to VSIDS. This change enables re-
producibility and deterministic behavior again. Based on [15],
we added toggling VSIDS and LRB heuristic continuously.

MERGESAT implements an experimental – and hence dis-
abled by default – heuristic to decide when to disable phase
saving [12] during backtracking, which has been used in
RISS [8] before: When the formula is parsed, for each non-unit
clause it is tracked whether before applying unit propagation
there is a positive literal. In case there is no positive literal,
a break count is incremented. For the whole formula, this
count approximates how close the formula is to being able
to be solved by the pure literal rule. In case this break count
is zero, or below a user defined threshold, no phase saving
is used. The same rule is applied for negative literals. There
exists benchmarks, where this heuristic with a threshold zero
results in a much better performance. However, for a mixed
benchmark, this feature has not been tested enough, and hence,
remains disabled.

III. INPROCESSING

The simplification in MERGESAT has been limited via the
number of allowed steps to perform. Hence, the potential
to simplify further clauses is still there. Following the ideas
in [2], starting 2020 MERGESAT runs subsumption and self-
subsuming resolution using promising learnt clauses exactly
once, as also implemented in an independent glucose hack [9].
This extension is also motivated by the fact that [15] checks
LCM-simplified learnt clauses for duplicates, and drops those.
With subsumption and simplification, we can drop even more
redundant clauses.

IV. INCREMENTAL SAT
In previous variants of MAPLESAT, incremental solving

via assumptions was disabled. To be able to use MERGESAT
as backend in model checkers and other tools that require
incremental solving capabilities, this feature is brought back.
Furthermore, an extended version 1 of the IPASIR interface [1]

1https://github.com/conp-solutions/ipasir
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is provided, which besides the usual functionality offers an
additional function ipasir solve final to tell the SAT solver
that this call is the final (or only) call. This function allows the
solver to use formula simplification more extensively, because
usually simplification cannot be applied during incremental
solving.

MERGESAT implements assumption prefetching, which
fast-forwards assumed literals, and triggers propagation only
after all (from the previous calls used) assumptions have been
assigned a value. In case of a conflict, the whole assumption
stack is currently rolled back. Furthermore, the final conflict
is simplified with LCM (in case the previous conflict was
simplified successfully, otherwise, we skip once).

V. PARALLEL SOLVERS AND DOCKERFILE

We submit the sequential solver as a parallel solver to
the competition, in 2 configurations. The solver configuration
between the main track and the parallel track is the same.

The default (“parallel”) solver MERGESAT, which is com-
piled using the provided Dockerfile in the repository. This
dockerfile links against a modified glibc, which enables trans-
parent huge pages (THP) by default for the solver. On systems,
where this feature is not enabled as “always” (like i.e. on the
StarExec cluster), using THP can boost the solver runtime by
10 % in average, with peaks of up to 20 % improvement [4].
To demonstrate this behavior, the second submitted “parallel”
solver, MERGESAT-NOTHP uses the exact same configura-
tion, except not using THP.

The README of the MERGESAT repository contains the
descriptions how to compile a statically linked binary of
the solver to use it outside of the container as well. These
instructions should work for any MINISAT 2.2 based solver.
For other solvers and tools, additional dependencies would
have to be added to the Dockerfile.

VI. AVAILABILITY

The source of the solver is publicly available under the MIT
license at https://github.com/conp-solutions/mergesat. The ver-
sion with the git tag “sat-comp-2020” is used for the submis-
sion. The submitted starexec package can be reproduced by
running “./scripts/make-starexec.sh” on this commit.

VII. CONTINUOUS TESTING

The submitted version of MERGESAT compiles on Linux
and Mac OS. GitHub allows to use continuous testing, which
essentially build MERGESAT, and tests basic functionality:
i) producing unsatisfiability proofs, ii) building the starexec
package and producing proofs, iii) being used as an incre-
mental SAT backend in Open-WBO as well as iv) solving
via the IPASIR interface. All these steps are executed by
executing the script “tools/ci.sh” from the repository, and the
script can be used as a template to derive similar functionality.
Independently, static code analysis with Coverity is used as
part of continuous testing.
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I. INTRODUCTION

This paper presents a brief description to our solver
ParaFROST which stands for Parallel Formal Reasoning Of
SaTisfiability in 4 different configurations. Our solver is based
on state-of-the-art CDCL search [1]–[3], integrated with pre-
processing as presented in our tool called SIGmA (SAT sImpli-
fication on GPU Architectures) [4], [5], and a new technique
called Multiple Decision Making (MDM) [6]. Nevertheless,
all submitted versions only permits a single-threaded CPU
execution.

ParaFROST provides easy-to-use infrastructure for SAT
solving and/or preprocessing with optimized data structures
for both CPU/GPU architectures, and fine-tuned heuristic
parameters. The Parallel keyword in ParaFROST intuitively
means that SAT simplifications can be fully executed on
variables in parallel as described in [4] using the Least
Constrained Variable Elections (LCVE) algorithm. Moreover,
via the MDM procedure [6], the solver is capable of making
multiple decisions that can be assigned and propagated at once.
In principle, choosing variables to preprocess or decisions
relies heavily on freezing (that is where FROST is surfaced)
mutually independent variables according to some logical
properties.

II. PREPROCESSING

In previous work, we have shown how Bounded Vari-
able Elimination (BVE) [7], [8] and Hybrid Subsumption
Elimination (HSE) can be performed in parallel on Graphics
Processing Units (GPU). The acceleration is proven to be
effective in increasing the amount of reductions within a
fraction of second, e.g. 66× speedup compared to SatElite [8]
when combined together in ve+ mode [4]. This mode iterates
over BVE and HSE in several rounds until no literals can be re-
moved. Furthermore, we have added new implementations for
Blocked Clause Elimination (BCE) and a new simplification
technique, we call Hidden Redundancy Elimination (HRE) [5].
HRE repeats the following until a fixpoint has been reached:
for a given formula S and clauses C1 ∈ S, C2 ∈ S with
x ∈ C1 and x̄ ∈ C2 for some variable x, if there exists a
clause C ∈ S for which C ≡ C1 ⊗x C2 and C is not a

This work is part of the GEARS project with project number TOP2.16.044,
which is (partly) financed by the Netherlands Organisation for Scientific
Research (NWO).

tautology, then let S := S \ {C}. The clause C is called
a hidden redundancy and can be removed without altering
the original satisfiability. For example, consider the formula
S = {{a, c̄}, {c, b}, {d̄, c̄}, {b, a}, {a, d}}. Resolving the first
two clauses gives the resolvent {a, b} which is equivalent to
the fourth clause in S . Also, resolving the third clause with
the last clause yields {a, c̄} which is equivalent to the first
clause in S . HRE can remove either {a, c̄} or {a, b} but not
both.

In this submission, a sequential implementation of all sim-
plifications described above is provided as part of ParaFROST.
By default, in ParaFROST, all simplifications are disabled.
In ParaFROST HRE, the ve+ is enabled with number of
phases set to 2. The phases=<n> option applies ve+ for a
configured number of iterations, with increasingly large values
of the threshold µ (maximum occurrences of a variable) [4],
[5]. After all phases are done, the hre method is executed
once. On the other hand, the ParaFROST ALL submission
enables all simplifications along with bce.

both ParaFROST HRE and ParaFROST ALL delay pre-
processing by a user-defined number of restarts. This gives
the solver enough time to solve trivial problems (solved in
few seconds) before simplifications are executed. The number
of restarts needed to activate preprocessing is set to 50
through the option pre-delay=<n>. The solver supports
geometric [9], Luby [2], and dynamic restarts [10]. However,
in all submissions, we only enable dynamic restarts.

III. MULTIPLE DECISION MAKING

We proposed a new approach [6] to make multiple decisions
in such a way, they can be assigned and propagated simul-
taneously or sequentially without causing any implications
or conflicts. Originally, we did so to introduce a possible
parallelisation strategy. This strategy is yet to pay off, but
surprisingly, the MDM turned out to have a positive impact
on standard, sequential CDCL, for many different formulas. In
all configurations, the solver periodically calls MDM with a
maximum of 3 rounds per search. Otherwise, a single decision
is made as the standard CDCL procedure does. The number
of MDM rounds is controlled via the option PDM=<n>.

IV. CHRONOLOGICAL BACKTRACKING

We adopted the chronological backtracking (CBT) intro-
duced by the authors in [11], to help CDCL solvers avoid
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jumping too far in certain situations. However, the procedure
is computationally expensive in calculating the correct chrono-
logical level during a conflict. Therefore, we enabled this fea-
ture in a separate solver instance called ParaFROST CBT (all
simplifications are disabled). The CBT is triggered when the
number of conflicts are multiple of 5000 (cbt-conf=<n>)
and the jumping distance is 500 (cbt-dist=<n>). In
ParaFROST HRE, this option is disabled.

V. AUTOMATED TUNING

The GPU code tuner made by Ben van Werkhoven [12], [13]
is used to optimize the parameter settings of all heuristics in
ParaFROST ALL. The tool is capable of tuning both CPU
and GPU codes with support for many search optimization
algorithms. In our case, we collected a sample of 48 different
formulas, stemmed from different CNF families. The solving
time per problem is expected to take 1000 seconds according
to a solver experiment without tuning. Then, we ran a Python
script to optimize the solver based on the accumulated running
time of the selected benchmark suite. The tuned parameters
are passed to the solver as command-line options. The basin
hopping strategy is used to accelerate the tuning process.

Finally, the solver instance ParaFROST ALL comprises all
configurations described in the previous sections, in which
HRE, CBT, and all simplifications are enabled.
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Abstract—The sequential SAT solver RISS combines a heavily
modified Minisat-style solving engine of GLUCOSE 2.2 with
a state-of-the-art preprocessor COPROCESSOR and adds many
modifications to the search process. RISS allows to use inpro-
cessing based on COPROCESSOR. As unsatisfiability proofs are
mandatory, but many simplification techniques cannot produce
them, a special configuration is submitted, which first uses all
relevant simplification techniques, and in case of unsatisfiability,
falls back to the less powerful configuration that supports proofs.

I. INTRODUCTION

The CDCL solver RISS is a highly configurable SAT
solver based on MINISAT [1] and GLUCOSE 2.2 [2], [3],
implemented in C++. Many search algorithm extensions have
been added, and RISS is equipped with the preprocessor
COPROCESSOR [4]. Furthermore, RISS supports automated
configuration selection based on CNF formulas features, emit-
ting DRAT proofs for many techniques and comments why
proof extensions are made, and incremental solving. The
solver is continuously tested for being able to build, correctly
solve CNFs with several configurations, and compile against
the IPASIR interface. For automated configuration, RISS is
also able to emit its parameter specification on a detail level
specified by the user. The repository of the solver provides
a basic tutorial on how it can be used, and the solver
provides parameters that allow to emit detailed information
about the executed algorithm in case it is compiled in debug
mode (look for “debug” in the help output). While RISS
also implements model enumeration, parallel solving, and
parallel model enumeration, this document focusses only on
the differences to RISS 7, which has been submitted to SAT
Competition 2017. Compared to the version of 2018, only the
NOUNSAT configuration has been added. For 2020, mainly
defects reported by Coverity have been addressed.

II. SAT COMPETITION SPECIFICS – NOUNSAT
CONFIGURATION

The default configuration uses only variable elimination [5]
and bounded variable addition [6] as simplification, both of
which can produce unsatisfiability proofs.

While recent SAT competitions come with a NOLIMITS
track, this years event requires unsatisfiability proofs. To com-
ply, simplification techniques that cannot produce proofs have
been disabled in this situation. Differently, this years version
comes with the NOUNSAT configuration, which basically
cannot produce unsatisfiability answers. This means, that all
simplification techniques are available for formulas that are
satisfiable, or cannot be solved. In case the formula turns out to
be unsatisfiable, the procedure is solved one more time, using
the configuration that can produce unsatisfiability proofs.

III. AVAILABILITY

The source of the solver is publicly available under the
LGPL v2 license at https://github.com/conp-solutions/riss. The
version with the git tag “satcomp-2020” is used for the sub-
mission. The submitted starexec package can be reproduced
by running “./scripts/make-starexec.sh” on this commit.
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Abstract—We briefly present the massively distributed SAT
solver which we submit to the Cloud Track of the SAT Com-
petition 2020, being the solver engine of a novel framework
for massively parallel and distributed malleable job scheduling
applied to SAT solving. Our solver is based on HordeSat; notable
differences include completely asynchronous communication, a
much more careful clause exchange, and some internal perfor-
mance improvements.

Index Terms—Parallel SAT solving, distributed SAT solving

I. INTRODUCTION

In order to improve massively parallel problem solving “on
demand” in a cloud context, we introduce malleability to
parallel SAT solving as a part of a novel framework named
“mallob” for massively parallel and distributed malleable job
scheduling [1]. Malleability is the property of a computation
to dynamically handle a varying amount of computational
resources (i.e. cores or nodes) during its execution, opening
up vast possibilities for performing highly dynamic load
balancing on many jobs of varying demand and priority that
run in parallel on some large-scale infrastructure.

However, the SAT competitions do not involve malleable
computations nor solving multiple instances at the same time.
As a consequence, we added a special configuration to our
system for the sole purpose of solving a single instance with
full computational power from the beginning and named it
“mallob-mono” (mallob mono instance mode). In the follow-
ing, we will describe the most relevant aspects of this solver
engine and the surrounding architecture.

II. OVERVIEW

On each node we start one MPI process for each set of four
available (virtual) CPUs such that each process can employ
four solver threads. HordeSat [2] serves as a foundation
for the solver engine residing on each process. Internally,
we use Lingeling as a solver backend just like HordeSat’s
default configuration. However, we updated the used Lingeling
version from ayv (2014) [3] to bcj (2018) [4]. We also updated
the native diversification routines of Lingeling according to the
diversification of the 2018 version of Plingeling. We let one
out of 14 solvers in our portfolio perform local search (using

Evaluation of this work was partially performed on the supercomputer
ForHLR funded by the Ministry of Science, Research and the Arts Baden-
Wrttemberg and by the Federal Ministry of Education and Research.

YalSAT [4] as a backend) while the others are CDCL solvers
with different set options.

We adjusted and replaced significant portions of the code-
base of HordeSat in order to match the requirements of our
malleable framework. As such, we enabled the suspension and
resumption of particular solver instances, made all communi-
cation among the nodes completely asynchronous, and enabled
descriptions of SAT formulae to be serialized and transferred
directly over message passing instead of assuming that the
formula resides on each node. Many of these changes are
unimportant for the SAT competition. Some general perfor-
mance improvements were integrated; for example, we reduce
lots of unnecessary getrusage system calls by supplying
a cheap and approximative time measuring callback over the
Lingeling interface instead.

In the following we describe our clause exchange mecha-
nism and the related clause filtering, which are the most promi-
nent differences between HordeSat and our solver engine.

III. CLAUSE EXCHANGE

HordeSat initiates an All-to-all exchange of learnt
clauses every second by a synchronous collective operation
(MPI_Allreduce). The clause buffer size of each node
is of fixed length 1500 and the entire buffer is sent around
regardless of the degree to which it is filled. Duplicate clauses
are detected by HordeSat’s clause filters only after the full
operation succeeded. If an exported local clause buffer is filled
to less than 80%, one of the local solver threads is asked
to increase its clause production. Unit clauses are are always
shared and are exempt from being filtered. As a result, the first
few clause exchanges are often flooded with large numbers of
highly redundant unit clauses after first simplifications and
preprocessing steps.

We have made the clause exchange entirely asynchronous
while ensuring that one broadcast of a globally aggregated
clause buffer takes place every second. We aggregate buffers
of learnt clauses along a binary tree of all computing nodes.
Clause buffers sent over this tree are always in compact
shape, i.e., without any unused portions of memory. During
the reduction, instead of just concatenating the buffers, inner
nodes do a three-way merge of their local clauses and the
clauses of their children, preferring short clauses and filtering
out duplicates with an additional Bloom filter, a datastructure
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that we took from original HordeSat [2]. Thereby, we limit
the maximum length b(u) of a merged clause aggregation
containing clauses from u nodes:

b(u) = du · αlog2(u) · 1500e

Note that α = 0.5 makes the length of a clause aggregation
converge to 1500 the more nodes are involved, and α = 1.0
makes the limit grow linearly in the number of nodes just like
in HordeSat. We set α = 0.75 to find a middle ground between
these extremes.

Additionally, no clauses of length greater than five are
shared. With this strict limitation we expect to avoid a lot of
communication volume and internal work in the SAT solvers
while still sharing lots of potentially interesting information
among the solvers.

After the reduction reaches the binary tree’s root node, the
clause aggregation is broadcast through the tree to all other
nodes and locally digested when appropriate.

IV. CLAUSE FILTERING

We also made some adjustments to HordeSat’s clause filter-
ing mechanic used when clauses are exported or imported. We
added duplicate checking for unit clauses both to each clause
filter and to our duplicate checking during the reduction. This
check does not rely on Bloom filters but functions with exact
hash sets, using one of the commutative hash functions that
are employed in the Bloom filters. This way we do not get
any false positives for unit clauses and make sure that each
such clause is being shared at least once.

Last but not least, we implemented a mechanic similar
to restarts into the clause filters. The authors of original
HordeSat already intended to periodically clear clause filters
in order to be able to share clauses after some time, but it was
not implemented. We introduce a quite careful “forgetting”
of shared clauses: Every five minutes, in one iteration over
all set bits in the filter each bit is unset with probability
4
√
0.5 ≈ 15.91%. As every clause inserted into the filter sets

four bits from four hash functions, the probability that a clause
is forgotten is close to P (forgotten) = P (≥ 1 bit unset) =
1 − P (0 bits unset) = ( 4

√
0.5)4 = 0.5. For the unit clauses,

every element in the explicit set is forgotten with probability
0.5. Overall, approximately half of all clauses are effectively
forgotten and can be shared again.

V. LICENSE

Our system mallob and, by extension, our submitted solver
is licensed under the GNU Lesser General Public License
(LGPLv3). As the licensing of Lingeling was changed to
MIT with the 2018 version, our system consists of fully Free
Software.

VI. CONCLUSION

We described the central aspects of our massively parallel
SAT solver and are excited to see how it performs in the AWS
environment of the competition.

While our competitor does include some computational
overhead due to its malleable job scheduling aspects, we still
expect that our solver will overall outperform original Horde-
Sat due to various improvements of the internal workings of
the portfolio solver and notably the improved clause exchange.
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Abstract—DurianSat is a patched Maple LCM Dist
ChronoBTv3 solver modifying the phase selection heuristic.
DurianSat discriminates decisions based on whether the last
backtrack was chronological or not. It applies a new literal
score based phase selection heuristic called LSIDS if the last
backtrack was chronological.

I. INTRODUCTION

Although phase-saving [5] is highly effective as a phase
selection heuristic for SAT solving, that effectiveness is not
observed if the solver is backtracking chronologically [4]. This
observation is made in an upcoming paper [6]. DurianSat
addresses this lack of integration between chronological back-
track (CB) and phase saving by implementing a literal activity
based phase selection heuristic. This literal activity is called
LSIDS.

II. LSIDS LITERAL ACTIVITY SCHEME

LSIDS, which is a VSIDS [7] like scoring scheme for literals,
maintains activity for every literal. The activity for a literal is
bumped in the following cases :

• If a literal l occurs in a learnt clause, bump activity for l.
• If assignment for a variable v gets canceled during

backtrack; if the assignment was TRUE, then bump activity
for v, otherwise the bump activity of ¬v.

Decay and rescore of activity is the same as VSIDS. Consult
our SAT 2020 paper [6] or the github repository [1] for the
details.

III. LSIDS PHASE SELECTION HEURISTIC

If the branching heuristic decides to branch on a variable v,
an LSIDS based phase selection heuristic looks at the activity
of both the literals of v and selects the literal with higher
activity.

1Durian, the “king of fruits”, is a commonplace fruit in Southeast Asia and
part and parcel of Singapore’s culture. The label can be attributed to the fruit’s
“formidable look and overpowering odour.”

IV. DISCRIMINATING CB AND NCB

The solver Maple LCM Dist ChronoBTv3 [3] uses a
combination of chronological and non-chronological backtracks.
DurianSat adds a patch on the above solver and opts for LSIDS
based phase selection if the last backtrack is chronological.
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1. Introduction

The CDCL SAT solver Maple LCM won the gold medal
of the main track of the SAT Competition 2017. It was
implemented on top of the solver MapleCOMSPS DRUP
[1], [2] by integrating the effective learnt clause minimiza-
tion approach described in [3]. The CDCL SAT solver
Maple CM extends Maple LCM by extending the learnt
clause minimization approach to original clauses and by
minimizing the clauses more than once in certain condi-
tions [4]. Maple CM won the bronze medal of the main
track of the SAT Competition 2018. In the current competi-
tion, we propose Maple CM+dist, which uses the distance
heuristic described in [5] for the first 50,000 conflicts.
In addition, we propose Maple CM+dist+sattime, which
integrates a local search in Maple CM+dist and makes
Maple CM+dist work from the assignment obtained after
applying local search, and Maple CM+dist+simp2– and
Maple CMused+dist, two variants of Maple CM+dist. The
four solvers are described in the remaining sections.

2. Clause Minimization in Maple CM+dist

Clause minimization based on unit propagation (UP) can
be described as follows: Given a clause C = l1∨l2∨· · ·∨lk,
if UP(F ∪ {¬l1,¬l2, . . . ,¬li}) (i ≤ k) derives an empty
clause and {¬l′1,¬l′2, . . . ,¬l′i′} is the subset of literals of
{¬l1,¬l2, . . . ,¬li} that are responsible of the conflict, we
replace C by {l′1 ∨ l′2 ∨ . . . ∨ l′i′}. This clause minimization
is not applied to every clause at every restart because it is
costly. Maple CM selects a restart for triggering a clause
minimization process in the same way as in Maple LCM:
• During preprocessing, each original clause is min-

imized. The minimization process stops when the
total number of unit propagations is greater than 108.

• During the search, Maple CM organizes the learnt
clauses in three sets as MapleCOMSPS DRUP:
CORE, TIER2 and LOCAL. The sets CORE
and TIER2 roughly store the learnt clauses with
LBD≤6, where LBD refers to the number of deci-
sion levels in a clause [6]. It also identifies a subset

of original clauses called useful clauses that are used
to derive at least one learnt clause of LBD≤ 20
since the last clause minimization. Then, before a
restart, Maple CM minimizes each clause C such
that function liveClause(C) (see below) returns true,
provided that the number of clauses learnt since the
last clause minimization is greater than or equal to
α + 2 × β × σ, where α = β = 1000 and σ is the
number of minimizations executed so far.
Function liveClause(C) returns true if C is a learnt
clause in CORE or TIER2 that has been never min-
imized or its LBD has been reduced twice since its
last minimization, or if C is a useful original clause
that has been never minimized or its LBD has been
reduced three times since its last minimization.

However, Maple CM selects the clauses to be min-
imized differently from Maple LCM. First, Maple LCM
only minimizes the learnt clauses in CORE and TIER2,
whereas Maple CM also minimizes the useful original
clauses, because original clauses can also contain redundant
literals. Second, a learnt clause is minimized at most once
in Maple LCM, whereas a clause, either learnt or original,
can be minimized more than once in Maple CM under some
conditions specified in terms of the decrease of its LBD.

The rationale behind the re-minimization of a clause is
that further redundant literals can be detected, using unit
propagation, after adding additional learnt clauses since its
last minimization. Maple CM re-minimizes a learnt (orig-
inal) clause if its LBD was decreased two (three) times
since its last minimization, because UP probably becomes
more powerful in this case. The condition to re-minimize
an original clause is stronger because an original clause
presumably contains fewer redundant literals.

A particular case is a clause with LBD 1. This clause
is probably very powerful in unit propagation and its LBD
value cannot be decreased anymore. So, a clause will be re-
minimized if its LBD becomes 1 since its last minimization,
no matter how many times the LBD value was decreased.
See [4] for more details.

Maple CM+Dist is Maple CM in which the distance
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heuristic [5] is used to select the decision variable during
the first 50,000 conflicts.

3. Local search in Maple CM+dist+sattime

Sattime is a local search algorithm presented in [7]. It
is based on g2wsat [8]. Similar to adaptg2wsat, Sattime
works with a (randomly generated) truth assignment. If
the assignment satisfies all the clauses, the search stops.
Otherwise, Sattime randomly selects a clause c falsified by
the current assignment. If the best variable x in c (i.e., the
variable whose flip allows to satisfy the greatest number of
clauses) is not the most recent variable satisfying c in the
past, it flips x. Otherwise, with an automatically adapted
probability p, it flips the second best variable y in c and,
with probability 1−p, it flips x. Note that adaptg2wsat flips
the best variable x in c if x is not the most recent variable
in c falsifying c in the past; otherwise, it flips the second
best variable y in c with probability p, and it flips x with
probability 1−p. This difference with adaptg2wsat in terms
of satisfying versus falsifying makes Sattime efficient for
both random and structured instances.

Maple CM+Dist+Sattime solves an instance in three
steps:

1) It minimizes the original clauses as in
Maple CM+Dist. Observe that this minimization
can fix some variables in the instance. It repeats
the minimization until no more variables can be
fixed or the total number of unit propagations
exceeds 2× 109.

2) If the total number of unit propagations does not
exceed 2×109, it executes the heuristic Sattime for
2× 108 flips.

3) It executes the CDCL search from the assignment
obtained in step 2.

It is well-known that local search is less effective than
CDCL for structured instances. The use of local search in
Maple CM+Dist is based on the following two observations:
(1) local search allows to obtain an assignment close to
some solutions of a satisfiable instance. Working from this
assignment would allow CDCL to find one of these solutions
more easily; and (2) local search is not effective for the
instances in which unit propagation can fix some variables.
That is why local search in Maple CM+Dist is applied to a
simplified instance in which as many as possible variables
are fixed in the clause minimization phase.

4. Further simplifying a simplified clause in
Maple CM+dist+simp2–

Maple CM+dist+simp2– implements an idea of Riss
7.1 [9] on top of Maple CM+dist: if a clause has been
reduced by propagating its literals in their original order,
then re-simplify it by propagating its remaining literals in
the reverse order. It is not necessary to propagate the literals
of a clause in the reverse order if it cannot be vivified in its
original order.

5. Simplifying clauses that are used during the
search in Maple CMused+dist

A SAT instance usually contains a huge number of
clauses. A CDCL solver also learns a large number of
clauses during the search. However, a considerable num-
ber of these original or learnt clauses are rarely or not
used during the search, and it is not necessary to vivify
them. A useful conflict is a conflict such that the LBD
of the clause learnt from the conflict is less than 20 [4].
Maple CMused+dist is Maple CM+dist but limits the learnt
or original clauses to those used to derive at least 3 use-
ful conflicts since the last clause vivification. Additionally,
while Maple CM+dist does not vivify the learnt clauses
with LBD greater than 6 (i.e., learnt clauses stored in the
LOCAL set), Maple CMused+dist also vivifies the most
active quart of learnt clauses in LOCAL, provided that these
clauses were used to derive at least 3 useful conflicts since
the last clause vivification.
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clause minimization approach for CDCL SAT solvers,” in Proceedings
of IJCAI, 2017, pp. 703–711.

[4] C.-M. Li, F. Xiao, M. Luo, F. Manyà, Z. Lü, and Y. Li, “Clause vivi-
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Abstract—This system description describes our new SAT solver
KISSAT, how it differs from CADICAL, as well as changes made
to CADICAL. We further present our new distributed cube-
and-conquer solver PARACOOBA. Previous parallel SAT solvers
PLINGELING and TREENGELING in essence remain unchanged.

I. CADICAL

Compared to the 2019 version of CADICAL [1], we
have improved inprocessing by implementing conditioning [2].
However, this feature does not seem to improve performance
and is not enabled by default (“--condition=true”).
The major difference is the implementation of a three-tier
system [3] to decide which clauses should be kept during
clause reduction: tier-0 clauses (LBD ≤ 2) are kept forever,
tier-1 clauses (2 < LBD ≤ 6) survive one round of reduction,
whereas tier-2 clauses can be deleted immediately. In any case,
clauses used since the last reduction are not deleted.

Moreover, even though CaDiCaL was designed to allow up
to INT MAX = 231 − 1 = 2 147 483 647 variables, represented
with the int type of C++, it had a serious flaw because the id-
iom “for (int i = 1; i <= max_var; i++)” was
used throughout the code. This lead to undefined behaviour
if INT MAX variables are used even though it works fine for
fewer. To avoid complicated iteration code and also to avoid
such issues in the future we implemented variable and literal
iterators, used as in “for (auto idx : vars)” or as
in “for (auto lit : lits)”. We would like to thank
Håkan Hjort for bringing this issue to our attention.

II. KISSAT

Experiments with large formulas, such as the DIMACS
formula “p cnf 2147483647 0” resulted in the following
observations. Even though CaDiCaL can handle formulas with
INT MAX variables, it needs a substantial amount of main
memory (more than 512 GB) as well as long time for initializa-
tion. One reason is using the C++ container “std::vector”
for most data structures (e.g., to hold flags, values, decision
levels, reasons, scores). They are also mostly zero initialized.
Instead, we now use the C memory allocator “calloc”. It

Supported by Austrian Science Fund (FWF) projects W1255-N23 and
S11408-N23, by the LIT AI and LIT Secure and Correct Systems Labs and the
LIT project LOGTECHEDU all three funded by the State of Upper Austria.

provides zero initialization on-demand by the virtual memory
system and reduces resident set size accordingly.

This design decision also raised the question, whether we
can reuse some other features of LINGELING [4] to further
reduce memory. In KISSAT we therefore completely inline
binary clauses in watcher stacks to reduce the size of watches
from 16 bytes in CADICAL to 4 bytes for binary and 8 bytes
for large clauses (due to the blocking literal). This in turn
requires to use 4-byte offsets instead of pointers to reference
large (non-binary) clauses. Note that binary clauses were still
allocated in CADICAL in the memory arena holding clauses
in the same way as larger clauses. In KISSAT they now really
only exist in watcher lists. LINGELING even inlined ternary
clauses which we consider less useful now.

We also revisited the data structure for holding watches
(watched lists). In KISSAT we use a dedicated implementation
of stacks of watchers, requiring only two offsets (of together
8 bytes in the compact competition configuration) instead of
3 pointers (requiring 24 bytes on a 64-bit architecture). This
became possible by assuming that the all-bits-one word is not
a legal watch and free memory in the watcher stack arena is
marked with all-bits-one words. Pushing a watch on a watcher
stack requires checking whether the word after the top element
is illegal (all-bits-one). If so, it is overwritten. Otherwise the
whole stack is moved to the end of the allocated part in the
watcher arena. This produces the overhead that once in a while
the watcher arena requires defragmentation and is usually
performed after collecting redundant clauses in “reduce”.

In order to distinguish binary and large watches in watcher
stacks, we use bit-stuffing as in LINGELING. This leaves
effectively 31 bits to reference large clauses. Since these large
clauses are allocated 8-byte aligned in the clause arena, the
maximum size of this arena is 8 ·231 bytes (16GB). Note that
in practice many large CNFs consist mostly of binary clauses,
which due to inlining do not require any space in this arena.
Further, beside data structures for variables, watch lists occupy
a large fraction of the overall memory. Actually the largest
CNFs we ever encountered in applications easily stay below
this limit while in total KISSAT reaches 100GB memory
usage. On top of that, other solvers including CADICAL often
need more than 4 times more main memory than KISSAT.

Due to inlining binary clauses redundant and irredundant
binary clauses have to be distinguished [5], which requires an-
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other watcher bit (“redundant”). Finally, as in CADICAL,
hyper binary resolvents are generated in vasts amounts [6]
during failed literal probing and vivification [7] and have to
be recycled quite aggressively. To mark these hyper binary
resolvents we need a third watcher bit (“hyper”) and the
effective number of bits for literals is reduced to 29. Thus, the
solver can only handle 268 435 455 = 228 − 1 variables.

In “dense mode” (during for instance variable elimination)
the solver maintains full occurrence lists for all irredundant
clauses. In the default “sparse mode” (during search) only two
literals per large clause are watched and large clause watches
have an additional blocking literal. Thus, as in LINGELING,
watch sizes vary between one and two words, whichs lead
to very cumbersome and verbose watch list traversal code in
LINGELING repeated all over the source code. For KISSAT
we were able to almost completely encapsulate this complexity
using macros. The resulting code resembles ranged-based for
loops in C++11 as introduced in CADICAL last year.

These improved data structures described above obviously
require too many changes and we decided to start over with
a new solver. In order to keep full control of memory layout,
it was written in C. Otherwise we ported all the important
algorithms from CADICAL, and were also able to reconfirm
their effectiveness in a fresh implementation. In this regard
using “target phases” as introduced last year in CADICAL [1]
should be emphasized, which after careful porting, gave a large
improvement on satisfiable instances.

We want to highlight the following algorithmic differences.
The first version of CADICAL had a sophisticated implemen-
tation of forward subsumption, building on the one in SPLATZ
inspired by [8], which was efficient enough to be applied
to learned clauses too. Only later we added vivification [9],
which is now used in most state-of-the-art solvers, and is
particularly effective on learned clauses [7]. Thus subsumption
on learned clauses becomes less important and we only apply
it on irredundant clauses before and during bounded variable
elimination. We have both a fast forward subsumption pass for
all clauses as well incremental backward but now also forward
subsumption during variable elimination, carefully monitoring
variables occurring in added or removed (irredundant) clauses,
which allows us to focus the inprocessing effort.

The clause arena keeps irredundant clauses before redundant
clauses, which allows during reduction of learned clauses in
“reduce” to traverse only the redundant part of the arena.
Since watches contain offsets to large clauses in the arena we
can completely avoid visiting irredundant (original) clauses
during this procedure. This substantially reduces the hot-spot
of flushing and reconnecting watchers in watch lists during
clause reduction. Note, that “reduce” beside “restart” is the
most frequently called procedure in a CDCL solver (after the
core procedures “propagate”, “decide”, and “analyze”).

In comparison to CADICAL inprocessing procedures are
scheduled slightly differently. First there is no forward sub-
sumption of clauses outside of the “eliminate” procedure. In
KISSAT compacting the variable range is part of “reduce”
and actually always performed if new variables became inac-

tive (eliminated, substituted or unit). Otherwise “probe” and
“eliminate” call the same algorithms as in CADICAL, except
for vivification which became part of “probe” and duplicated
binary clause removal (aka hyper unary resolution), which has
moved from “subsume” (thus in CADICAL triggered during
search and during variable elimination) to “eliminate”.

More importantly we have a more sophisticated scaling
procedure for the number of conflicts between calls to “probe”
and “eliminate”, which as in CADICAL takes the size of the
formula into account, but now applies an additional scaling
function instead of just linearly increasing the base interval in
terms of n denoting how often the procedure was executed.

For variable elimination (“elim”) the scaling function of the
base conflict interval is n · log2 n. For “probe” it is n · log n.
Similarly we scale the base conflict interval for “reduce” by
n/ log n, while for “rephase” it remains linear. More precisely
as logarithm we use log10(n+10). Thus “reduce” occurs most
often, followed by “rephase”, then “probe” and least often
“elim”, all in the long run, independently of the base conflict
interval, and the initial conflict interval.

Since boolean constraint propagation is considered the hot-
spot for SAT solvers, CADICAL uses separate specialized
propagation procedures during search, failed literal probing
and vivification. In KISSAT we have factored out propagation
code in a header file which can be instantianted slightly dif-
ferently by these procedures, so taking advantage of dedicated
propagation code while keeping the code in one place.

The concept of quiet “stable phases” without many restarts
and “non-stable phases” with aggressive restarting was re-
named. We call it now “stable mode” and “focused mode”
to avoid the name clash with “phases” in “phase saving”
(and “target phases”). We further realized that mode switching
should not entirely be based on conflicts, since the conflict
rate per second varies substantially with and without frequent
restarts (as well as using target phases during stable mode).

Since the solver starts in focused mode, these focused mode
intervals can still be based on a (quadratically) increasing
conflict interval. For the next stable interval we then attempt
to use the same time. Of course, in order to keep the solver
deterministic, this requires to use another metric than run
time. In CADICAL we simply doubled the conflict interval
after each mode switch which did not perform as well in our
experiments as this new scheme.

Our first attempt to limit the time spend in stable mode
was to use the number of propagations as metric. But this
was not precise enough, since propagations per second still
vary substantially with and without many restarts. Instead we
now count “ticks”, which approximate the number of cache
lines accessed during propagations. This refines what Donald
Knuth calls “mems” but lifted to cache lines and restricted to
only count watcher stack access and large clause dereferences,
ignoring for instance accessing the value of a literal.

Cache line counting is necessary because in certain large
instances with almost exclusively binary clauses most time is
spend in accessing the watches with inlined binary clauses in
watcher stacks and not in dereferencing large clauses, while in
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general, and for other instances with a more balanced fraction
of large and binary clauses, a single clause dereference is
still considerably more costly than accessing an inlined binary
clause. Computing these “ticks” was useful limit the time spent
in other procedures, e.g., vivification, in terms of time spent
during search (more precisely the time spend in propagation).

While porting the idea of target phases [1], we realized that
erasing the current saved phases by for instance setting them
to random phases, might destroy the benefit of saved phases to
remember satisfying assignments of disconnected components
of the CNF [10]. Instead of decomposing the CNF explicitly
into disconnected components, as suggested in [10], we simply
compute the largest autarky of the full assignment represented
by saved phases, following an algorithm originally proposed
by Oliver Kullman (also described in [2]).

This unique autarky contains all the satisfying assignments
for disconnected components (as well as for instance pure lit-
erals). If the autarky is non-empty, its variables are considered
to be eliminated and all clauses touched by it are pushed on
the reconstruction stack. We determine this autarky each time
before we erase saved phases in “rephase” and once again if
new saved phases have been determined through local search.

Finally, combining chronological backtracking [11] with
CDCL turns out to break almost the same invariants [12] as on-
the-fly self-subsuming resolution [13], [14] and thus we added
both, while CADICAL is missing the latter. Both techniques
produce additional conflicts without learning a clause and thus
initially we based all scheduling on the number of learned
clauses instead on the number of conflicts, but our experiments
revealed that using the number of conflicts provides similar
performance and we now rely on that for scheduling.

As last year for CADICAL we submit three configurations
of KISSAT, one targeting satisfiable instances (“sat”) always
using target phases (also in focused mode), one for unsat-
isfiable instances (“unsat”), which stays in focused mode,
and the default configuration (“default”), which alternates
between stable and focused mode as described above, but only
uses target phases in stable mode.

III. PARACOOBA

Our new solver PARACOOBA [15] has been submitted to
the cloud track. It is a distributed cube-and-conquer solver.
The input DIMACS is split on the master node into various
subproblems (cubes) that can be solved independently. The
work is distributed over the network first from the master
node to other nodes and then across nodes depending on the
workload of nodes.

The “quality” of the cubes is important for the efficiency of
the solver. We have submitted two versions to the competition:
one relies on the state-of-the-art lookahead solver MARCH [16]
for splitting; another uses our own implementation of tree-
based lookahead [6]. Our implementation is part of CADICAL
and is much less tuned than MARCH. It is run with a timeout
and, whenever splitting takes too long (more than 30 s), we
fall back on the number of occurrences.

During solving, whenever a subproblem takes too long, i.e.,
based on a moving average of solving times, then we split
the problem again into two or more subproblems. If many
nodes are unused, we generate more (and hopefully simpler)
subproblems in order to increase the amount of work that can
be distributed onto further nodes.

Generated subproblems are solved using the incremental
version of CADICAL described below in Sect. V and we aim
at solving similar cubes on the same CADICAL instance to
reuse the results of previous inprocessing.

IV. PLINGELING AND TREENGELING

We submitted PLINGELING and TREENGELING to the par-
allel track. Compared to the version submitted to the 2018
SAT Competition [17] we have made essentially no changes
to PLINGELING and TREENGELING nor to the SAT solver
LINGELING that is used internally.

V. INCREMENTAL TRACK

CADICAL also enters the incremental track of the com-
petition. It relies on our method [18] to identify and restore
the necessary clauses when new clauses are added and can
thereby make use of most of all the implemented inprocessing
techniques. A sequence of incremental problems is considered
as a stand-alone run from the perspective of inprocessing
scheduling, i.e. none of the relevant inprocessing counters are
reset in between iterations. The assumptions of each iteration
are internally frozen (i.e. excluded from inprocessing), but
beyond that there is no special treatment regarding them.

VI. LICENSE

Our solvers are all available under MIT license at
http://fmv.jku.at/cadical for CADICAL, http://fmv.jku.at/kissat
for KISSAT, https://github.com/maximaximal/Paracooba for
PARACOOBA, and https://github.com/arminbiere/lingeling for
PLINGELING and TREENGELING.
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LIP6, UMR 7606, Paris, France
vincent.vallade@lip6.fr

Souheib Baarir
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Abstract—GlucoseEsbpSel combine the Glucose SAT solver
with two techniques that handle symmetries dynamically. The
first called effective symmetry breaking predicate (ESBP), prunes
the search tree, while the second, called symmetric explanation
learning (SEL), accelerates the traversal of this latter.

Index Terms—SAT, symmetry, breaking, learning, competition

I. INTRODUCTION

Many real-world problems exhibit symmetry, but the SAT
competition and SAT race seldomly feature solvers that are
able to exploit symmetry properties. Here, we propose a solver
that exploits these properties in a complete dynamic way.

II. MAIN TECHNIQUES

The integrate to Glucose 4.0 [1] two complementary
symmetry-based techniques: ESBP and SEL.

The idea of the ESBP approach is to break symmetries
on-the-fly: when the current partial assignment can not be a
prefix of a lex-leader of an equivalence class of assignments, a
symmetry breaking predicate (sbp) that prunes this forbidden
assignment and all its extensions is generated. It is then
injected as a new (special) conflicting clause. The classical
conflict analysis is then activated and a back-jumping is
operated. The details of this approach can be found in [2].

The SEL approach is based on learning symmetric images
of explanation clauses for unit propagations performed during
search. A key idea is that these symmetric clauses are only
learned when they would restrict the current search state, i.e.,
when they are unit or conflicting. So, this technique allows to
accelerate the traversal of the search tree. The details of this
approach can be found in [3].

III. SPECIAL ALGORITHMS, DATA STRUCTURES AND
OTHER FEATURES

The symmetries of the treated instance are computed using
the Bliss tool [4].

To be able to combine the two approach, an extra tagging
system for the clauses is added to Glucose. It allows to
distinguish the classical clauses from the sbp clauses: when

a clause is tagged to be an sbp or generated using an sbp,
then the SEL approach has to be blocked from operating.

To implement SEL, the employment of a second symmet-
rical clausestore is needed. This is for clauses symmetrical to
the ones that are asserting in the current search state. These
symmetrical clauses σ(c) are added to the main learned clause
store only when they become unit or conflicting, and otherwise
are quickly forgotten after a back-jump causes the original
clause c to revert to non-unit status. As usual, a two-watched
literal scheme keeps track of the truth value of any clause in
the symmetrical clause store.

IV. AVAILABILITY

Source code and documentation for the combined approach
is available under Glucose’s license, and and is available at
https://github.com/lip6/ESBP SEL/tree/experimental/core.

Besides, the standalone ESBP approach is implemented as a
library, called cosy, that can be integrated with any CDCL-like
solver. Cosy is released under GPL-v3 licence and is available
at https://github.com/lip6/cosy.

ACKNOWLEDGMENT

We would like to thank the authors of Bliss, MiniSat [5]
and Glucose.

REFERENCES

[1] G. Audemard and L. Simon, “Predicting learnt clauses quality in modern
SAT solvers,” in Proceedings of the 21st International Joint Conference
on Artificial Intelligence (IJCAI ’09), Jul. 2009, pp. 399–404.

[2] H. Metin, S. Baarir, M. Colange, and F. Kordon, “Cdclsym: Introducing
effective symmetry breaking in sat solving,” in Tools and Algorithms for
the Construction and Analysis of Systems, D. Beyer and M. Huisman,
Eds. Cham: Springer International Publishing, 2018, pp. 99–114.

[3] J. Devriendt, B. Bogaerts, and M. Bruynooghe, “Symmetric explanation
learning: Effective dynamic symmetry handling for sat,” in Theory
and Applications of Satisfiability Testing – SAT 2017, S. Gaspers and
T. Walsh, Eds. Cham: Springer International Publishing, 2017, pp.
83–100. [Online]. Available: https://bitbucket.org/krr/glucose-sel

[4] T. Junttila and P. Kaski, “Engineering an efficient canonical labeling tool
for large and sparse graphs,” in Proceedings of the Ninth Workshop on
Algorithm Engineering and Experiments and the Fourth Workshop on
Analytic Algorithms and Combinatorics, D. Applegate, G. S. Brodal,
D. Panario, and R. Sedgewick, Eds. SIAM, 2007, pp. 135–149.

Proceedings of SAT Competition 2020: Solver and Benchmark Descriptions, volume B-2020-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2020.

54
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Abstract—This paper describes the solver P-MCOMSPS-STR
submitted to the parallel track of the 2020’s SAT Competi-
tion. It is a concurrent portfolio solver instantiated with the
Painless (PArallel INstantiabLE Sat Solver) framework and
using MapleCOMSPS as core sequential solver.

I. INTRODUCTION

P-MCOMSPS-STR is a parallel SAT solvers built by instan-
tiating components of the Painless parallel framework [1].
It is a portfolio-based [2] solver implementing a diversification
strategy [3], fine control of learnt clause exchanges [4], using
MapleCOMSPS [5] as a core sequential solver, and where
learnt clause strengthening [6] has been integrated.

Section II gives an overview on Painless framework.
Section III details the implementation of P-MCOMSPS-STR
using Painless and MapleCOMSPS.

II. DESCRIPTION OF PAINLESS

Painless is a framework that aims at simplifying the im-
plementation and evaluation of parallel SAT solvers for many-
core environments. Thanks to its genericity and modularity, the
components of Painless can be instantiated independently
to produce new complete solvers.

The main idea of the framework is to separate the technical
components (e.g., those dedicated to the management of
concurrent programming aspects) from those implementing
heuristics and optimizations embedded in a parallel SAT
solver. Hence, the developer of a (new) parallel solver concen-
trates his efforts on the functional aspects, namely paralleliza-
tion and sharing strategies, thus delegating implementation
issues (e.g., data concurrent access protection mechanisms)
to the framework.

Three main components arise when treating parallel SAT
solvers: sequential engines, parallelization, and sharing. These
form the global architecture of Painless.

A. Sequential Engines

The core element that we consider in our framework is a
sequential SAT solver. This can be any CDCL state-of-the
art solver. Technically, these engines are operated through a
generic interface providing basics of sequential solvers: solve,
interrupt, add clauses, etc.

Thus, to instantiate Painless with a particular solver, one
needs to implement the interface according this engine.

B. Parallelization

To built a parallel solver using the aforementioned engines,
one needs to define and implement a parallelization strategy.
Portfolio and Divide-and-Conquer are the basic known ones.
Also, they can be arbitrary composed to form new strategies.

In Painless, a strategy is represented by a tree-structure
of arbitrary depth. The internal nodes of the tree rep-
resent parallelization strategies, and leaves are core en-
gines. Technically, the internal nodes are implemented using
WorkingStrategy component and the leaves are instances
of SequentialWorker component.

Hence, to develop its own parallelization strategy, the user
should create one or more strategies, and build the associated
tree-structure.

C. Sharing

In parallel SAT solving, the exchange of learnt clauses
warrants a particular focus. Indeed, beside the theoretical
aspects, a bad implementation of a good sharing strategy may
dramatically impact the solver’s efficiency.

In Painless, solvers can export (import) clauses to (from)
the others during the resolution process. Technically, this is
done by using lock-free queues [7]. The sharing of these
learnt clauses is dedicated to particular components called
Sharers. Each Sharer is in charge of sets of producers
and consumers and its behaviour reduces to a loop of sleeping
and exchange phases.

Hence, the only part requiring a particular implementation
is the exchange phase, that is user defined.

III. P-MCOMSPS-STR

This section describes the overall behaviour of our com-
peting instantiation named P-MCOMSPS-STR. Its architec-
ture is highlighted in Fig. 1. It implements the Painless
strengthening described in [8]. In the following, we highlight
the outline.

A. MapleCOMSPS

MapleCOMSPS [5] is based on MiniSat [9], and relies
on the classical VSIDS [10], and the more recently defined
LRB [11] for its decision heuristics. These two are used in
one-shot phases: first LRB, then VSIDS. Moreover, it uses
Gaussian Elimination (GE) at preprocessing time.
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Fig. 1. Architecture of P-MCOMSPS-STR.

We adapt this solver for the parallel context as follows: (1)
we parametrized the solver to select either LRB, or VSIDS for
all solving process (noted respectively, L and V); (2) we added
callbacks to export and import clauses; (3) we added an option
to use or not the GE preprocessing; (4) we parametrized the
solver to use as variable score comparator either < or <=
(noted respectively head: H and tail: T).

B. Strengthener

A reducer engine (R in Fig. 1) implements the algorithm
introduced in [6].

We implemented the strengthening operation as a decorator
of SolverInterface. This decorator is a SolverInterface itself
that uses, by delegation, another SolverInterface to apply the
strengthening, in the present case a MapleCOMSPS solver.

C. Portfolio and Diversification

P-MCOMSPS-STR is a solver implementing a basic port-
folio strategy (PF), where one solver is used as a reducer,
and the other underlying core engines are either LH, LT, VH or
VT instances (i.e., combination of VSIDS or LRB, and head
or tail).

For each type of instances, we apply a sparse random
diversification similar to the one introduced in [3]. That is
for each group of k solvers, the initial phase of a solver is
randomly set according the following settings: every variable
gets a probability 1/2k to be set to false, 1/2k to true, and
1− 1/k not to be set.

Moreover, only one of the solvers performs the GE prepro-
cessing.

D. Controlling the Flow of Shared Clauses

In P-MCOMSPS-STR, the sharing strategy ControlFlow
is inspired from the one used by [3], [4]. We instantiate one
Sharer for which all solvers are producers. It gets clauses
from this producer and exports some of them to all others (the
consumers).

The exchange strategy is defined as follows: each solver
exports clauses having a LBD value under a given threshold
(2 at the beginning). Every 1.5 seconds, 1500 literals (the
sum of the size of the shared clauses) are selected from each

producers by the Sharer and dispatched to consumers. The
LBD threshold of the concerned solver is increased (resp.
decreased) if an insufficient (resp. a too big) number of literals
are dispatched: respectively, less than 75% (1125 literals) and
more than 98% (1470 literals).

E. Online Strengthening

The reducer engine is both a consumer and a producer of
the sharer (Shr). It receives clauses from the different cores,
strengthened them, in case of success it then exports them
back. The sharing mechanism will then share this strengthened
clauses to all the other solvers.

Since, a strengthened clause subsumes the original one, it
is likely that cores will forget the original clause over time.
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Abstract—ManyGlucose is a deterministic parallel SAT
solver based on Glucose-syrup 4.1. In order to achieve
reproducible behavior, ManyGlucose has a special mech-
anism called delayed clause exchange and accurate es-
timation of execution time of clause exchange interval
between solvers.

I. Introduction
ManyGlucose 4.1-60 is a deterministic portfolio parallel

SAT solver for shared memory multi-core systems. Given
an instance, a deterministic solver has reproducible results
in terms of solution (satisfying assignment or proof of
unsatisfiability) and running time. ManyGlucose supports
such reproducible behavior. The base solver is Glucose-
syrup 4.1 [1] which is a non-deterministic parallel SAT
solver. To achieve reproducible behavior, ManyGlucose has
a special mechanism called delayed clause exchange and
accurate estimation of execution time of clause exchange
interval between solvers [2].

II. Main Techniques
ManySAT 2.0 [3] is the first parallel SAT solver that sup-

ports reproducibility. To achieve deterministic behavior,
it periodically synchronizes all threads, each of which exe-
cutes MiniSat 2.2 [4], before and after the clause exchange.
The exchange interval is called a period. In ManySAT, all
threads need to be synchronized periodically. Hence, wait-
ing threads frequently occur in a many-core environment.

In order to reduce the idle time of threads, ManyGlu-
cose uses the following two techniques [2]:

1) Delayed clause exchange: each thread receives learnt
clauses acquired in m periods ago of the other
threads. This eliminates the need to wait if the gap
of the period of each thread is less than or equal to
m, where m is an admissible delay, called margin.

2) Accurate estimation of execution time of period: In
ManySAT, the length of a period is defined as the
number of conflicts. The generation speed of con-
flicts fluctuates frequently since it is affected by the
number and length of clauses. In ManyGlucose, two
new definitions of a period are available. The first
one is based on the number of literal accesses and the
second one is based on the number of executions of
blocks (statements enclosed in curly braces in C++).

From version 4.1-2 (SAT Competition 2018), the man-
agement of the clause database for exchange has been
completely changed. In 4.1-2, there is one global clause
database and mutual exclusion control is required to access

the database. In 4.1-60, each thread and each period has
a clause database. As a result, the solver does not have to
do mutually exclusive control to access the database.

III. Main Parameters
We set the margin to 20 and use the block execution

based period. The portfolio strategy of ManyGlucose is
same as Glucose-syrupexcept that each thread uses dif-
ferent random seeds to hold the diversity of solvers. We
submit ManyGlucose 4.1-60 with 32 threads and with 64
threads to Parallel track.

IV. Availability
ManyGlucose 4.1-60 is developed based on Glucose-

syrup 4.1. Permissions and copyrights of ManyGlucose fol-
lows that of Glucose-syrup. ManyGlucose can be down-
loaded at https://github.com/nabesima/manyglucose-
satcomp2020.
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Abstract—SLIME 4 it’s the evolution of the SAT Solver send
to SAT Race 2019 (Version 1) [1] of the same name, integrate
several techniques and improvements, for SAT Competition 2020
exist Cloud, Incremental, and Standard versions.

Index Terms—CNF, SAT, Cloud, Incremental

I. SLIME SAT SOLVER

Its state of the art SAT Solver, with the following general
capabilities.

A. Geometric Temporal Rule

The internal flux of the solver is affected by a temporal
switch that changes on geometric time, and this gives to the
solver a small Random Behaviour depends on the performance
of the machine, in practice present several advantages respect
to the static execution.

B. The BOOST Heuristic

Boost Heuristic Based on the HESS algorithm, which is an
Oracle-based deterministic black-box optimization algorithm,
BOOST located on two strategic zones of the execution flux,
this alternate according to the Exponential Temporal Rule, and
manage the polarities of literals.

C. Distribution of polarities

For the standard version, the polarities of the literals initially
distributed according to their parity; for the Cloud version,
these polarities are uniformly randomized.

D. Cloud

SLIME Cloud is an MPI implementation that works like
a portfolio sat solver but with SLIME as base, according to
Randomization of Polarities and the Geometric Temporal Rule.
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Abstract—In this document we describe our parallel SAT
solver TOPOSAT2 submitted to the SAT competition 2020 in the
AWS Cloud track. We briefly review the key insights and the
setup of our solver.

I. INSIGHTS OF THE SOLVER

TOPOSAT2 was mainly designed to run in a massively-
parallel environment (> 1000 solver threads). Thus, we are
curious to see how it performs in an AWS cloud system. It
is built on top of Glucose 3.0, but uses a bug-fixed version
of the lockless clause sharing mechanism from ManySAT [1]
for communication on one compute node rather than the lock-
based implementation from Glucose Syrup. The communica-
tion between nodes uses MPI.

It comes with two features which we hope will be especially
useful in the competition.

A. Diversification

The first portfolio solvers used different sequential solvers,
or different settings of one sequential solver. We somewhat go
back to the roots and diversify the search of the solver threads
by the following parameters.

• Branching: Some solver threads use VSIDS, whereas
other use LRB [2], as this branching heuristic was quite
successful in the past SAT competitions. As VSIDS still
works better on a significant amount of benchmarks, we
use both.

• Restarts: We use the inner/outer restart scheme [3], Luby
restarts, and the adaptive restart strategy from GLU-
COSE [4].

• Learnt Clause DB management: Some solver threads use
a scheme similar to the one suggested in [5]: Clauses with
very low LBD (≤ 3) are stored permanently. Clauses of
intermediate LBD are stored at least for some time, and
there is a small activity-based clause storage. The LBD of
clauses imported from other solver threads are initialised
with the size of the clause. Thus, the clause must be used
in order to update its LBD, and allowing it to be stored for
a longer time. Some other solver threads use the default
clause management strategy from GLUCOSE [6].

B. Lifting exported clauses

Wieringa et. al suggested to use some threads of a parallel
SAT solver to strengthen learnt clauses [7]. Similarly, in [8]

some of the learnt clauses are strengthened during search.
We use this technique when exporting clauses. Whenever one
solver threads learns a clause of sufficiently low LBD, it is
stored in an extra buffer. After the next restart, the clauses
from this buffer are strengthened, and the results are exported
to the other solver threads.

C. Parameter setup

The submitted version uses a variation of the clause import
strategy of MANYSAT. During search, the trail size is moni-
tored. Clauses are imported when some time has passed and
the solver is somewhat close to the root of the search tree.
In this way, we try to prevent the solver from backtracking
too often when imported clauses are unit under the current
assignment.
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Abstract—We selected 400 benchmark instances for the main
track of SAT Competition 2020. The selected instances are
composed of 300 new submitted instances and 100 instances
which have already been used in previous competitions.

I. INTRODUCTION

As in previous SAT competitions, the BYOB rule (bring your
own benchmarks) required the participating teams to submit
at least 20 benchmark instances.

Due to the immense feedback to our call for benchmarks
we obtained a total of 1260 new benchmark instances, of
which a total of 1012 instances satisfies our criterion of being
interesting, i.e. they could not be solved by Minisat in less
than 10 minutes.

Of the 1012 interesting new instances, we selected 300
instances for the competition by the procedure described
below. We augmented this set by 100 instances of previous
competitions, thus balancing the number of instances with
satisfiable, unsatisfiable and unknown result.

II. BENCHMARK INSTANCE SUBMISSIONS

Per instance author, we included a maximum of 14 bench-
mark instances by using the following procedure. Let I(a) be
the set of instances submitted by author a. We created the
partition I(a) = I(a, sat) [ I(a, unsat) [ I(a, unknown) of
satisfiable, unsatisfiable or unknown subsets, respectively.

Per author a, we randomly selected 7 instances of I(a, sat)
and 7 instances of I(a, unsat). In case of |I(a, sat)| < 7 or
|I(a, unsat)| < 7, we added randomly selected instances of
I(a, unknown).

By this procedure we obtained an initial selection of 308
benchmark instances, of which we knew 122 to be satisfiable,
and 78 to be unsatisfiable, such that we randomly removed
8 satisfiable instances to get the final selection of 300 new
benchmark instances.

Table I displays the numbers of submitted, interesting and
finally selected instances split by problem family.

III. FINAL SET OF BENCHMARKS

As the number of satisfiable instances in the new set of
benchmark instances is much larger than the number of un-
satisfiable instances, we used the 100 old instances to balance
the amounts of sat, unsat and unknown instances. Table II
display the final numbers of instances selected.

In addition to this balancing criterion, we made sure that
none of the the 100 randomly selected old instances belongs
to an instance family which is already represented in the set of

submitted interesting selected family
6 2 2 01-integer-programming

187 139 14 antibandwidth
40 20 13 baseball-lineup

393 333 14 bitvector
20 15 12 cellular-automata
38 18 7 cnf-miter
14 14 14 coloring
20 20 14 core-based-generator
18 13 13 cover

106 93 34 cryptography
20 19 7 discrete-logarithm
58 57 7 edge-matching
8 5 5 fermat

40 3 0 flood-it-puzzle
20 19 13 hgen
56 48 14 hypertree-decomposition
20 16 14 influence-maximization
20 20 9 lam-discrete-geometry
20 20 8 polynomial-multiplication
4 2 2 schur-coloring

20 20 12 station-repacking
23 19 7 stedman-triples
5 2 2 sum-subset

20 20 14 tensors
12 7 7 termination
20 16 14 timetable
16 16 14 tournament
36 36 14 vlsat

1260 1012 300 ⌃
TABLE I

FAMILIES AND AMOUNTS OF NEWLY SUBMITTED INSTANCES

new instances (see Table I), as far as the respective data was
available and accessible. We also excluded randomly gener-
ated instances, planning instances (due to this years planning
subtrack) and agile instances, and used “GBD Benchmark
Database” (GBD)1 to query for instances with the desired
properties [1].

SAT UNSAT UNKNOWN ⌃

new instances 114 78 108 300
old instances 21 57 22 100

⌃ 135 135 130 400
TABLE II

AMOUNT OF OLD AND NEW INSTANCES BY RESULT
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Abstract—We used 6 applications with 50 benchmark instances
per application to run the incremental library track.

I. INTRODUCTION

With the introduction of IPASIR (Re-entrant Incremental
Solver API), the incremental library track took place for
the first time in SAT Race 2015 [1], and then again in
SAT Competitions 2016 and 2017. In SAT Competitions 2020,
we run the track again and selected a total 300 benchmark
instances for the 6 applications described below.

II. BENCHMARKS

A. Backbone Detection

The application genipabones reads a formula from a given
file and transforms it using the dual rail encoding, i.e., it
replaces each x by px and each x by nx and adds clauses of the
form (px ∨ nx). Incrementally, each variable is then checked
if it is a backbone variable or not. For this application, we
selected 50 of the smallest and easiest satisfiable problems of
previous SAT competitions.

B. Essential Variables Calculation

The application genipaessentials incrementally finds all the
variables essential for the satisfiability of a given formula by
testing each variable using the dual-rail encoded formula. For
this application, we used the same easy satisfiable problems
as in Section II-A.

C. Longest Simple Path Computation

The application genipalsp finds the longest simple path in
a graph. For this application, we selected 50 instances of the
smallest graphs provided by Balyo et al. [2].

D. MaxSAT

The application genipamax is a trivial partial MaxSAT
solver based on adding activation literals to soft clauses and
subsequent incremental optimization using a cardinality con-
straint [3] and assumptions. For this application, we selected
50 instances from MaxSAT Evaluation 20191.

E. QBF

Ijtihad is a solver for Quantified Boolean Formulas
(QBFs). The solver tackles the a formula iteratively, using
counterexample-guided expansion [4]. For this application, we
selected 50 instances from QBF Evaluation 20192.

1https://maxsat-evaluations.github.io/2019/
2http://www.qbflib.org/qbfeval19.php

F. Planning

Pasar is a planer which is based on the principles of counter-
example guided abstraction refinement(CEGAR) [5]. For this
application, we selected 50 sas planning instances.
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Abstract—The benchmarks for the new planning track consist
of classical planning problems encoded to SAT by Madagascar
[1] and PASAR [2] as well as HTN planning problems encoded to
SAT using Tree-REX. The original planning problems were used
in the IPC 2014 and IPC 2018. The generation script, including
the used planners is available 1.

I. INTRODUCTION

Classical planning is the problem of finding a sequence of
actions – a plan – that transforms the world from some initial
state to a goal state. In SAT-based planning the problem is
encoded up to a certain number of steps (the makespan) as
a Boolean formula F i in such a way that F i is satisfiable
if and only if there is a plan with i steps or less. Depending
on the encoding multiple actions can be executed in the same
step. Therefore the minimum makespan i for which F i is
satisfiable depends on the problem and the used encoding.

In HTN planning the planner is provided with additional
domain knowledge besides the problem description.

II. PLANNING BENCHMARKS

The classical planning benchmarks are selected from the
satisficing and optimal tracks of the International Planning
Competitions 2014 2 and 2018 3.

The HTN benchmarks where provided by the author of Tree-
REX.

III. SAT-BASED PLANNERS

Madagascar provides multiple encodings to choose from.
We used the default E-step encoding and the sequential
encoding. PASAR uses the grounding procedure deployed by
the well known planner Fast Downward [4] and allows the
execution of multiple actions per step. Tree-REX was used to
encode the HTN problems.

IV. INSTANCE NAMING

The benchmarks of planning track follow the following
naming convention. For more details see the generation script.
hSAT/UNSATi hencodingi hpathToInstancei hmakespani.cnf

1https://satcompetition.github.io/2020/downloads/SAT2020 planning
generator.zip

2https://helios.hud.ac.uk/scommv/IPC-14/repository/benchmarksV1.1.zip
3https://bitbucket.org/ipc2018-classical/domains

TABLE I
NUMBER OF BENCHMARKS GENERATED BY EACH ENCODING.

Encoding SAT UNSAT

H Tree-REX 15 11
P PASAR 14 14
ME Madagascar E-step 5 10
MS Madagascar sequential 66 65

100 100
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Abstract—The discrete logarithm problem is to ask whether
there exists an integer x such that ax = y mod n, where a , y
and n are integers given. In general, it is considered to belong
to the intersection of the complexity classes NP, coNP, and BQP.
Several algorithms in public-key cryptography assume that the
discrete logarithm problem over chosen groups has no efficient
solution.

I. INTRODUCTION

The discrete logarithm problem is formalized as follows:
Given three positive a , y and n, find an integer x such that

ax = y mod n.
This is considered to be computationally intractable. So

far, no efficient classical algorithm solve it in polynomial
time. The known efficient algorithms are usually inspired by
similar algorithms for integer factorization. for example, baby-
step giant-step, function field sieve, index calculus algorithm,
number field sieve, PohligCHellman algorithm, Pollard’s rho
algorithm for logarithms, Pollard’s kangaroo algorithm. In
1997, Shor presented an efficient quantum algorithm [1]. Here
we translate it into a SAT problem by an encoding. By our
tests, the resulting SAT problem seems to be more difficult
than the original problem.

II. ENCODING DISCRETE LOGARITHM PROBLEM BY FAST
EXPONENTIATION

We use a basic fast exponentiation to translate the discrete
logarithm problem into a SAT problem. Exponentiating by
squaring is a basic method for fast computation of large
positive integer powers of a number. This method is based
on the fact that, for a positive integer x, we have

ax =

{
a(a2)

n−1
2 if x is odd

(a2)
n
2 if x is even

Exponentiating by squaring uses the bits of the exponent
to determine which powers are computed. If the bits of the
exponent x is given, This method can be implemented in the
pseudo-code shown in Algorithm 1.

It is easy to translate the multiplication of two numbers
into a SAT problem. We do not encode modular arithmetic.
Instead, we transform modular arithmetic into multiplication
operation. Let r = a mod n. We have

a = qn + r

where q is a quotient of a divided by n. This expression can
be converted to

a mod n = a − qn

Algorithm 1 Calculate the value of ax after expanding the
exponent in base 2

x has binary expansion (xm . . . x2x1)2
y = 1
for k = 1 to m do

if xk = 1 then
y = a ∗ y

end if
a = a*a

end for
return y

Notice, a ≥ qn. It is easy to see discrete logarithm can be
done essentially by multiplication, addition and subtraction.

We produce 20 benchmarks by translating ax mod n in the
different number of bits into the SAT problem. The bits range
of a and x is from 9 to 32. The bits range of n is from 20
to 64. If using Pollard rho method, such discrete logarithm
problems are easily resolved. However, such SAT problems
seems to be hard.
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Improving Directed Ramsey Numbers using SAT
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INTRO

A tournament is an orientation of a complete graph, or
equivalently a directed graph D with no self-loops such that,
for all pairs of distinct vertices u and v, exactly one of the
edges uv or vu is in D. Intuitively, a tournament of order
n represents the results of a round-robin tournament between
n teams, where the existence of edge uv means team u beat
team v in their head-to-head match. The exclusivity of uv and
vu means that if team u beats team v, team v doesn’t beat
team u, and the inclusion of one of those edges reflects the
fact that in a round-robin tournament, each team plays each
other team. The non-existence of self-loops translates to the
fact that no team plays itself.

A tournament is transitive if, for all vertices a, b, and c,
the existence of edges ab and bc implies the existence of edge
bc. If a tournament is not transitive, then it contains a directed
cycle of length 3.

1 2

3

45

6

Fig. 1. The unique tournament of order 6 without a transitive sub-tournament
of order 4.

DIRECTED RAMSEY NUMBERS

The directed Ramsey number R(k) is the smallest integer
n such that all tournaments on n vertices contain a transitive
tournament of order k.

Directed Ramsey numbers were first introduced by Erdős
and Moser [1]. In particular, they showed that k 
2 log2(R(k)) + 1 and also noted that k � log2(R(k)) + 1. In
particular, this means R(k) grows roughly as an exponential of
k, with multiplier somewhere between

p
2 and 2. The precise

limit of that multiplier is not known, but the literature has the
following results on small directed Ramsey numbers:

• R(2) = 2
• R(3) = 4
• R(4) = 8
• R(5) = 14

• R(6) = 28 ([2])
• 32  R(7)  54 ([3])
The tournaments of order 25, 26, and 27 that do not contain

a transitive sub-tournament of order 6 are unique. We call
them ST25, ST26, and ST27, respectively. There are five
tournaments of order 24 without a transitive sub-tournament
of order 6.

SAT ENCODING

Lower bounds of directed Ramsey number R(k) can be
improved by constructing a complete directed graph without a
transitive tournament of order k. The direct encoding into SAT
would only use boolean variables for each edge with the truth
value of a variable denoting the direction of the edge. Such
an encoding uses many clauses and the resulting formulas are
too large to improve the lower bound of R(7). We therefore
constructed a more compact encoding, which uses the fact
that a transitive tournament lacks a directed cycle of length 3.
For each triple of vertices in the graph, we introduce a new
variable that is true if and only if the edges between them form
a directed cycle. We use these auxiliary variables to encode the
absence of transitive tournaments of order 7 more compactly.

BENCHMARKS

We submitted 16 benchmarks to the 2020 SAT Competition.
The first 8 formulas encode whether ST25, ST26, ST27, and
the five tournaments of order 24 without a transitive sub-
tournament of order 6 can be extended to a tournament of order
33 without creating a transitive sub-tournament of order 7. All
these instances are satisfiable and thus establish an improved
lower bound R(7) > 33. Figure 2 shows an example. The
second 8 formulas are similar, but encode the existence of
a tournament of order 34 without creating a transitive sub-
tournament of order 7. It is not known whether these instances
are satisfiable.
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Fig. 2. Adjacency matrix of a 33-vertex tournament without a transitive sub-tournament of order 7.
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Unit-Distance Strip Coloring Benchmarks
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INTRO

Coloring unit-distance strips is related to the Chromatic
Number of the Plane (CNP), a problem first proposed by
Nelson in 1950 [1]. The CNP asks how many colors are
required to color the entire plane using the unit-distance
constraint. Early results showed that at least four and at most
seven colors are required.

Our benchmarks focus on coloring infinite strips with a
given height instead of the entire plane. Table I summarizes
the research in this direction. Early results for 3 and 4 colors
are based on coloring the strips with rectangles of the same
shape and with a height that equals the strip height [2]. A
recent result improves the height for 4 colors using a much
more involved pattern [3].

TABLE I: Colorings of infinite strips with different heights

# Colors Height
3

√
3/2 ' 0.866 [4]

4 2
√

2/3 ' 0.94 [4]√
32/35 ' 0.956 [5]

0.959 [3]

5
√

15/4 ' 0.968 [2]
13/8 ' 1.625 [5]
9/2

√
7 ' 1.70084 [6]]

6
√

15/2 +
√
3 ' 3.668 [2]

SAT ENCODING

To translate our problem into SAT we first need to create
a tessellation of the strip and make a graph from the shapes
that contain points one distance away. Several polygons can
be used to tessellate the plane. In this work, we tessellated the
plane with squares and hexagons. Squares have the advantage
of being able to draw straight lines, while hexagons are one of
the roundest shapes which minimizes the number of conflicts
between intersecting shapes.

Each shape was given two indices (one for each dimension)
to identify its position as depicted in Figure 1a for hexagons.
We build a conflict graph where each shape is a node and
there is an edge between two shapes if there is a conflict
between them, i.e. they cannot be colored with the same color.
The graph is constructed by finding the conflicts from one
shape to all others and repeating that pattern for each shape.
For instance, squares that touch the red outer border area in
Figure 1b are conflicting with the central (black) square. These
conflicts can be found efficiently by searching downwards for
the first shape that is one distance away. From here the adjacent
shapes are traversed to find the complete set of shapes that are

(a) Indexing of hexagons (b) Conflicts between squares

Fig. 1: Indexing and conflicts in a tessellation

one distance away. When a shape is found not in this range the
traversal returns from that shape without adding a connection.
The connections are stored as pairs of index offsets and easily
translate to other shapes. For example, if two hexagons three
rows apart share points one distance away then all hexagons
will similarly share points with hexagons three rows above or
below.

After constructing the graph, we follow a traditional encod-
ing for graph coloring problems using SAT [7].

BENCHMARKS

We submitted various benchmarks to the 2020 SAT Compe-
tition based on strip coloring. The benchmarks encode whether
strips of length 8 with different heights can be colored with 4,
5, or 6 colors using square or hexagon tiles. An example of a
coloring that we found for a strip of height 1.64 using 5 colors
and a hexagon tiling is shown in Figure 2. For more details
regarding the benchmarks, we refer to the full paper [6].
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Edge-matching Puzzles as a
Feature-Cardinality Problem

Dieter von Holten

Abstract—This paper describes an encoding of edge-
matching puzzles suitable for solving them with a SAT-
solver. After introducing a minimalistic encoding, we add
layers of redundant constraints, which vastly increase the
size of the CNF, but reduce the time to solve.

I. INTRODUCTION

This approach first simplifies the problem by ignor-
ing the border-tiles. Instead it just goes for a solution of
the inner square. After a solution is found, the frame-
tiles are placed manually to obtain a complete solution.
The concept has been developed in the last year,
although we find some overlaps with the paper of
Marijn Heule from 2008 [MH08].

A. Grid Coloring

In the quest for a way to tackle the problem without
falling back to backtracking, we came up with the
idea of grid-coloring: we color the grid-lines. This
immediately gives us a valid solution by construction -
unfortunately most often for some other puzzle. When
the obtained tile-set is equal to the puzzle-tile-set, we
have the desired solution. Unfortunately, there is a
huge number of possible colorings. A nSize × nSize
grid has

nGridLines = 2× nSize× (nSize +1)

with c colors per gridline this results in

nColorings = cnGridLines

For an Eternity 2 grade puzzle with 14 × 14 = 196
inner gridcells, that is 420 gridlines, and 17 colors this
results in 6.145516 colorings - far too much to evaluate.
This includes all colorings, even the not interesting
ones like one green, one red, one blue, all others are
yellow. We need something more restrictive - let’s
enforce a known edge-count per color.

Let’s assume we have 15 colors with 25 gridlines
each, one color with 24 gridlines and one color with
23 gridlines. That would result in X tbd X colorings,
much less than the first try.
But this still includes many uninteresting colorings,
like: the first rows are all red, the next rows are all
green, the next rows are blue and so on until the last
few rows, which are all yellow. We need something
more restrictive.

Now let’s study the puzzle-tiles and see what we
have there: we see (for example) that there are 3

wrong color-mix:
53 green, 2 red, 2 blue, 2 yellow,
1 black lines
.

good color mix,
but wrong distribution:
12 green, 12 blue, 12 red,
12 yellow, 12 black lines.

Fig. 1: some grid-colorings

red/green corners, 7 green/blue and 4 blue/green
corners, no black/white corners and no yellow/blue
corners. We furthermore see 3 red-opposite-green
edges, 2 black-opposite yellow-black edges, but no
yellow-opposite-yellow edges. And we see around
nTiles 3-edge-patterns, most of them with just one
occurence. And we see nTiles 4-edge-patterns.
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II. THE FEATURES

The total number of features depends on the num-
ber of available colors. The key-insight here is, that
the set of all possible edge-patterns is given by the
Polya-Burnside necklace-enumeration of 4 beads and
c colors. These form the domain of all tile-patterns. A
concrete puzzle is a small sample of this domain.

TABLE I: Domain-size by color-count

c colors patterns
10 2350
11 3696
12 5226
13 7189
14 9660
15 12720
16 16456
17 20961

Note, that these are the tile-patterns. The edge-
patterns of a grid-cell are these patterns with 4 ro-
tations.
Now let us dissect a tile-pattern into features:

Some Tile:

the four I-features (single lines)

the four L-features (corners)

the two H-features (opposites)

the four U-features

the one O-feature

Fig. 2: Features

Table ?? shows a parts-list of features for various
puzzles.

III. THE CONSTRAINTS

A. Cardinality = 0

This simply means ’the feature does not occur’. We
don’t have to deal with gridlines of non-existent colors.
For the possible, but not used L-, H-, U- and O-features
we create blocking clauses, with 4 rotations for most
of them (a red-red H-feature has just two rotations, a
blue-blue-blue-blue O-feature has just one rotation).
We check for inclusion of the smaller within the
larger features: a blocked red-red-corner prevents the
existence of any full edge-pattern having a red corner.
When a larger feature is ’covered/hidden’ by a smaller
one, the larger feature is ignored - no blocking clauses
are generated. The result is the smallest possible set
of the smallest possible blocking clauses.
These blocking clauses, written as one big conjuction,
give a formula, which has 4 × nTiles solutions -
the valid tile-patterns in 4 rotations. These blocking
clauses prevent the creation of invalid edge-patterns at
the earliest possible point.
A grid-coloring with just these blocking-clauses in
place would have only valid puzzle-tiles, albeit most
likely with some duplicates and some missing.

B. Cardinality = 1

The most basic feature is a gridline of some color.
We enforce, that a gridline has only one color with a
1ofN-constraint. For this, we use naive encoding.

From the tile-analysis we know the ’tile-defining
feature’ for each tile. We use the feature-existence-
clauses to imply the tile-existence variables. We create
a 1ofN-cardinality-constraint for each tile-existence-
variable over all gridcells.

C. Cardinality > 1

From the puzzle-tile analysis we know the
frequency of each color. The frequency of each color
on the whole grid is implied by the solution: when
we have one occurence of each tile, we also have the
right color-count. Therefore, it is redundant to enforce
a count of 25 within the 420 gridline-color-variables.
We make this constraint more precise by separating
the gridlines around the edge of the inner square and
within. It is an expensive redundant constraint, but it
reduces solution-time.

We can impose cardinality constraints on each
of the (not yet) used features. This comes with a
considerable cost: per feature and per grid-cell we
need 4 clauses (rotation!) of sizes between 3 and 5 to
detect and hold the feature and we need a bitCounter
of the size of the grid to enforce the proper count per
feature.

2
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IV. THE DATA-MODEL

We will now briefly describe the variables used to
model the problem. To get some impression of the
sizes, we assume a puzzle with 14 × 14 = 196 inner
grid-cells, 420 grid-lines and 17 colors. We use these
building-blocks to create the formula:

• a vector of variables, one variable per color, on
each grid-line. A variable valued true designates
the color of that gridline. A grid-line can have
only one color, so we have a 1ofN-constraint over
this vector, where n is the number of colors.
The example-puzzle costs 420 grid-lines×17 col-
ors = 7140 variables.

• a vector of variables, one variable per color,
on each grid-cell NoColorExistsVar: a variable
valued true says, that there is no edge of this
color on this grid-cell. These variables are used
in binary clauses to clear feature-exists and tile-
exists-variables. The variables are the result of a
tseitin-style AND of the 4 negated color-variables
of a color on the 4 grid-lines around a grid-cell.
In the example-puzzle, this costs 196 grid-cells ×
17 colors = 3332 variables.

• a vector of variables, one variable per tile, on each
grid-cell TileExistenceVar. A variable valued true
defines the puzzle-tile sitting on this grid-cell. We
do not need a local constraint here, because the
blocking-clauses ensure, that we have only one
valid tile per grid-cell. We need the variable just
to see, which tile this actually is.
All variables for a certain tile, over all grid-
cells, are collected in a vector. There is a 1ofN-
constraint over this vector, which ensures, that we
have only one instance of each tile. This costs 196
grid-cells × 196 tiles = 3332 variables.
A TileExistenceVar is set, when the defining fea-
ture exists on this grid-cell. The defining feature
has a cardinality of 1, so when there is just one
tile with a red-green corner, the grid-cell with a
red-green corner holds that tile. We can define
about 50 % of the tiles with just one binary L-
or H-feature, most of the rest need a ternary U-
feature, and just a few tiles need their O-feature
for definition.
A TileExistenceVar is cleared, when a required
color is not available on the grid-cell, that is,
when the NoColorExistsVar becomes true. We
furthermore use more precise clauses, which em-
ploy the (lack of the) edge-pattern: when the color
of the north-edge is red, and the east-edge is not
yellow, we clear the TileExistenceVar T77 on this
grid-cell (see Fig. 3). This technique was used in
[MH08].

• a vector of variables, one variable per feature, on
each grid-cell FeatureExistenceVar. A variable
valued true says, that this feature exists in
this grid-cell. All we know is, that there are
some features on each grid-cell, but we cannot

use a fixed constant. This FeatureExistenceVar-
variables are set by clauses ’when this grid-line is
red, and that one is green, the feature ’red-green-
corner’ exists. The FeatureExistenceVar-variables
are cleared, when a required color is not
available, that is, when the NoColorExistsVar
becomes true. Note, that this is independent of
rotation. A 4-colored grid-cell results in setting
of 4 L-features, 2 H-features, 4 U-features and
one O-feature.

These are about 13804 + the feature-existence vari-
ables. In addition, we have a considerable number of
helper-variables within the large bit-counter constructs
and the commander-encoded 1ofN-constraints.

V. OTHER REDUNDANT CLAUSES

We can easily derive obvious, but redundant con-
straints between tiles on neighboring grid-cells: when
two tiles do not share a common color, they cannot
sit on two neighboring grid-cells. This leads to a
large number of binary blocking-clauses with two tile-
existence-variables. This concept was already used in
[MH08].
We extend this further to indirect neighbors: when tiles
T77 and T88 have one common color (yellow), and
sit beside each other, their rotation is fixed. This, in
turn, fixes the colors of all their other edges. This in
turn prevents the existence of certain tiles on adjacent
grid-cells: the cell 6 on the left cannot contain a tile
without a green edge, and the cell 3 on the right
demands a tile with at least one orange edge. This leads
to ternary blocking clauses, having two tile-existence
variables describing the situation and the forbidden
tile-existence variable.

T77 T88

1 2

3

45

6

tiles without required color are
blocked, the tile on this cell must
have at least one edge of
cell 1 : must have red
cell 2 : must have cyan
cell 3 : must have orange
cell 4 : must have black
cell 5 : must have blue
cell 6 : must have green

Fig. 3: blocked indirect neighbors

For size reasons, we cannot use all of these - we
pick just random 25 % of these clauses. The full set
of clauses for a 12×12 puzzle with a 10×10 inner grid
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would have about 1× 106 of these clauses, a 12× 12
inner grid would have 4.4×106 of these and a 14×14
inner grid would have about 5.7× 106 of them.

VI. THE BIT-COUNTER

The bit-counter is a major component of this
problem-modelling. We collect the interesting vari-
ables in a vector and create some logic to count the
set bits into some result-vector (integer). This result
is then enforced to be equal to a constant. We use
two kinds of bit-counters, composed of two kinds of
adders:

• a bit-counter, composed of layers of adders,
which reduce the intermediate results into the
final value. This layout is described in [1] and
[Wikipedia].

• a bit-counter, in which the bit-vector is broken
into 7-bit wide chunks. The bit-count in a chunk is
determined by some logic, without adders. The 3-
bit results of the chunks could be added together
for the final result, but here we build 3 new
vectors from the result-bits: all bit0 -bits go into
one vector, the bit1 - bits go into the second vector
and bit2- bits go into a third vector. Then these
3 vectors are again ’recursively’ bit-counted. The
benefit is a reduced count of adders. We call this
’folded bit-counter’.

• one kind of full-adder is composed of gates and
helper-variables, as documented in [Wikipedia].

• the other kind of full-adder is composed of just
logic, without variables, so to say a truthtable
implementation.

The size of the input-vector is usually the number
of grid-cells, that is from 100 for a 10× 10 inner grid
to 196 for a 14 × 14 grid. The number of required
bits is usually small.

VII. ALTERNATIVE IMPLEMENTATIONS

As a benchmark for a SAT-competition it is obvious,
that we provide CNF-formulations. The next imple-
mentation coming to mind could be SMT-formulas.
Here, we have boolean as well as integer capabilities
at hand. The blocking clauses and the feature-detection
would be done with booleans, while the counting
would be done with integers. Earlier experiments have
found unsatisfactory performance with this mixed ap-
proach. Probably the SMT-world needs some decent
benchmark-problems.
Another option would the formulation with some
’higher-level’ language like Picat. We have no experi-
ence with that.
Still another approach could be the implementation
of a dedicated solver. That would turn the solution
into some rule-based machinery, in which a fired rule
increments a feature-count. When the allowed limit
is surpassed, it backtracks and picks another color-
assignment. The bit-counting mess would completely

disappear. The rule-handling can be implemented quite
efficiently, however stuff like ’conflict based rule-
learning’ and restarts is currently out of reach.

VIII. SOME PARTS-LIST

The problem-generator places some statistics in the
header of the of the CNF-file, let’s have a look. Here
we have the output for some 12× 12 puzzle. It has an
inner grid of 10×10 = 100 gridcells (and tiles). It has
a total of 220 gridlines, 180 inner and 40 on the border.
The n of 180 and n of 40 constraints are the color-
count constraints for the inner grid and the border.
The n of 100 constraints are cardinality-constraints
of some features, for example, we have 4 different
features showing up 9 times. The 220 1 of 10 con-
straints are the one-color-per-gridline constraints. The
weird 1 of 93 constraint is a tile-releated constraint,
ignoring the 7 hint-tiles.

var: 17_of_180-constraint : 2
var: 6_of_40-constraint : 1
var: 1_of_40-constraint : 2
var: 20_of_180-constraint : 1
var: 9_of_100-constraint : 4
var: 16_of_180-constraint : 2
var: 18_of_180-constraint : 3
var: 3_of_40-constraint : 1
var: 5_of_40-constraint : 1
var: 10_of_100-constraint : 1
var: 7_of_40-constraint : 1
var: 1_of_93-constraint : 93
var: 8_of_100-constraint : 2
var: 1_of_100-constraint : 100
var: 2_of_40-constraint : 1
var: 19_of_180-constraint : 1
var: 11_of_100-constraint : 1
var: 4_of_40-constraint : 4
var: 1_of_10-constraint : 220
var: FullAdderCount : 14023
var: 21_of_180-constraint : 1
var: 2_of_100-constraint : 84

IX. SUMMARY

The end is near - this is the way to go. The
grid-coloring approach intuitivly makes sense, and
the feature cardinality enforcing is straight forward.
The blocking-clauses for invalid edge-patterns and
the indirect neighbor-constraints have a strong local
influence on the available choices around a grid-cell.
The cardinality-enforcement of color-lines and features
provides global influence of any decision made. All of
this is redundant, and would have been learnt anyway
during solving.
However, it becomes visible, that the problem-
formulation gets really big, the full E2 model can have
in the order of 500 mio clauses and more than 500000
variables. Some hurdles remain:

• the most suitable bit-counter-implementation
must be found. This may not be the smallest one,
it needs to be a good fit to the solver.
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• we can obtain huge numbers of constraints from
the feature-cardinality and the invalid-neighbors.
Is it really beneficial to use all of them? A
search for a ’sweet spot’ should be run, using
various percentages of the available constraints.
This must be carefully planned, otherwise the
search for a ’good mix of ingredients’ consumes
more resources than solving the real thing.

X. THE FILES

The files were generated in ’series’. The puzzles
are reused, that is a p1-14x14 is the same puzzle in
different bit-counter and constraint selections.

• series 1, series 2 - omitted
• series 3: uses the standard bit-counter with stan-

dard adders, 20 % of the indirect-neighbor clauses
and 50 % of the feature-constraints are used.

• series 4: uses the standard bit-counter with the no-
variables adders, 20 % of the indirect-neighbor
clauses and 50 % of the feature-constraints are
used.

• series 5: uses the ’folded bit-counter’ with the no-
variables adders, 20 % of the indirect-neighbor
clauses and 50 % of the feature-constraints are
used.

• series 6: uses the ’folded bit-counter’ with the
standard adders, 20 % of the indirect-neighbor
clauses and 50 % of the feature-constraints are
used.

• series 7: uses the ’folded bit-counter’ with the
standard adders, 100 % of the indirect-neighbor
clauses and 50 % of the feature-constraints are
used.

• series 8: uses the ’folded bit-counter’ with the
standard adders, 50 % of the indirect-neighbor
clauses and 100 % of the feature-constraints are
used.
The filename is build as:
b <year><month><problemId>-<size> x
<size> c <colors> h <hintTiles>.cnf
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Abstract—A population is an one-dimensional grid of n ≥ 1
organisms, where each organism evolves between being alive (1)
and dead (0) across chronological time steps by following a fixed
rule of evolution. At any time step t ≥ 1, the combined states of
n organisms represent the state of the population at t. At t, a
population is under the threat of extinction, if the number of alive
organisms falls below n ∗ (P/100), where 0 < P ≤ 100 and safe,
otherwise. We refer the above constraint as safety constraint.

In our proposed SAT benchmark Population Safety (PS), given
a population of n organisms, a maximum time step T , a safety
threshold P , we verify if a population evolves safely at each
time step upto T by following a fixed rule of evolution. For the
SAT competition 2020, we have submitted 20 instances of the PS
benchmark1.

I. POPULATION SAFETY AS A CELLULAR AUTOMATON

State evolution in the Population Safety (PS) problem
represents the state evolution of cells in finite elementary
cellular automaton (CA) [3], with respect to the additional
safety constraint at each time step.

In an elementary CA, at time step t+ 1, the state of a cell
c, which has cell l (resp. r) as its left (resp. right) neighbour,
is computed based on a boolean combination the states of c,
l,and r at time t. There are 23 = 8 combinations of boolean
values for l, c, and r at t, for each of which, there are 2 ways
to set the value of the state of c at t + 1. Hence, there are
28 = 256 ways to set the new state of the c at t + 1. Each
of these 256 ways are called rules [3] for a given elementary
CA.

We consider Rule 30 [4] for the PS problem, which is known
to produce chaotic patterns over time. At time t+1, for a given
center cell (center), its left (left) and right (right) neighbours,
Rule 30 computes the state centert+1 of the center cell as
follows:

centert+1 ← leftt XOR (centert OR rightt)

.
Figure 1 (taken from [4]) shows the evolution scheme for

Rule 30. which is known to exhibit chaotic behavior for some
initial states. Figure 2 shows such a chaotic evolution of a CA
that follows Rule 30 (also taken from [4]).

1The code for PS instance generator is available at [1].

Fig. 1: State evolution for the center cell for Rule 30; black
cells represents alive (1) cells, white cells represents dead (0)
state.

Fig. 2: Emergence of chaotic behavior with Rule 30

II. SAT ENCODING OF THE PS PROBLEM

A. PS as SAT Problem

Given a population of n ≥ 1 organisms, a maximum time
step T ≥ 2, and a safety threshold 0 < P ≤ 100, the task of
the PS problem is to determine if the population can evolve
upto T by following Rule 30, with respect to the following
safety constraint, safety:
safety: Total number of alive organisms in every time step
1 ≤ t ≤ T is at least n ∗ (P/100).

We can encode the population safety problem as a SAT
formula. Let sti be the state of the current cell i, where 1 ≤
t ≤ T and 1 ≤ i ≤ n. Then we have the SAT encoding FPS

of the PS problem as follows

FPS = Fevolution ∪ Fsafety ∪ Fboundary

, where, Fevolution, Fsafety , and Fboundary are defined as
follows:

Fevolution :
T∧

t=1

n∧

i=1

(st+1
i = (sti−1 ⊕ (sti ∨ sti+1)))

Fsafety :
T∧

t=1

n∑

i=1

sti ≥ n ∗ (P/100)

Fboundary :

T∧

t=1

¬st0 ∧ ¬stn+1
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Over T time steps,

• Fevolution encodes the evolution of the population of n
organisms that follows Rule 30.

• Fsafety encodes the population safety constraint.
• Fboundary encodes the assertion that left neighbor (resp.

right neighbor) of the leftmost (resp. rightmost) organism
(resides outside of the boundary of a given population)
of the population is always dead (0).

FPS is SATISFIABLE, if the population can safely evolve
upto time step T , otherwise, it is UNSATISFIABLE.

III. PROBLEM MODELING AND INSTANCE GENERATION
FOR THE PS BENCHMARKS

A. Problem Modeling

picat [2] is a CSP solver, which accepts a CSP problem
and converts it to a SAT CNF formula, which is inturn solved
by a SAT solver hosted by picat. Before solving the converted
CNF formula, picat outputs the CNF formula.

To generate instances for the PS benchmark, we use this
CNF generation feature of picat. First, we modelled the PS
problem in a picat program picatPS . Then, for a given
set of parameter values for (T, n, P ), we use this picatPS

model to generate CNF FPS by exploiting the CNF generation
functionality of picat.

B. Instance Generation

We have performed a grid search with the picatPS over the
parameter space of the PS model to generate 20 instances, 10
of which are interesting. Table I shows the experimental eval-
uation of these instances with MiniSAT, with 5,000 seconds
timeout.

TABLE I: Results with MiniSAT for the 20 PS instances
submitted for SAT Competition-2020.

Instance Parameters MiniSAT Time TypeT n P
ps 200 300 70 200 300 70 550.85 UNSAT
ps 300 311 20 300 311 20 2969.23 SAT
ps 200 321 70 200 321 70 916.73 UNSAT
ps 300 312 20 300 312 20 3079.58 SAT
ps 200 310 70 200 310 70 1124.06 UNSAT
ps 300 322 20 300 322 20 1664.32 SAT
ps 200 305 70 200 305 70 2275.13 UNSAT
ps 300 314 20 300 314 20 2989.21 SAT
ps 200 306 70 200 306 70 2881.29 UNSAT
ps 200 317 70 200 317 70 Timeout UNSAT
ps 300 300 70 300 300 70 Timeout UNSAT
ps 200 319 70 200 319 70 Timeout UNSAT
ps 200 323 70 200 323 70 Timeout UNSAT
ps 300 301 30 300 301 30 Timeout SAT
ps 200 318 70 200 318 70 Timeout UNSAT
ps 200 301 70 200 301 70 Timeout UNSAT
ps 200 307 70 200 307 70 Timeout UNSAT
ps 200 309 70 200 309 70 Timeout UNSAT
ps 200 312 70 200 312 70 Timeout UNSAT
ps 200 316 70 200 316 70 Timeout UNSAT
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Abstract—This document describes the benchmarks submitted
to SAT Competition 2020 that encode problems of finding
solutions to time-constrained variant of the well-known Influence
Maximization Problem under deterministic Linear Threshold
model with equivalent weights.

I. INTRODUCTION

The Influence Maximization Problem (IMP) [1] is one of the
most well known problems in modern network sciences. Infor-
mally, it deals with the information dissemination in complex
networks. It assumes that there is some network, the vertices
of which are weighted. In the most simple case the weights
are binary. The key component is a model of how information
spreads, i.e. the rule according to which the weights of the
vertices are recalculated. These rules usually involve several
parameters assigned to network nodes and arcs. IMP is to
find the so-called seed set of vertices such that their influence
spread (the amount of network vertices to which they spread
their information according to the used model) is maximized.
There are many possible interpretations of IMP depending on
the used parameters and information spread model. One of
them is the modeling of the conforming behavior [2]. Other
applications include viral marketing, voting, etc.

II. FORMAL DEFINITIONS

Denote a network as G = (V,E), where V is a set of
vertices, |V | = n and E is the set of edges. Let us denote the
set of vertices adjacent to vi as its neighborhood:

Ni = {vk ∈ V : (vk, vi) ∈ E}
The Deterministic linear threshold model [1], [2] with equiv-
alent weights specifies that each network vertex vi ∈ V is
assigned the so-called threshold θi, 1 ≤ θi ≤ |Ni|. Denote
the weight of vertex vi at time moment t as wi(t). The
weights of vertices in the considered model are recalculated
synchronously using the following formula:

wi(t+ 1) =

{
1 if

∑
vk∈Ni

wk(t) ≥ θi
0 otherwise.

Let us refer to the Boolean vector containing network vertices’
weights at some time moment as to network state at this
moment:

W (t) = (w1(t), . . . , wn(t)).

The research was funded by Russian Science Foundation (project No. 16-
11-10046).

The specified model is a variant of a Synchronous Boolean
Network [3].

We consider the following constrained variant of the Influ-
ence Maximization Problem: to find an initial configuration
of weights W (0) with minimal Hamming weight, such that
after H time moments the Hamming weight of the network
state will be at least L. The values of the parameters used in
benchmarks were set as follows: H = 10, L = 0.8× |V |.

III. ENCODINGS

It is clear, that the corresponding problem can be naturally
encoded to SAT using one of the plethora of encodings for
cardinality constraints. The constructed benchmarks are built
using the Totalizer encoding [4]. The tests were produced
in the following manner: first for a given network a greedy
algorithm from [5] is launched. Its output is a configuration
W greedy. We encode to SAT the process of information
dissemination that starts from W (0) and ends at W (10), and
add constraint on the final state:

Hamming weight(W (10)) ≥ 0.8× |V |.
Then we construct two SAT instances that differ in the value
of the RHS constant at the right hand side of the constraint:

Hamming weight(W (0)) ≤ RHS
For one instance RHS = |W greedy| − 1, for another RHS =
|W greedy| − 2.

IV. NETWORKS

The constructed SAT instances are relatively hard for state-
of-the-art SAT solvers even when the dimension is small. For
our benchmarks we took several fragments of the Twitter
social network with number of vertices from 60 to 90. The
Twitter fragments were taken from the Stanford network
repository [6], [7]. The vertices’ thresholds were picked as

θi =
|Ni|
2

+ rand() mod

( |Ni|
2

)

V. INSTANCE NAMING SCHEME

The benchmarks all follow the same naming convention:

DLTM twitterI N RHS.cnf,

where DLTM is the abbreviation of Deterministic Linear
Threshold Model, twitterI is the identifier of a network
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fragment, N is the number of vertices in a corresponding
network and RHS is the value in the constraint.

COMMENTS

It is clear that for the same network, the lower the value
of the RHS constant, the harder is the problem. The at-
tempt was made to pick such tests that the instance with
RHS = |W greedy| − 1 is satisfiable and the one with
RHS = |W greedy| − 2 is unsatisfiable, so that the solution
found for RHS = |W greedy| − 1 is the exact one, but it was
not always possible.
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Abstract—The proposed benchmarks represent attacks on the
state-of-the art ciphers LED-64, PRESENT and full-scale AES
constructed using AutoFault . In contrast to other, functional
descriptions, the formulae are extracted directly from the cryp-
tographic circuits, using Tseitin transform. The attack instances
use both: idealized fault models for early evaluation of cipher
designs, and the outcomes on an actual field-programmable gate
array (FPGA) platform with a clock based fault injector.

I. PROBLEM DESCRIPTION

Ensuring privacy and integrity is becoming more impor-
tant in recent years. At the same time matching hardware
constraints has become a major concern. A balance between
hardware constraints and security has to be achieved and trade-
offs have to be made in such regards.

Vulnerabilities in the design, which can be exploited by
attacker and its implementations have to be thought through se-
riously. Attacks where the adversary has physical access to the
device include passive side-channel analysis [1], differential
power analysis (DPA) [2] and hardware manipulations as fault
injection attacks [3]–[5]. Algebraic fault attacks (AFA) are of
particular interest to us. They are at the intersection between
classical fault attacks, such as Differential Fault Analysis [6]
(DFA), and more classical algebraic attacks, which usually
require manually crafted equations. The principle of these
attacks is to combine the description of the cipher and faults
to recover the secret key, which can be expressed as CNF. As
such, AFA instances are well suited as a SAT benchmark.

In particular, our hardware oriented AFA framework
AutoFault [7], [8] derives algebraic equations directly
from the hardware description of the cipher and adds faults
derived from physical attacks or specifically generated. In our
paper [8], we report successful attacks on LED-64, PRESENT,
small-scale AES and the full-scale version of the AES.

Multiple solution are possible in general and represent
possible key candidates. However only benchmarks with either
parallel injected faults or an encoding of the complete circuit
are handed in, to ensure that the unique solution represents
the correctly restored key. The benchmarks vary from easy to
solve to a complete key space search of the cipher.

II. CNF GENERATION

The Tseitin transform [9] guarantees a linear CNF length,
for a circuit, with additional variables for each signal line.
Additionally to the circuit description, we add the information
of fault round (e.g., in which round or at which operation the
fault is injected), the fault location (e.g., the byte or nibble
affected by the fault) and the number of parallel injected faults.

III. FILE NAME CONVENTION

The CNF files contain information about the following
attributes, separated by a underscore, from left to right: cipher
type; columns - rows - wordsize for AES, 4-4-8 points to the
full-scale AES (128 bit); the rounds of the cipher which are
transformed into CNF; attacked round; how many faults are
injected simultaneously; a seed for the random generator to
repeat the attack. Files with the same seed and the same cipher
contain a identical fault injection subset.
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Abstract—This document describes the SAT benchmarks we
are submitting to SAT 2020. We generated benchmarks that
would select a baseball lineup from a large pool of players based
on some constraints.

I. DATA

We compiled a list of all baseball hitters from the 2019
MLB season and assigned each a number of boolean attributes
based on their statistics. We eliminated all players that did not
play in more than 80 games or appear in enough at bats to
qualify for a batting average. This left 323 players. We then
gave each player a 1 for a category if they were within 20%
of the league leader and a 0 otherwise. We used a total of 16
statistical categories. Additionally, we gave each player a 1 for
each position they played during the season and a 0 otherwise.

The data was parsed in this way to be a rough method of
selecting a good lineup of players from a large pool that is
balanced in every category, but there are many other ways
once could select the data.

II. SELECTION

We then added constraints to the solver to determine
whether or not a lineup of n players exists such that at least
m of the players are within 20% of the league leader in
every single category. Boolean variables xi are constructed
representing whether player i is selected or not, and Boolean
variables yij are constructed where yij will equal 1 when both
xi is 1 and player i covers the jth category.

The graph of attributes is encoded into CNF in the standard
way, at-least-k constraints are added on the y variables to
ensure that each category is covered at least m times, and
exactly-k constraints are added on the x variables to ensure
that exactly x players are selected for the lineup.

For some of the benchmarks, we also enforce that, in
addition to the above constraints, the selected lineup has at
least m players who play every position. Such benchmarks
are given the suffix ”andpositions.cnf”. At-least-k constraints
are used to enforce this in the same way as for the statistical
categories above.

III. TOOLS

To assist in generating the CNF formulas and adding
cardinality constraints, we used Pysat [1]. The sequential
cardinality encoding was used for both the exactly-k and at-
least-k constraints.
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I. THE ANTIBANDWIDTH PROBLEM

This benchmark set is originating in our recent work on the
antibandwidth problem (in short ABP) presented in [1]. The
ABP is a max-min optimization problem where, for a given
graph G = (V,E), the goal is to assign a unique label from the
range [1, . . . , |V |] to each vertex v ∈ V , such that the smallest
difference between labels of neighbouring nodes is maximal.
Applications of the ABP include for example scheduling,
obnoxious facility location, radio frequency assignment.

To solve the ABP, in [2] an iterative solution method was
proposed, where each iteration asked whether there exists a
labelling to the graph, s.t. the smallest difference between
labels of neighbours is greater than k. Finding the highest
k where the answer is still affirmative determines the optimal
solution of the ABP. In [1] we slightly refined the proposed
formalization of [2] s.t. the question of each iteration can be
stated as combinations of at-most-one constraints sliding over
k-long sequences of binary variables. All in all, a feasibility
query for a given k consists of the following constraints:

∀` ∈ {1, . . . , |V |} :
∑

i∈V
x`i =1 (LABELS)

∀i ∈ V :
∑

`∈{1,...,|V |}
x`i =1 (VERTICES)

∀{i, i′} ∈ E, 1 ≤ λ ≤ |V | − k : (OBJk)
(λ+k)∑

`=λ

x`i ≤ 1 ∧
(λ+k)∑

`=λ

x`i′ ≤ 1 ∧



(λ+k)∑

`=λ

x`i ≤ 0 ∨
(λ+k)∑

`=λ

x`i′ ≤ 0


 ,

where binary variables x`i = 1 (i ∈ V , ` ∈ {1, . . . , |V |}) if
and only if vertex i is assigned label `. Constraints (LABELS)
make sure that each label is used only once and constraints
(VERTICES) ensure that each node i ∈ V gets assigned one
label. Constraints (OBJk) forbid for each neighbouring node
to assign two labels from any k-wide range of labels.

II. SAT ENCODING

In [1] we defined a so-called staircase at-most-one con-
straint set (SCAMO) over a sequence of Boolean variables

Supported by the Austrian Science Fund (FWF) under projects W1255-N23,
S11408-N23 and by the LIT AI Lab funded by the State of Upper Austria.

X = 〈x1 x2 · · ·xn〉 for a given width k (where 1 < k ≤ n) as

SCAMO(X, k) =

(n−k)∧

i=0




(i+k)∑

j=i+1

xj ≤ 1


 .

Then we proposed a linear size SAT encoding of this constraint
set. The main idea of the encoding is to slice up the n-long
sequence of Boolean variables into M k-long sequences and
build up the complete SCAMO constraint set as a combination
of smaller at-most-one and at-most-zero constraints, such that
these smaller constraints can be efficiently shared and reused.
Each smaller at-most-one and at-most-zero constraint is trans-
lated to SAT with standard BDD-based methods (see [3], [4]).
However, each of these constraints is encoded twice, first
considering a variable order xi+1 < xi+2 < . . . < xi+k in the
BDD construction, then the reverse of that order. The result is
an arc-consistent encoding of a SCAMO(X, k) constraint set
with approximately 11 ·M · k clauses, where M = dnk e.

Consider a feasibility query with value k of the ABP over a
graph G, as it was formalized in the previous section. We first
encode for each vertex v ∈ V a SCAMO(X, k) set, where X
is a |V |-long sequence of Boolean variables 〈x`1v x`2v · · ·x

`|V |
v 〉

representing all possible labels of v. Then, we simply add
the disjunction of the corresponding at-most-zero constraints
belonging to neighbouring nodes to encode all the constraints
of (OBJk). The exactly-one constraints of (VERTICES) are
encoded as conjunctions of the constructed smaller at-most-
one constraints and negations of at-most-zero constraints. The
other set of exactly-one constraints in (LABELS) is encoded
as conjunction of at-least-one constraints and the product
encoding of at-most-one constraints introduced in [5].

The resulting formula consists mostly of unit, binary and
ternary clauses from the SCAMO constraints. The larger
clauses are either |V |-long clauses from the at-least-one part
of the exactly-one constraints in (LABELS), or M -long clauses
from the at-least-one part of constraints (VERTICES).

III. GENERATED INSTANCES

To evaluate in [1] our proposed SAT-based solution
method for the ABP, we implemented a C++ tool called
DuplexEncoder. It takes as input a graph and a lower (LB)
and an upper bound (UB) of the antibandwidth. For each value
k starting from LB, it encodes the ABP as we presented in
the previous section and invokes a SAT solver on it to decide
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feasibility. If the formula is SAT, it moves to the next k, if it
is UNSAT, the previous value was optimal and stops.

We experimented in [1] on the 24 graphs of the Harwell-
Boeing Sparse Matrix Collection [6]. Our benchmark set was
generated with DuplexEncoder from 12 graphs of [6],
mostly where we could not solve the ABP in 1800 seconds
in [1]. For each of these graphs first we considered every
consecutive k values in a very wide range around the value
of (LB + UB)/2 (see [1] for each value of LB and UB) and
generated the corresponding SAT formula of the ABP for each.

From the resulting formulas we identified the “interesting”
problems based on the description of the expected benchmarks
on the homepage of the SAT competition. First we dropped
all those formulas that Minisat [7] with default settings could
solve in less than a minute. The remaining 539 formulas were
tried to be solved in less than an hour with CaDiCaL [8],
[9] on our cluster with Intel Xeon E5-2620 v4 @ 2.10GHz
CPUs. CaDiCaL solved all in all 121 problems (91 SAT and 30
UNSAT) successfully and the required solving times of these
instances ranged between few seconds and one hour with a
very balanced distribution.

Due to our source AB problem, we know that whenever
a formula with a specific k-value is satisfiable, all the other
formulas with smaller k from the same graph must be SAT as
well. Further, an unsatisfiable k means that every formula with
larger k of the same graph is UNSAT as well. Based on these
observations, we identified another 44 problem instances that
must be satisfiable, but CaDiCaL could not solve. Since most
of the unsatisfiable formulas were immediately solved with
Minisat, we could not find further ones with this approach.

Further, for most of the graphs we collected two more yet
unsolved instances that are hopefully not too far in difficulty
from the solved ones. More precisely, for each graph where
it was possible, we considered the highest k-value where the
answer was SAT and picked the next formula (i.e. k + 1).
Similarly, we considered the lowest formula where the answer
was UNSAT and picked the next one (i.e. k − 1). For the
resulting 22 formulas we do not know whether they are
satisfiable or not, but hope that sooner or later they will be
solved.

All in all, we included in our submission the 121 “inter-
esting” problems together with the 44 unsolved satisfiable
formulas (having at the end 135 SAT and 30 UNSAT prob-
lems) and the 22 unsolved, completely unknown problems.
The result is a benchmark set of 187 problem instances,
where approximately 12% is unknown whether satisfiable
or not, 72% is SAT, the remaining 16% is UNSAT and
CaDiCaL can solve approximately 65% of the problems in one
hour. The file name of each submitted problem follows the
abw-[source-graph].w[k of query].cnf pattern.
The source code of the DuplexEncoder tool from [1] and
the script that was used to generate the benchmarks are both
available at http://fmv.jku.at/duplex/.
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Combined SLS and CDCL instances at the SAT
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I. Overview

This paper showcases a system to generate problem in-
stances that are a combination of an easily satisfiable ran-
dom problem and an easily satisfiable structured problem.
It combines these two satisfiable problems in a way that
their sets of variables overlap on at least one variable that
have matching polarities in their respective solutions. This
ensures that the problems cannot easily be cut into two
separate CNF files, while keeping the final CNF satisfiable.

The system tries to mimic real-world problems that are
combinations of two easy problems, easily solvable sepa-
rately by two different types of solving systems. However,
the combination of them, truly combined but not highly
overlapping, is hard to solve for non-hybrid solvers.

II. Components

A. Fixed Clause Length Model Random CNF Generator

As part of the well-known WalksSAT [7] package, gener-
ates random formulas using the fixed clause length model.
See WalkSAT and its source code for details. Parameters
were set to generate 4.25 more clauses than the number of
variables, each of length 3: "makewff -seed SEED -cnf 3

NVARS (4.25*NVARS)". The number of variables, NVARS,
was varied between 300 and 500, and competition-matching
values were picked out — too easy and too hard were
discarded.

B. Grain of Salt Structured Problem Generator

The system uses Grain of Salt [8] to generate random
problem from the CRYPTO-1 stream cipher [6], with
preset number of outputs, a random IV and random
key. When the number of OUTPUTS is low, it always
generates a satisfiable problem. Increasing the num-
ber of OUTPUTS creates progressively harder problems
which eventually become unsatisfiable. Parameters used
were: "grainofsalt --seed SEED --crypto crypto1

--outputs OUTPUTS --karnaugh 0 --init no --num

1". The OUTPUTS parameter was varied between 30 and 50,
and competition-matching values were picked out — too
easy and too hard were discarded.

C. Multipart Combiner with Overlap

The multipart combiner is a tool that takes two satisfiable
problems and their solutions, plus the parameter OVERLAP.
It outputs a solution that is a combination of the two
CNF’s clauses, but the variable numbers have been shifted
to be separate for both CNFs except for OVERLAP number
of variables. These overlap variables are picked as the first
OVERLAP variables that match on the provided solutions’

polarities. This ensures that the output is a satisfiable CNF
and that the two problems cannot easily be cut apart.

D. Putting it all together

The random problem is first generated with a particular
seed, and a solution is found for it using CCAnr[4]. Then
a cryptographic problem is generated with the same seed,
and a solution is found for it using CaDiCaL[3]. Finally, the
two CNFs and the two solutions are given to the multipart
combiner tool which produces the final, satisfiable combined
CNF.

III. Historical background

SLS solvers have been shown to be useful for some struc-
tured instances, as demonstrated by ProbSAT [2] and yal-
sat [1]. Early attempts at hybrid solving, such as Rea-
sonLS [5] combined SLS and CDCL solvers in shell-scripted,
non-cohesive way, nevertheless winning the 2018 SAT Com-
petition’s NoLimits track. This ignited interesting develop-
ments, culminating in CaDiCaL [3] and CryptoMiniSat [9]
both having a hybrid SLS-CDCL strategy in the SAT Race
2019. This combined hybrid strategy has been proven use-
ful for industrial instances. The CNFs generated by the
system can be best solved by solvers utilizing such a hybrid
strategy.

IV. Rationale

These CNFs were mostly created to encourage hy-
brid solvers such as SLS+CDCL, Gauss-Jordan elimina-
tion+CDCL, Groebner Basis+CDCL, etc. Note that with
linearization, Gauss-Jordan elimination is capable of solving
non-linear problems as well, and is therefore not restricted
to XOR constraints. These hybrid systems could poten-
tially prove very useful for the SAT community in the long
run.

V. Parameters for the Problem Instances
Generated

The problem instances problems fall into two categories,
both of which have OVERLAP set to 2.

The first bunch contain 500 variables (and correspond-
ingly, 4.25 ∗ 500 = 22125 clauses, each of length 3) for [?]
and have 31 outputs given for the CRYPTO-1 algorithm.
This can be considered moderately complex on the SLS
domain and moderately simple on the CDCL domain.

The second bunch contain 450 variables (and correspond-
ingly, 4.25 ∗ 500 = 19912 clauses, each of length 3) for [?]
and have 40 outputs given for the CRYPTO-1 algorithm.
This can be considered moderately simple on the SLS do-
main and moderately complex on the CDCL domain.

Proceedings of SAT Competition 2020: Solver and Benchmark Descriptions, volume B-2020-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2020.

83



VI. List of Problem Instances Generated

crypto1-wff-seed-1-wffvars-450-cryptocplx-40-overlap-2.cnf
crypto1-wff-seed-12-wffvars-450-cryptocplx-40-overlap-2.cnf
crypto1-wff-seed-15-wffvars-450-cryptocplx-40-overlap-2.cnf
crypto1-wff-seed-16-wffvars-450-cryptocplx-40-overlap-2.cnf
crypto1-wff-seed-18-wffvars-450-cryptocplx-40-overlap-2.cnf
crypto1-wff-seed-19-wffvars-450-cryptocplx-40-overlap-2.cnf
crypto1-wff-seed-21-wffvars-450-cryptocplx-40-overlap-2.cnf
crypto1-wff-seed-22-wffvars-450-cryptocplx-40-overlap-2.cnf
crypto1-wff-seed-24-wffvars-450-cryptocplx-40-overlap-2.cnf
crypto1-wff-seed-25-wffvars-450-cryptocplx-40-overlap-2.cnf
crypto1-wff-seed-26-wffvars-450-cryptocplx-40-overlap-2.cnf
crypto1-wff-seed-28-wffvars-450-cryptocplx-40-overlap-2.cnf
crypto1-wff-seed-3-wffvars-450-cryptocplx-40-overlap-2.cnf
crypto1-wff-seed-32-wffvars-450-cryptocplx-40-overlap-2.cnf
crypto1-wff-seed-4-wffvars-450-cryptocplx-40-overlap-2.cnf
crypto1-wff-seed-5-wffvars-450-cryptocplx-40-overlap-2.cnf
crypto1-wff-seed-8-wffvars-450-cryptocplx-40-overlap-2.cnf
crypto1-wff-seed-101-wffvars-500-cryptocplx-31-overlap-2.cnf
crypto1-wff-seed-102-wffvars-500-cryptocplx-31-overlap-2.cnf
crypto1-wff-seed-104-wffvars-500-cryptocplx-31-overlap-2.cnf
crypto1-wff-seed-105-wffvars-500-cryptocplx-31-overlap-2.cnf
crypto1-wff-seed-106-wffvars-500-cryptocplx-31-overlap-2.cnf
crypto1-wff-seed-107-wffvars-500-cryptocplx-31-overlap-2.cnf
crypto1-wff-seed-108-wffvars-500-cryptocplx-31-overlap-2.cnf
crypto1-wff-seed-109-wffvars-500-cryptocplx-31-overlap-2.cnf
crypto1-wff-seed-110-wffvars-500-cryptocplx-31-overlap-2.cnf
crypto1-wff-seed-115-wffvars-500-cryptocplx-31-overlap-2.cnf
crypto1-wff-seed-116-wffvars-500-cryptocplx-31-overlap-2.cnf
crypto1-wff-seed-121-wffvars-500-cryptocplx-31-overlap-2.cnf
crypto1-wff-seed-127-wffvars-500-cryptocplx-31-overlap-2.cnf
crypto1-wff-seed-129-wffvars-500-cryptocplx-31-overlap-2.cnf
crypto1-wff-seed-132-wffvars-500-cryptocplx-31-overlap-2.cnf
crypto1-wff-seed-133-wffvars-500-cryptocplx-31-overlap-2.cnf
crypto1-wff-seed-134-wffvars-500-cryptocplx-31-overlap-2.cnf
crypto1-wff-seed-136-wffvars-500-cryptocplx-31-overlap-2.cnf
crypto1-wff-seed-138-wffvars-500-cryptocplx-31-overlap-2.cnf
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Abstract—This document describes the CNFMiter tool, as
well as the benchmarks that have been submitted to the SAT
competition 2020, namely miter formulas of CNFs used for model
counting, combined with a simplified, equivalent, variant.

I. INTRODUCTION

model counting uses CNF. We have CNF simplifications.
number of models stays the same in case we only use equiv-
alence preserving modifications (and drop defined variables –
gates – but that’s harder to encode). To check whether CNF
simplifications actually preserve equivalence, create miter
CNFs.

II. CREATING MITER CNFS

The input for the cnfmiter tool are two uncompressed CNF
files with the formulas F and G. For both formulas, a new
variable fi is introduced for each clause Ci in the formula F
that is encoded to be > when the current interpretation satisfies
the clause. Note, the number of clauses in the formulas F and
G can be different.

F ′ :=
∨

Ci∈F
fi ↔ Ci

G′ :=
∨

Dj∈G
gj ↔ Dj

Next, we introduce a variable sF that represents the infor-
mation whether all clauses in a formula F are satisfied, again,
for both formulas.

SF := sF ↔
∧

Ci∈F
fi

SG := sG ↔
∧

Dj∈G
gj

Finally, we need to make sure that the two formulas cannot
be satisfied at the same time, which gives us the final miter
formula:

M := F ′ ∧G′ ∧ SF ∧ SG ∧ (sF 6↔ sG)

In case the two formulas F ad G are equivalent, the resulting
miter formula M is unsatisfiable. In case the variables in F
and G do not match, the resulting formula M is satisfiable.

III. THE SUBMITTED BENCHMARK

The presented approach to check formulas for equivalence
allows to check whether CNF simplifier implementations are
buggy, i.e. when being combined with a CNF fuzzer like [2].

The submitted miter formulas take formulas as input, that
come from the model counting domain. CNFs without vari-
able weights have been taken from http://www.cs.cornell.edu/
∼sabhar/software/benchmarks/IJCAI07-suite.tgz and http://cs.
stanford.edu/∼ermon/code/nips2011 benchmark.zip.

Each formula has been attempted to be simplified, such that
the resulting formula is logically equivalent, and all variables
that have been present in the original formula are present in
the result again.

For CNF simplification, we chose the latest version of
COPROCESSOR [5] default simplfications. The simplifications
are subsumption, self-subsuming resolution, equivalent literal
elimination [3], reasoning on the binray implication graph [4],
as well as deducing units and equivalences from XORs, and
reason about cardinality constraints [1]. All techniques are
setup to preserve all variables, e.g. eliminated equivalences
and the resulting formula rewriting are performed, but before
emitting the formula, the equivalence relations are encoded to
the CNF again.

IV. AVAILABILITY

The source of the tool, as well as scripts to build the de-
pendency coprocessor and create simplification miter formulas
is publicly available under the MIT license at https://github.
com/conp-solutions/cnfmiter. The file scripts/README in the
repository explains how the submitted benchmarks have been
created.
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Abstract—This document briefly describes the axiom pinpoint-
ing benchmarks that have been submitted to the incremental
track. In CNF form, axiom pin pointing searches for all subsets
of a set of assumptions that make the formula unsatisfiable.

I. INTRODUCTION

In the description logic EL+, axiom pinpointing is the
computations of all minimal subsets of axioms that imply
another axiom in an ontology [1]. The task can be solved
with SMT or SAT solvers, by converting the input problem
accordingly [4]. The submitted benchmarks are based on the
tool SATPIN [2], [3], which allows to use SAT solvers via
the IPASIR interface. SATPIN also uses a modified MINISAT
solver, heavily modifying the way incremental solving is done
to speedup solving iterations. Experiments show, that at in
2015 IPASIR solvers could not keep up with this modified
solver. Modifications include to avoid fully restarting the SAT
solver between iterations, i.e. keeping as many decision levels
as possible and adding new clauses while the interpretation
is non-empty; testing whether an out-of-order assumption is
already falsified before consider the next assumption as a deci-
sion; or sorting assumption literals to have stable assumptions
in the front of the stack. The last mentioned modification
results in automatically computing subset-free answers for the
axiom pinpointing problem. Without this modification, more
SAT calls might be required. See [2], [3] for more details.

II. THE SUBMITTED BENCHMARK

The submitted benchmark is based on the ontology Full-
Galen, that has been converted to the CNF form [4]. SATPIN
is called as usual, except that the backend is an IPASIR solvers.
The tool will react to the answers reported by the IPASIR
solvers, i.e. in case not all subsets that result in an unsatisfiable
formula have been found, the SAT solver will be called again.
Hence, finding small answers is beneficial, as it potentially
avoids redundant SAT solver calls.

III. AVAILABILITY

SATPIN is publicly available under the MIT license at https:
//github.com/conp-solutions/satpin. The file README in the
repository explains how to link IPASIR solvers, as well as
how to call the tool with the converted anthologies.
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Abstract—Flood-it is a puzzle in which, the player aims to fill
the game board (flood) with a minimum number of flooding
moves. Finding an optimal solution to this game is an NP-
Complete problem. In this paper, we describe a possible encoding
of the game to propositional Satisfiability problem.

I. INTRODUCTION

Flood-It is a board game in which the player is given an
n × n board of squares (we call them fields), where each
one is allocated one of c colors. The goal is to fill the entire
board with the same color via the shortest possible sequence of
flooding moves from the top left. If c ≥ 3, Flood-It complexity
becomes NP-Hard [1], [2].

Each move dictates the player to choose a color. In turn,
all flooded fields change their color to the chosen color. This
procedure is recursive as any field touching the flooded region
with the same color is also flooded. As the flooded region
grows, new neighbors will be eligible for flooding in the next
move. The process continues until the whole board is filled
with a single color with lowest possible moves.

II. SAT ENCODING

The intuition of solving the game in SAT, is to let a SAT
solver find the shortest sequence of moves that completes
the puzzle. In this section, we briefly describe a strategy
which is proposed by the first author in his bachelor thesis
[3] to formulate the game rules with a set of predicates in
Conjunctive Normal Form (CNF).

Nevertheless, solving a single encoding gives only part of
the answer to the question “how many minimal moves is
needed to solve Flood-It puzzle?”. The minimal solution is
rather logarithmically approached by choosing a value m that
allows the corresponding SAT formula satisfiable.

A. Game Properties

The properties of the game are expressed in the following
predicates:

• F(t, f) is true if a field f is flooded at turn t.
• M(t, c) is true if a color c is chosen at turn t.
• T (t, f) is true if f is next to a flooded field at t.
These predicates define the Boolean variables of the SAT

formula that encodes Flood-It puzzle. The assignments of the
move predicates M, along with the proposed conditions, give
a possible sequence of moves that we need to solve the game.

B. Flood Conditions

The following conditions are designed in such a way to
strictly follow the rules of Flood-It. This grantees a tangible
solution of the puzzle via a satisfying assignment to the
corresponding SAT problem.

1) A cluster C of orthogonal fields is flooded at t = 0 start-
ing from the top-left-corner field f = 0 (precondition).

n2−1∧

f=0

{
F(0, f) , if f ∈ C
¬F(0, f) , otherwise

(1)

2) One move can be made at a turn with exactly one color.
The notations m and k denote the maximum number
of moves allowed and the number of colors available
respectively.

m−1∧

t=0

k−1∨

c=0

M(t, c) (2)

m−1∧

t=0

k−2∧

c=0

k−1∧

d=c+1

¬M(t, c) ∨ ¬M(t, d) (3)

3) A flooded field will remain flooded to the end of the
game

m−1∧

t=0

n2−1∧

f=0

F(t, f)⇒ F(t+ 1, f) (4)

4) If a field f is not already flooded and not touched by
any other field gi such that 1 ≤ i ≤ k, then f will not
be flooded.

m∧

t=0

n2−1∧

f=0

¬F(t, f) ∧ ¬T (t, g1) ∧ · · · ∧ ¬T (t, gk)

⇒ ¬F(t+ 1, f) (5)

5) If a move is made with an f ’s color (cf ), and that field
touches the flooded region, it is flooded.

m−1∧

t=0

n2−1∧

f=0

M(t, cf ) ∧ T (t, f)⇒ F(t+ 1, f) (6)

6) If a move is made of not cf and f is not flooded already,
then f is not flooded.

m−1∧

t=0

n2−1∧

f=0

¬M(t, cf ) ∧ ¬F(t, f)⇒ ¬F(t+ 1, f) (7)
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7) Whenever a field is flooded, all neighbors (g1 . . . gk)
with the same color are flooded as well.

m∧

t=0

n2−1∧

f=0

F(t, f)⇔ F(t, g1) ∨ · · · ∨ F(t, gk) (8)

8) A field is flooded iff it touches a direct orthogonal
neighbor (n1 . . . nk).

m∧

t=0

n2−1∧

f=0

T (t, f)⇔ F(t, n1) ∨ · · · ∨ F(t, nk) (9)

9) All fields are flooded after a maximum number of moves
m at t = m+ 1 (postcondition).

n2−1∧

f=0

F(m+ 1, f) (10)

III. BENCHMARKS

In benchmarks generation, we chose k = 10, n = 70, and
m = {225, 229, 230}. The maximum number of moves m can
be used to control the hardness of the encoded problem. For
these settings, 20 instances are generated randomly.
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Abstract—Insights about connections between structural prop-
erties and how a SAT solver behaves on such problems are either
difficult to gain or only evaluated statistically. We propose a
generator that creates benchmarks with a specific community
structure, clause lengths, and an easy to understand proof. Thus,
the effects of different solver implementations, heuristics, and
parameters can be easier analyzed and compared.

I. INTRODUCTION

Different structural attributes of SAT problems influence the
efficiency and the behaviour of a SAT solver. For example,
certain watcher schemes are preferable, when a benchmark
has a particular clause to variable ratio or a dominant clause
length. Further, the underlying graph structure can determine
which heuristics are more likely to succeed. A prominent
example is to determine the usefulness of a learned clause in
CDCL solvers by its LBD value [1], which mainly boosts the
performance on application benchmarks, while maintaining the
capability of solving other benchmark types. The underlying
assumption is that the LBD reflects the community structure
of the underlying graph of the SAT problem. Such universal
insights are rare and hard to find. To further study the
behaviour of SAT solvers and especially try to understand
why certain heuristics, parameters, and implementations lead
faster to a solution on certain problems, we implemented a
benchmark generator that creates instances with a known graph
structure and complexity (also called hardness), i.e. a known
number of necessary conflicts to find the solution and how
they can be solved optimally. With the generated problems,
we can test variations of implementations and parameters to
observe on which structures they succeed and in which they
do not. Thus, possible connections between runtime statistics,
used parameters, and problem structure can be easier exposed,
since full information about the problem is known.

As an example, our first goal is to identify a connection
between used data structures and hardware effects, e.g. cache
usage for different benchmarks. Especially in parallel SAT
solvers, the solve time fluctuates, which makes it necessary
to execute hundreds of benchmarks multiple times to statisti-
cally evaluate different implementations. By using predefined
branching sequences on our generated problems, we can
compare different clause storage implementations determin-
istically. This is not possible in general because different data
structures lead to different orders of propagated literals. This
leads to different conflicts and finally to different solution

times. To prevent this, one has to know exactly which conflicts
will occur through which branches.

This description is early work in progress and only covers
how the submitted benchmarks are generated. We strongly
encourage interested readers to get in touch with us to discuss
and work on other possible applications of such generated
benchmarks.

II. BASIC METHOD

The generated benchmarks are based on connecting multiple
smaller SAT problems to an harder to solve instance. First,
we use unsatisfiable problems as cores, further called UNSAT
cores. The main requirement for an UNSAT core is that the
minimal proof is known. This trivially includes which clauses
are used in the proof and how many conflicts are necessary
for a solution by knowing the resolution DAG. Such UNSAT
cores are than linked together so that the resulting benchmark
is still unsatisfiable and the minimal proof is still known.

In the current state, we link UNSAT cores together by
adding a variable to a one of the proof clauses of the one
core and the negation of the variable to a proof clause of the
other core. This approach has limitations. As soon as cycles
are created through linking multiple cores, it has to be ensured
that the cycles do not introduce a satisfiable variable setting.

III. USED UNSAT CORE

In the first stage, we generate clauses from all sign per-
mutations of m variables xi, i.e. generate for each of the 2m

possible models a clause, which excludes it (Eq. 1). The proof
of this m-core is simple and every deterministic branching
heuristic leads to the same proof when no learned clauses are
deleted. Also, every preprocessor using a NIVER approach [2]
solves the problem optimally.

{(s1x1 ∨ s2x2 ∨ ... ∨ snxn)|si ∈ {+,¬}} (1)

In the second stage, the generator transforms the m-core into
a N-SAT problem, by splitting every clause using additional
variables similar to linking multiple cores described above and
shown for one 4-core clause in Eq. (2). This approach changes
the number of resolutions in the proof but has no influence on
the number of conflicts or the branching strategy.

¬x1 ∨ x2 ∨ x3 ∨ ¬x4
add a
=⇒
split

¬x1 ∨ x2 ∨ a

¬a ∨ x3 ∨ ¬x4

(2)
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In the third and last stage, three or more of the N-SAT m-cores
are combined to a single problem using for each core the same
variables for the N-SAT transformation, which is equal to a
variable renaming step. Eq. (3) gives an example for the first
clause of each of three combined 4-cores.

x1 ∨ x2 ∨ a

¬a ∨ x3 ∨ x4

y1 ∨ y2 ∨ b

¬b ∨ y3 ∨ y4

z1 ∨ z2 ∨ c

¬c ∨ z3 ∨ z4

=⇒

x1 ∨ x2 ∨ a

¬a ∨ x3 ∨ x4

y1 ∨ y2 ∨ a

¬a ∨ y3 ∨ y4

z1 ∨ z2 ∨ a

¬a ∨ z3 ∨ z4

(3)

The last transformation does not increase the hardness.
The combined m-cores have still the complexity of 2m,
and the original unsat proofs are still valid. Thus, to make
such a combined core satisfiable—which is also crucial for
linking multiple cores—one clause of each combined m-core
has to be deleted respectively to the variables used for the
combination. For example, in Eq. (3) all six clauses using
the same connection variable have to be deleted to make the
complete problem satisfiable.

The last stage mainly adjusts the variable to clause ratio and
prevents a typical preprocessor to be capable of solving the
problem, which takes in most cases more time than directly
using a CDCL solver.

IV. OTHER POSSIBLE UNSAT CORES

Certain other crafted benchmarks come also into consider-
ation, which we may consider in the future. Even taking any
minimal proof of a benchmark would be suitable. Regarding
our first goal, it is very time-consuming to generate a branch-
ing sequence to non-trivial problems, which ensures the same
solution path with different implementations. With our current
approach, we can scale the problem size, the hardness, and
adjust the variable to clause ratio easily, while the branching
sequence is already known due to the simple base of the
UNSAT cores.

V. DETAILS ABOUT SUBMITTED BENCHMARKS

All of the submitted benchmarks are relatively large. The
used disk space for the not compressed CNFs are between
80 MB and 700 MB. Half of the 20 benchmarks are satisfiable,
and the others are unsatisfiable. Details about the runtime are
displayed in Table I.

The benchmarks are created from 17 to 19-cores with
N-SAT transformations between 3 and 10 or from a high
number of 4 to 7-cores reduced to 3-SAT problems. Every
benchmark is homogeneously created, i.e. all linked and
combined cores of a benchmark are created from the same
number of variables. The used graph structure in each
benchmark is a randomly generated acyclic graph. Since each
benchmark is create so that the optimal branching sequence
is always (x1, x2, ..., xn) we randomly renamed the variables
using https://github.com/vegard/cnf-utils.

TABLE I
RESULTS FROM EXECUTING MINISAT 2.2 ON A DUAL SOCKET INTEL

XEON E5-2630V3 2.4 GHZ WITH 64 GB DRAM

name solution time in s
ncc none 2 18 8 3 1 0 435991723.cnf sat 352
ncc none 3001 7 3 3 0 31 435991723.cnf sat 932
ncc none 3001 7 3 3 1 31 435991723.cnf sat 965
ncc none 5047 6 3 3 3 0 435991723.cnf sat 1165
ncc none 3047 7 3 3 1 0 1.cnf sat 1323
ncc none 2 17 3 3 1 0 435991723.cnf sat 1688
ncc none 12477 5 3 3 1 0 435991723.cnf sat 2611
ncc none 2 19 5 3 1 0 435991723.cnf sat 6242
ncc none 12477 6 3 3 1 0 435991723.cnf sat 7000
ncc none 21015 5 3 3 1 0 11.cnf sat 7000
ncc none 3 16 3 3 0 0 435991723.cnf unsat 892
ncc none 2 17 4 3 0 0 435991723.cnf unsat 976
ncc none 2 18 9 3 0 0 435991723.cnf unsat 1138
ncc none 5047 6 3 3 0 0 41.cnf unsat 1573
ncc none 3047 7 3 3 0 0 1.cnf unsat 1809
ncc none 2 18 5 3 0 0 435991723.cnf unsat 2534
ncc none 12477 5 3 3 0 0 435991723.cnf unsat 3000
ncc none 7047 6 3 3 0 0 420.cnf unsat 3130
ncc none 21015 5 3 3 0 0 11.cnf unsat 7000
ncc none 12477 6 3 3 0 0 435991723.cnf unsat 7000

ACKNOWLEDGMENT

We want to express our gratitude towards the organisers of
the SAT Competition 2020 for making such an event possible.
Additionally we like to thank Florian Schintke for his support,
the IT and Data Services members of the Zuse Institute Berlin
for providing the infrastructure and their fast help and also
Vegard Nossum for providing the CNF transform tools.

REFERENCES

[1] Gilles Audemard and Laurent Simon, “Predicting Learnt Clauses Quality
in Modern SAT Solvers”, IJCAI 2009, 2009

[2] Sathiamoorthy Subbarayan, Dhiraj K. Pradhan and David G. Hoos,
“NiVER: Non-increasing Variable Elimination Resolution for Prepro-
cessing SAT Instances”, Theory and Applications of Satisfiability Test-
ing, 2005

90



SAT Benchmarks based on Hypertree
Decompositions
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This benchmark set contains several SAT instances used
for computing hypertree decompositions. Similar to tree de-
compositions and generalized hypertree decomposition, hyper-
tree decompositions are used to solve problems, that can be
represented as hypergraphs (e.g. conjunctive queries), in time
depending on the width of the decomposition.

I. PROBLEM DESCRIPTION AND ENCODING

A tree decomposition of a hypergraph H = (V,E) is a pair
T = (T, χ) where T = (V (T ), E(T )) is a tree and χ is a
mapping that assigns to each t ∈ V (T ) a set χ(t) ⊆ V such
that the following properties hold:

T1 for each v ∈ V there is some t ∈ V (T ) with v ∈ χ(t),
T2 for each e ∈ E there is some t ∈ V (T ) with e ⊆ χ(t),
T3 for any three t, t′, t′′ ∈ V (T ) where t′ lies on the path

between t and t′′, we have χ(t) ∩ χ(t′′) ⊆ χ(t′).
A generalized hypertree decomposition of H is a triple D =

(T, χD, λD) where (T, χD) is a tree decomposition of H and
λD is a mapping that assigns each t ∈ V (T ) an edge cover
λD(t) ⊆ E(H) of χD(t).

A hypertree decomposition [3] of H is a generalized hy-
pertree decomposition D = (T, χD, λD) of H where T is a
rooted tree that satisfies in addition to T1–T3 also a certain
Special Condition (T4). To formulate this condition, we call
a vertex v to be omitted at a node t ∈ V (T ), if v /∈ χD(t),
but λD(t) contains a hyperedge e with v ∈ e. The Special
Condition now states the following:

T4 If a vertex v is omitted at t, then it must not appear in
the bag χD(t′) of any descendant node t′ of t.

The width of D is the size of a largest edge cover λ(t) over
all t ∈ V (T ). The hypertree width of H is the smallest width
over all hypertree decompositions of H .

We use a SAT encoding to compute hypertree decomposi-
tions of a given width for a given hypergraph. The encoding
is based on the treewidth encoding by Samer and Veith [4]
and its extension to generalized hypertree width [1], [2]. We
extend this encoding with clauses representing the hierarchical
structure of the rooted tree, which allows us to encode the
Special Condition [5]. The width is enforced by placing
sequence counter cardinality constraints [4], [6] on the edge
covers.

II. INSTANCE GENERATION AND CATEGORIZATION

The hypergraphs used for the SAT instances are from the
Hyperbench1 collection. These hypergraphs represent queries
from different database systems as well as CSP instances. Due
to the sampling described below, the provided SAT instances
are mainly generated from CSP hypergraphs.

The SAT instances were generated using our decomposer
HtdSMT2. Given a hypergraph H , the decomposer uses an
upper bound on the hypertree width to start the search. When-
ever a decomposition is found, the bound is decremented, until
no decomposition can be found. Each SAT instance represents
a run with a separate upper bound k. The instances are named
using the convention <hyperbench instance name> <k>.cnf.
If the instance is satisfiable, the hypertree width of H is
smaller or equal to k, otherwise it is larger than k.

The instances are separated into the categories easy and
hard. Easy instances were solved on the test system in between
600 and 1800 seconds and hard instances took over 1800
seconds or were not solved at all. The instances were then sub-
divided into satisfiable instances (sat), unsatisfiable instances
(unsat) and instances were the satisfiability is unknown. The
categorization is reflected in the folder structure. The test
system ran glucose 4.0 using 16 GB RAM and an Intel i5-
9600KF CPU running at 3.7 GHz.
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Abstract—This document describes a collection of satisfiability
instances that arise in Lam’s problem from discrete geometry.

I. INTRODUCTION

Instances in this benchmark encode subproblems that arise
in Lam’s problem from finite projective geometry—the prob-
lem of determining whether or not a finite projective plane of
order ten exists. Studied since the 1800s, Lam’s problem was
resolved in the late 1980s by a computer search culminating
in months of computational effort on a CRAY-1A supercom-
puter [1]. Recently, we used SAT solvers to verify a significant
portion of this search [2]–[4].

II. BACKGROUND

A finite projective plane of order ten is defined to consist
of a collection of 111 points, 111 lines, and an incidence
relationship between points and lines such that any two points
are incident with a unique line and any two lines are incident
with a unique point. Furthermore, every line is incident with
exactly 11 points and every point is incident with 11 lines.

From a computational perspective, a convenient way of
representing a finite projective plane of order ten is by a square
incidence matrix A of order 111 whose (i, j)th entry contains
a 1 exactly when the ith line is incident to the jth point. The
projective plane incidence relationship requires that any two
distinct rows or columns of A have an inner product of exactly
one. It follows that A satisfies the relationship

AAT = ATA = 10I + J

where I denotes the identity matrix and J denotes the matrix
consisting of all 1s.

It is hopeless to determine if such an A exists using this
simple definition alone—even though the search space is finite
it is far too large to be effectively searched. In the 1970s,
coding theory was used to derive conditions that A must satisfy
if it exists. In particular, it can be shown mathematically that
the rowspace of A (mod 2) must contain vectors of Hamming
weight 15 or 19 [5]. Furthermore, the existence of such vectors
greatly restrict the structure of A.

In particular, a vector of Hamming weight 15 appearing in
A’s rowspace implies that every entry appearing in either the
first 21 rows or 15 columns of A can be assumed without
loss of generality [6]. Similarly, the vectors of Hamming

weight 19 are of three possible types (called oval, 16-type, or
primitive [5]) and each case places restrictions on the possible
structure of A.

The twenty benchmarks in this collection each specify a dif-
ferent starting configuration for A—one benchmark resulting
from the weight 15 starting configuration, three benchmarks
resulting from 16-type starting configurations, and sixteen
benchmarks resulting from primitive weight 19 starting con-
figurations.

III. ENCODING

Let ai,j be a Boolean variable that is true exactly when
A[i, j] = 1. We say that two columns or rows of A intersect
if they share a 1 in the same location. The projective plane
incidence relationship requires that any two rows and any
two columns of A intersect exactly once. In our encoding we
require that

1) any two rows or columns intersect at most once, and
2) any row or column entirely specified by the starting

configuration intersects every other row or column at
least once.

These two conditions are sufficient to show that A cannot
exist (at least in the starting configurations that occur in this
collection of benchmarks). Moreover, these conditions are
naturally encoded in conjunctive normal form.

In the first condition, suppose that i and j are arbitrary row
indices. Then

∧

1≤k<l≤111

(¬ai,k ∨ ¬ai,l ∨ ¬aj,k ∨ ¬aj,l)

specify that rows i and j do not intersect twice (i.e., they
intersect at most once). Conditions of this form are required
for all 1 ≤ i < j ≤ 111.

In the second condition, suppose that i is the index of a row
completely specified by the starting configuration and that j
is the index of another row. Then

∨

k:A[i,k]=1

aj,k

specifies that row i and j intersect at least once. This clause
is well-defined since all entries A[i, k] for 1 ≤ k ≤ 111 are
known in the starting configuration. We also include similar
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clauses for each column completely specified by the starting
configuration.

Additionally, we used two optimizations of this encoding
which in our experiments made the instances easier to solve.

First, we do not include all 1112 variables in the instances.
Instead, we choose a submatrix of A and only encode the
constraints arising in that submatrix. The submatrix is exper-
imentally chosen to be small while still ensuring that there
are enough constraints to make the instance unsatisfiable. As
a rule of thumb, about one third of the entries of A are
usually required before the instance becomes unsatisfiable. In
our collection of benchmarks the weight 15 instance used 75
columns and 51 rows, the 16-type instances used 65 columns
and 80 rows, and the primitive weight 19 instances used up
to 54 columns and all 111 rows.

Second, we included symmetry breaking clauses that re-
move symmetries from the search space. In particular, we
enforce a lexicographical order on certain rows and columns
that are otherwise identical in the starting configuration. There
are also additional symmetries in the 16-type instances broken
using a lexicographic method—see [3] for details.

IV. SUMMARY

The benchmarks in this collection naturally arise in the
process of solving Lam’s problem from finite geometry. They
have been selected in order to provide the satisfiability commu-
nity a collection of instances relevant to solving an interesting
and celebrated mathematical problem. They were generated
as a part of the MathCheck project and can all be solved
in under an hour on a modern desktop using the cube-and-
conquer paradigm [7].
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1School of Computer Science, Huazhong University of Science and Technology, Wuhan, China

{maoluo,zhipeng.lv}@hust.edu.cn, zhaoyangxiaofan@163.com
2MIS, University of Picardie Jules Verne, Amiens, France

{chu-min.li, yu.li}@u-picardie.fr
3Artificial Intelligence Research Institute (IIIA-CSIC), Barcelona, Spain. felip@iiia.csic.es

Abstract—Multiplying two polynomials of degree n − 1 can
need n2 coefficient products, because each polynomial of degree
n − 1 has n coefficients. If the coefficients are real numbers,
the Fourier transformation allows to reduce the number of
necessary coefficient products to O(n∗ log(n)). However, when
the coefficients are not real numbers (e.g., when the coefficients
are matrix), the Fourier transformation cannot be used. In
this case, it is important to reduce the number of necessary
coefficient products using other methods to speed up the
multiplication of two polynomials. In this short paper, we
reduce the problem of multiplying two polynomials of degree
n−1 with t (t ≤ n2) coefficient products to SAT, in such a way
that the solution of a satisfiable SAT instance tells how to use
exactly t coefficient products to multiply two polynomials of
degree n−1, and the unsatisfiability of a SAT instance implies
the infeasibility of using t coefficient products to multiply two
polynomials of degree n− 1. We then provide 20 new crafted
SAT instances.

1. Introduction

A simple example of polynomial multiplication can be
expressed using Equation 1:

(ax+ b)(cx+ d) = acx2 + (ad+ bc)x+ bd (1)

The trivial multiplication of two polynomials of degree 1
needs four coefficient products: {ac, ad, bc, bd}. A smart
multiplication of the two polynomials needs only 3 products
{ac, (a+ b)(c+ d), bd}, as expressed in Equation 2:

(ax+b)(cx+d) = acx2+
(
(a+b)(c+d)−ac−bd)

)
x+bd

(2)
In Equation 2, we need more addition and subtraction

operations than in Equation 1. However, multiplication is
much more costly than addition and subtraction. So, we can
multiply two polynomials of degree 1 more quickly using
Equation 2 than using Equation 1.

In the general case, we want to multiply two polynomials
of degree n − 1 using less than n2 coefficient products. If
the coefficients are real numbers, the Fourier transformation

allows to reduce the number of necessary coefficient prod-
ucts to O(n ∗ log(n)). However, when the coefficients are
not real numbers (e.g., when the coefficients are matrix), the
Fourier transformation cannot be used.

In the sequel, we describe how to reduce the problem
of multiplying two polynomials of degree n − 1 using t
(t ≤ n2) products to SAT. When the obtained SAT instance
is satisfiable, the SAT solution gives a way to multiply
two polynomials of degree n − 1 using t products. When
the obtained SAT instance is unsatisfiable, we know that
more than t coefficient products are needed to multiply
two polynomials of degree n − 1. We refer to [1], [2] for
other efficient algorithms for polynomials. The reduction is
different from [3], [4] in that the solution of a satisfiable
instance gives a precise way to compose each product and a
precise way to use the t products to compute each coefficient
of the product of the two polynomials, while the reduction
presented in [3], [4] does not give such a way.

2. A SAT Encoding of Polynomial Multiplica-
tion Using t Products

Consider two polynomials of degree n− 1:

A(x) = an−1x
n−1 + an−2x

n−2 + · · ·+ a1x+ a0

B(x) = bn−1x
n−1 + bn−2x

n−2 + · · ·+ b1x+ b0

Their product is

A(x)×B(x) = c2n−2x
2n−2+ c2n−3x

2n−3+ · · ·+ c1x+ c0

We want to compute A(x) × B(x) using t (t ≤
n2) products: P1, P2, . . . , Pt, where each Pl (1 ≤ l ≤
t) is of the form (±a′1 ± a′2 ± · · ·)(±b′1 ± b′2 ± · · ·)
with a′1, a

′
2, . . . ∈ {an−1, an−2, . . . , a0} and b′1, b

′
2, . . . ∈

{bn−1, bn−2, . . . , b0}. Addition and/or subtraction of these
products give the coefficients ck = ±P ′1 ± P ′2 ± · · · of
A(x) × B(x), where 0 ≤ k ≤ 2n − 2 and P ′1, P

′
2, · · · ∈

{P1, P2, · · · , Pt}. The problem becomes to determine a′i
and b′j and their sign for each product, as well as P ′l and
their sign in ck. To solve that problem, we first define the
following Boolean variables.
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• pail = 1 iff ai is involved positively in product Pl;
• nail = 1 iff ai is involved negatively in product Pl;
• pbjl = 1 iff bj is involved positively in product Pl;
• nbjl = 1 iff bj is involved negatively in product Pl;
• pckl = 1 iff product Pl is used positively to compute

ck;
• nckl = 1 iff product Pl is used negatively to compute

ck;
• pxijkl = 1 iff ai and bj are involved in product Pl,

product Pl is used to compute ck, and the number
of negative signs among ai, bj and Pl in ck is even;

• nxijkl = 1 iff ai and bj are involved in product Pl,
product Pl is used to compute ck, and the number
of negative signs among ai, bj and Pl in ck is odd;

We then define the clauses of the encoding as follows:

• Clauses linking pxijkl and nxijkl with pail, pbjl,
pckl, nail, nbjl and nckl.

• For each i and j (0 ≤ i, j ≤ n− 1) and for each k
(0 ≤ k ≤ 2n−2) such that i+j 6= k, if ai and bj are
involved in product Pl and Pl is used to produce ck,
then the product of ai and bj should be eliminated
by subtraction using another product Pl′ involving
ai and bj . If i + j = k, one product of ai and bj
should remain in ck. So,

t∑

l=1

pxijkl−
t∑

l=1

nxijkl =

{
1 mod 2 if i+ j = k
0 mod 2 otherwise

In order to compute the difference
∑t

l=1 pxijkl −∑t
l=1 nxijkl, we introduce t new Boolean variables

u1, u2, · · · , ut that represent the value of pxijkl

(1 ≤ l ≤ t) in the decreasing order and t Boolean
variables v1, v2, · · · , vt that represent the value of
nxijkl (1 ≤ l ≤ t) in the decreasing order. It
is clear that ∀i ui ≥ vi and there is exactly
one i such that ui = 1 and vi = 0 to satisfy∑t

l=1 pxijkl −
∑t

l=1 nxijkl = 1. For example, let
t = 2. We introduce u1 = pxijk1 ∨ pxijk2 and
u2 = pxijk1 ∧ pxijk2, and v1 = nxijk1 ∨ nxijk2

and v2 = nxijk1 ∧ nxijk2. Then we have u1 ≥ u2,
v1 ≥ v2, u1 ≥ v1 and u2 ≥ v2. If v1 = 1, we
deduce quickly u1 = u2 = 1 and v2 = 0 to satisfy∑t

l=1 pxijkl −
∑t

l=1 nxijkl = 1.

3. Set of Submitted Instances

We generated 20 SAT instances by varying n and t, using
the encoding of the previous section. Each combination of
n and t gives an instance newpoln-t.

Table 1 shows, for each generated instances, its number
of variables and clauses, the status of the formula (satis-
fiable, unsatisfiable or unknown), and the time needed by
MiniSat [5] to solve the instance on a computer with Intel
Xeon E5-2680 v4 processors at 2.40 GHz and 10GB of
memory under Linux. The cutoff time is 5000 seconds.

TABLE 1. INFORMATION ABOUT THE GENERATED INSTANCES.

Instance #Variables #Clauses Satisfiability Time
newpol3-6 10247 32483 UNSAT 4346.01
newpol4-6 20133 64129 UNSAT 4573.78
newpol6-6 55745 178325 UNSAT 582.97
newpol6-7 70134 223345 unknown timeout
newpol6-8 81975 260721 unknown timeout
newpol7-5 65730 211263 UNSAT 652.43
newpol7-6 83487 267355 unknown timeout
newpol23-4 1206085 3943811 UNSAT 1175.82
newpol27-4 1917373 6270811 UNSAT 1202.76
newpol28-4 2130735 6968861 UNSAT 1087.42
newpol29-4 2359369 7716887 UNSAT 1409.96
newpol30-4 2603803 8516617 UNSAT 719.09
newpol31-4 2864565 9369779 UNSAT 1984.97
newpol32-4 3142183 10278101 UNSAT 2134.57
newpol34-4 3750099 12267137 UNSAT 1103.73
newpol36-4 4431775 14497549 UNSAT 865.87
newpol37-4 4801593 15707591 UNSAT 1941.61
newpol38-4 5191435 16983161 UNSAT 893.79
newpol39-4 5601829 18325987 UNSAT 2415.15
newpol40-4 6033303 19737797 UNSAT 1022.88
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Abstract—The formulas that are generated by PEQNP Li-
brary represent some particular instances of the following NP-
Problems: 01 Integer Programming, Fermat Factorization, Schur
Triplets, Sum Subset.

Index Terms—CNF, CSP, Encoding, Benchmarks

I. THE PEQNP LIBRARY

The PEQNP System its an automatic CNF encoder and
SAT Solver for General Constrained Diophantine Equations
and NP-Complete Problems, fully integrated with Python [1].

II. SAT COMPETITION 2020 BENCHMARKS

The collected formulas have generated with PEQNP Library
for the following problems:

A. 01 Integer Programming

Given an integer matrix C and integer vector d, exist a 0-1
vector x such that Cx = d?

B. Fermat Factorization

Given an integer pq and exist two integers p and q such that
(p− q)(p + q) = pq with 1 < p− q < p + q?

C. Schur Triplets

Given a list of 3n distinct positive integers is there a parti-
tion of the list into n triples (ai, bi, ci) such that ai + bi = ci
for each triple i?

D. Sum Subset

. Given a list of positive integers U with a target t exist a
S such that Σ(S) = t?

III. AVAILABILITY

The source of PEQNP Library can be found at
www.peqnp.science internally integrated with SLIME SAT
Solver [2].
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Abstract—This document describes a SAT encoding of the
school timetabling problem where all constraints are hard. The
instances derived from this encoding are submitted to the 2020
SAT Competition.

I. INTRODUCTION

The tremendous progress achieved in the solving of the
Boolean Satisfiability problem (SAT) has favored the used of
the SAT technology to tackle a variety of related practical
problems. The latter include software and hardware verifi-
cation [1], [2] combinatorial problems [3], [4], planning in
artificial intelligence [5], [6], cryptanalysis [7], dependency
management [8], graph coloring, timetable construction [9],
[10], etc.

In this paper, we are interested in the school timetabling
problem [9] where we give an encoding of a specific version
which is used to generate the benchmarks submitted to the
2020 SAT Competition.

II. TIMETABLING PROBLEM CONSTRAINTS AND ENCODING

A. Problem Specifications

To be valid, the timetable must comply with a number
of constraints. All these constraints are considered hard in
the sense that they are required to be satisfied. The problem
specifications are the followings: A course is defined by a
class and a subject in that class. A class here refers to a group
of students that will be taught a particular subject. A course
must have a teacher, a classroom and a number of time slots
in which it is taught. Two courses taught by the same teacher
must not take place in the same time slot. No more than one
course may be taught in a classroom at the same time. No two
courses in the same classroom may be held at the same time
slot. Teachers may be unavailable at certain time slots. Each
course has a required number of weekly time slots and must
be scheduled in a limited number of time slots per day. The
time slots allocated to a course in a day must be contiguous.
Some teachers may not be qualified to teach some courses.
All the courses taught by a given teacher are spread over a
limited number of days in a week.

The problem here, is to find for each course of each class,
the teacher who teaches it, the room in which it takes place
and the time slots during which it is taught in a week.

B. Definitions and Notations

In our encoding, we consider the following Boolean vari-
ables:
• chi,j is true iff the course i is scheduled in time slot j;
• cdi,j is true iff the course i takes place in day j;
• csi,j is true iff the course i takes place in room j;
• cei,j is true iff the course i is taught by teacher j.
• edi,j is true iff the teacher i teaches some course in day

j.
We also consider the following sets and constants:
• T : The set of all time slots in a week;
• Cl : The entire set of classes;
• C : The entire set of courses;
• Ci: The set of courses taught in class i;
• nti: The required number of time slots for course i in a

week;
• S: The set of all rooms;
• Si: The set of rooms that can hold course i;
• E : The set of teachers;
• Ei: The set of teachers that can teach course i;
• J : The entire set of class days;
• TJj : The set of the time slots in day j.
• day(j) is the day of the time slot j.
We use the following notations:
Given a set A of Boolean variables and an integer k,

AMO(A), EXO(A), AM(k,A), AL(k,A), EX(k,A) denote re-
spectively the cardinality constraints “At Most One”, “Exactly
One”, “At Most k”, “At Least k” and ‘‘Exactly k” defined
over A.

C. Encoding of the Constraints

We then have the following encoding:
1) If a course takes place in a given time slot, then it also

takes place on the day corresponding to that time slot.
This is enforced by the following constraint:

¬chi,j ∨ cdi,day(j)

Hence, for all courses and for all time slots, we have :
∧

i∈C

∧

j∈T
(¬chi,j ∨ cdi,day(j))

2) If a course takes place in day j, then it also takes place
in some time slot of this day; so for each course i and
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each day j, whose time slots are tj1, . . . , tjk we have
¬cdi,j ∨ chi,tj1 ∨ . . .∨ chi,tjk which gives the following
CNF encoding:

∧

i∈C

∧

j∈J
(¬cdi,j ∨ chi,tj1 ∨ . . . ∨ chi,tjk)

3) Each course i has exactly nti time slots per week.
∧

i∈C
(EX(nti, {chi,j , j ∈ T}))

4) Each course must have exactly one teacher
∧

i∈C
(EXO({cei,j , j ∈ Ei}))

5) Each course must have exactly one classroom
∧

i∈C
(EXO({csi,j , j ∈ Si}))

6) Two courses with the same teacher must not take place
in the same time slot. Tj represents all the time slots
during which teacher j is available.

∧

j∈E

∧

k∈Tj

AMO({cei,j ∧ chi,k, i ∈ Cj})

7) Two courses with the same room must not take place at
the same time slot.

∧

j∈S

∧

k∈T
AMO({csi,j ∧ chi,k, i ∈ C})

8) Each class must have a maximum of one course per time
slot. ∧

k∈Cl

∧

t∈T
(AMO({ci,t, i ∈ Ck}))

9) Each course i must have no more than nbMaxTSDayi
time slots per day.
∧

i∈C

∧

j∈J

(
cdi,j ⇒ AM(nbMaxTSDayi, {chi,t, t ∈ TJj})

)

10) A course i must be scheduled on nbDaysMaxi days at
most per week.

∧

i∈C
AM(nbDaysMaxi, {cdi,j , j ∈ J})

11) Each teacher must have at least EJmin and no more
than EJmax class days per week.
• ∧

j∈E

∧

i∈Cj

∧

k∈J
(¬cei,j ∨ ¬cdi,k ∨ edj,k)

• ∧

i∈E
AM(EJmax, {edj,k, k ∈ J})

• ∧

i∈E
AL(EJmin, {edj,k, k ∈ J})

12) The time slots of the same course in the same day must
be contiguous.

∧

i∈C

∧

j∈T

( ∧

k∈TSP(j)

¬chi,j∨(chi,j−1, day(j) = day(j−1)∨¬chi,k)

∧

k∈TSF(j)

¬chi,j∨(chi,j+1, day(j) = day(j+1)∨¬chi,k)
)

where TSP(j) (resp. TSF(j)) is the set of time slots
preceding (resp. following) j in the same day as j.

D. Encoding of AMO, AM, ALO, AL and EX Constraints

“At Most One” constraints are encoded using two product
encoding [11] , the nested encoding [12] or the naive encoding
each of them used in the situation where it is more efficient
(considering the number of clauses produced and auxiliary
variables introduced). “At Most k” and “At Least k” constraints
are encoded using sequential counter encoding [13]. As far as
“Exactly k” is concerned, we have EX(k,A) ≡ AM(k,A) ∧
AL(k,A).

III. GENERATED BENCHMARKS FOR THE 2020 SAT
COMPETITION

We generated 20 instances by varying the number of
courses, teachers, classes and rooms. Table I gives some
information on these benchmarks. In this Table for instance,
the benchmark “Timetable C 272 E 52 Cl 18 S 32” was
generated with 272 courses, 52 teachers, 18 classes and 32
rooms. The table also reports experiments conducted with
these benchmarks and the solver MapleLCMDistChronoBT
[14] on the StarExec cluster [16] using a timeout of 5000
seconds and 24 GB of memory.

Table I
GENERATED INSTANCES

Benchmark Result Wallclock Time
Timetable C 151 E 34 Cl 10 S 4 UNKNOWN >5000
Timetable C 181 E 34 Cl 12 S 10 UNKNOWN >5000
Timetable C 181 E 34 Cl 12 S 6 UNKNOWN >5000
Timetable C 196 E 34 Cl 13 S 12 UNKNOWN >5000
Timetable C 226 E 34 Cl 15 S 12 UNKNOWN >5000
Timetable C 241 E 34 Cl 16 S 12 UNKNOWN >5000
Timetable C 241 E 34 Cl 16 S 14 UNKNOWN >5000
Timetable C 241 E 45 Cl 16 S 14 UNKNOWN >5000
Timetable C 241 E 45 Cl 16 S 16 SAT 41.99
Timetable C 272 E 52 Cl 18 S 32 SAT 80.65
Timetable C 331 E 45 Cl 22 S 26 UNKNOWN >5000
Timetable C 331 E 50 Cl 22 S 26 SAT 62.55
Timetable C 362 E 50 Cl 24 S 26 SAT 93.13
Timetable C 392 E 50 Cl 26 S 26 SAT 106.56
Timetable C 392 E 50 Cl 26 S 28 SAT 113.398
Timetable C 392 E 62 Cl 26 S 28 SAT 89.44
Timetable C 437 E 62 Cl 29 S 28 SAT 135.50
Timetable C 437 E 62 Cl 29 S 32 SAT 147.75
Timetable C 466 E 50 Cl 31 S 28 SAT 192.49
Timetable C 497 E 62 Cl 33 S 30 SAT 204.01
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Abstract—This document describes a set of instances for SAT
solvers, which are generated by SATFC for station repacking
problem. SATFC is based on a SAT encoding and adopted by
the FCC for use in the incentive auction.

I. INTRODUCTION

The US government held an “incentive auction” for radio
spectrum, broadcast rights are relinquished with the television
broadcasters paid through a “reverse auction”. Further, the
remaining broadcasters are repacked into a narrower band
of spectrum, and the cleared spectrum is sold. SATFC [1]
is an open-source solver which is adopted by FCC for
use in the incentive auction, and SATFC is a sat encod-
ing based solver. The solver and data can be found at
http://www.cs.ubc.ca/labs/beta/Projects/SATFC.

II. STATION REPACKING PROBLEM

The station repacking problem is formally defined below.
Each television station s ∈ S is currently assigned a channel
cs ∈ C ⊆ N, and the assignment should ensures that channels
will not excessively interfere with each other. We use I ⊆
(S×C)2 denoting a set of forbidden station-channel pairs
{(s, c), (s′, c′)} to represent that stations s and s′ may not be
concurrently assigned to channels c and c′, respectively.

The auction will lead to removing a set of channels, which
will be reassigned to stations from a reduced set. This reduced
set is defined by clearing target: channel c ∈ C such that all
stations are only eligible to be assigned channels from C =
{c ∈ C : c < c}. And the sets of channels a priori available
to each station are given by a domain function D : S → 2C

that maps from stations to these reduced sets.
So the station repacking problem is to find a repacking γ :

S → C which assigns each station a channel from its domain
and satisfies the interference rule.

III. ENCODING

The station repacking problem is suite to be encoded to
SAT problem. Given station repacking problem (S,C) with
domains D and interference constraints I , for every station-
channel pair (s, c) ∈ S × C, we create a boolean variable
xs,c to represent station s is assigned to channel c. Then three
types of clauses are created.

* Corresponding author

(1) Each station is assigned at least one channel.
∨

d∈D(s)xs,d,∀s ∈ S (1)

(2) Each station is assigned at most one channel.

¬xs,c ∨ ¬xs,c′ ,∀s ∈ S, ∀c6=c′c, c
′ ∈ D(s) (2)

(3) Respecting inference constraints

¬xs,c ∨ ¬xs′,c′ ,∀{(s, c), (s′, c′)} ∈ I (3)
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