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Abstract—Marine pollution is a growing worldwide concern,
affecting the health of marine ecosystems, human health, and
weather patterns. To reduce underwater pollution, it is critical
to have access to accurate information about the extent of
marine pollutants as otherwise appropriate countermeasures and
cleaning measures cannot be chosen. Currently such information
is difficult to acquire as existing monitoring solutions are highly
laborious or costly, limited to specific pollutants, and have limited
spatial and temporal resolution. In this article, we present a
research vision of large-scale autonomous marine pollution mon-
itoring that uses coordinated groups of autonomous underwater
vehicles (AUV)s to monitor the extent and characteristics of
marine pollutants. We highlight key requirements and reference
technologies to establish a research roadmap for realizing this
vision. We also address the feasibility of our vision, carrying
out controlled experiments that address classification of pollu-
tants and collaborative underwater processing, two key research
challenges for our vision.

Index Terms—AUV; Underwater drones; Marine pollution
monitoring; Autonomous robots; Sensing

I. INTRODUCTION

Marine pollution is a growing worldwide concern that
affects the health of marine ecosystems, weather patterns,
and even human health [1]. The main sources of pollution
are chemical contaminants and diverse trash, both of which
result from human activity. Chemical contaminants result from
runoff of chemicals into waterways, with particularly agri-
culture and sewage being major contributors. Trash, in turn,
encompasses manufactured products that end up in marine
ecosystems due to littering, winds, lacking waste management
or human activity. Regarding trash, plastic debris is particu-
larly problematic as plastics are durable and not subject to
biological decomposition. This results in a steady accumula-
tion of plastics, with estimates suggesting that already in 2014
over 5 trillion pieces of plastic were drifting in the oceans [2].

Counteracting problems resulting from marine pollution
requires efforts to both prevent pollution entering marine
areas and to clean up existing pollutants. Legislative frame-
work, seeking to reduce the use of harmful materials, pursue
the former, e.g., through bans or restrictions on single-use
plastics [3]. The latter, in turn, requires extensive efforts at
mapping the extent of pollutants together with costly and
laborious cleaning efforts. Currently, obtaining accurate infor-
mation about the extent of marine pollutants is difficult as

existing measurement solutions are highly laborious or costly,
limited to specific pollutants, and have limited spatial and
temporal resolution.

In this paper, we envision autonomous marine pollution
monitoring as an approach that can improve current state of
pollution monitoring and link with existing research activities
on autonomous underwater technologies. Our research vision,
illustrated in Figure 1, uses autonomous underwater vehicles
(AUV)s to identify and classify pollutants in oceans – or
other aquatic environments such as lakes and rivers. In our
vision, the AUVs can be responsible for monitoring on their
own, or they can link with existing infrastructure. Examples
of infrastructure include surface stations, such as instrumented
buoys moored at anchor locations or vessels that coordinate
and collect results from the AUVs, and fixedly deployed
underwater infrastructure, such as sensor networks [4] or
energy harvesting stations that use marine or seabed activity
to generate power [5]. Realising our vision requires new
technological solutions in several research fields. For exam-
ple, targeting appropriate cleaning activity requires sensing
techniques that can identify and classify different pollutants.
Such techniques need to take into account characteristics of
marine environments as the physical and chemical properties
of pollutants change when they are exposed to salt, aquatic
organisms, UV radiation and other environmental factors [6].
At the same time, sufficient processing power is required to
run the sensing models, necessitating new types of collab-
orative underwater processing infrastructure, highly efficient
underwater communication and potentially also new types
of energy solutions. To ensure the collected information is
of high quality and has sufficient coverage, the AUVs need
to coordinate sampling, necessitating advances in underwater
localization and AUV coordination. We highlight key research
challenges, reflect on current state-of-the-art, and establish a
research roadmap for enabling our vision.

We demonstrate the feasibility of our vision by conduct-
ing two controlled benchmark experiments that address key
research directions of our vision. Our first experiment focuses
on underwater pollutant classification using optical (green
light) sensing. Optical sensing is a promising candidate for
pollutant classification as it has small energy footprint and
as it operates robustly in underwater environments. Existing



Fig. 1. Vision of AUV deployment for plastic detection underwater.

sensing solutions, such as Fourier transform infrared (FTIR)
spectroscopy [7] or computer imaging [8], are poorly suited
for underwater sensing due to being sensitive to environmental
characteristics. Unlike visible light, infrared has poor propaga-
tion characteristics, whereas computer imaging requires heavy
processing. Our second experiment focuses on cooperative
underwater processing with the aim of supporting debris
identification. Due to battery limitations, current AUVs have
very limited computational resources making them unsuited
for heavy processing. Collaborative processing using under-
water micro-clouds can be used to increase complexity of
processing without burdening individual AUVs. We analyse
the influence of distributed processing underwater, and discuss
the implications of our results in underwater contexts.

II. REQUIREMENTS

Realising large-scale autonomous marine pollution monitor-
ing requires advances in devices, algorithms, system design,
and infrastructure to address limitations of current technology.
Next, we discuss key requirements for our vision.

Pollution Detection and Classification: Underwater pollu-
tants come in different shapes and forms, and the optimal
countermeasure depends on the pollutant. Indeed, while plastic
debris is often highlighted as the main source of pollution,
other forms of pollution, such as chemical contaminants (e.g.,
oil or fertilizer run-off) or microscopic particles resulting from
material degradation can be equally hazardous. Interactions
between different pollutants also affect pollutant formation,
e.g., chemical contaminants can accelerate oxidation, which
in turn accelerates plastic degradation resulting in formation

of so-called micro-plastics. Determining the most appropriate
cleaning operation thus requires capturing detailed information
on a wide range of pollutants.

Coordinated Sampling: Covering large underwater areas re-
quires carefully designed sampling strategies and coordination
among AUVs. For example, visual surveys rely on transect
sampling where information is collected along delineated
strips of underwater space. AUVs need to be able to execute
transect sampling or related sampling strategies on a large-
scale to ensure collected information is maximally useful,
and can be integrated with existing modelling techniques.
As an example, Lamb et al. [9] studied impacts of plastic
pollution on reefs through transect samples takes from 159
different reefs over a three year period. At each reef, the
surveyed area was between 60 − 120m2 and was sampled
using three transects which were separated by 20 meters
(i.e., 1 − 3 grids per delineation). Multiple AUVs working
in coordination can achieve this goal, offering much larger
coverage and enabling more advanced sampling strategies,
such as three-dimensional transects. Pollutants are known to
reside at different depths depending on characteristics of the
pollutant [1], hence 3D transects and other advanced strategies
are essential for capturing the full range of pollutants.

Coordinated Movement and Processing: Besides coordinat-
ing sampling areas, AUVs should coordinate their movements
to ensure they remain in each other’s communication range.
Coordinated movement also offers additional benefits, such
as the potential for using collaborative sensing or processing
strategies for improving the recognition of pollutants.



Interfaces for Remote Operators: We envision remote opera-
tors to be responsible for specifying bounds of areas that need
to be monitored and for informing AUVs on potential con-
straints, e.g., maintaining a minimum distance from sensitive
reef vegetation. Within each area, AUVs are then responsible
for coordinating the sampling and for performing the monitor-
ing. Supporting the interactions between remote operators and
AUVs requires designing interfaces for remote operators and
developing systems that can relay the instructions to AUVs
operating in the wild.

Fault Tolerance: Ensuring the monitoring captures useful data
requires that AUVs can operate for a sufficiently long time
(months or even years without human intervention). Beyond
energy constraints, this requires high reliability from the AUVs
as well as the technologies integrated into them. Malfunctions
in the operations of the AUVs can result in the vehicles
sinking – potentially making them unrecoverable and part of
the pollution problem (AUVs contain metals and plastics).
Improving reliability also requires better casing solutions –
both for the AUVs and the sensors equipped into them.
With the exception of highly expensive professional-grade
submersibles, smaller-scale AUVs can rarely operate beyond
sunlight zone (i.e., below 200 meters).

Pollution Cleaning: Large-scale pollution monitoring requires
harnessing thousands or even millions of AUVs to ensure suf-
ficient coverage for the monitoring. Deploying a large number
of AUVs is only feasible, if they are sufficiently affordable
(less than $10,000). Current AUVs in this price range are
small and have limited capabilities. In terms of cleaning, this
means that individual AUVs unlikely can contribute much
to cleaning efforts. However, we envision them to take an
active role in coordinating surface-based cleaning activities.
For example, micro-plastics removal can be operated using
specially designed trawlers, whereas larger debris can be
collected using surface-based interceptors which can operate
using wind and solar power.

III. CHALLENGES AND ENABLERS

Enabling fully autonomous marine pollution monitoring is
currently difficult due to technological limitations. We next
reflect on the current state of technology, and highlight key
research challenges in enabling our vision. A summary of the
challenges and existing solutions is shown in Table I.

Sensing: Accurately detecting and classifying different pol-
lutants requires new types of sensing solutions and systems
that can effectively combine sensing modalities. Currently,
chemical contaminants can be identified using underwater
mass spectrometers [10]. These systems, however, are not
suitable for large-scale monitoring as underwater mass spec-
trometers have limited operating time, are difficult to integrate
to submersibles – due to need for a vacuum environment
for taking measurements – and suffer from high power draw.
Overcoming these challenges requires new power solutions
and sensing approaches that can detect the presence of chem-
ical contaminants, and limit the use of spectrometers to areas

that are known to be contaminated. For debris, a common
approach is to rely on Fourier transform infrared (FTIR)
spectroscopy to determine the material of the pollutants [7].
Water heavily absorbs infrared light, making this approach ill-
suited for underwater use. FTIR also requires special micro-
scopes which are costly, and difficult to integrate with AUVs.
Scaling up underwater monitoring thus requires novel low-
cost sensing techniques that have low power draw and can
operate effectively underwater. Another challenge for debris
monitoring is that the materials undergo chemical and physical
changes as a result of exposure to UV radiation and aquatic
organisms [6]. In practice, it is likely that a combination
of sensing techniques needs to be adopted. For example,
many AUVs have cameras which can be used to detect the
presence of debris [8] and other sensing techniques can then be
used to provide a more fine-grained classification (e.g., which
type of plastic). Enabling large-scale autonomous pollution
monitoring thus requires novel sensing solutions that can
operate with low energy footprint, are able to classify different
types of pollutants, and work robustly against changes in the
physical or chemical composition of materials.

Situational Awareness: Ensuring AUVs coordinate their op-
erations is critical for large-scale autonomous underwater
pollution tracking. Autonomy and coordination have been
extensively studied in aerial and ground operations [11], but
existing techniques cannot be directly adapted to underwater
environments. Thus, new solutions and research on adapting
existing techniques for underwater environments are needed.
AUVs need to have sufficient degree of situational awareness
to be able to operate effectively. For example, AUVs need
information about obstacles (fish, other aquatic organisms,
rocks, and other obstacles). In most aquatic environments,
sonar-based solutions are likely sufficient. However, sensitive
environments, such as reefs, likely require more precise infor-
mation. Current high-precision solutions, such as underwater
LIDARs, are too expensive, bulky and power consuming for
widespread usage, necessitating research on new techniques
and miniaturization of existing technologies. There is also a
need for effective orchestration mechanisms that allow coordi-
nating AUV operations and interfacing with remote operators.

Underwater Localization: Coordination requires AUVs to be
aware of their position relative to other devices. For targeting
sampling at the correct areas, it is also critical that AUVs are
aware of their global (three dimensional) location. Currently
no equivalent of GPS exists for underwater environments with
inertial and relative positioning being the best options. Im-
proving coordination and situational awareness thus requires
novel underwater localization solutions or hybrid techniques
that rely on relative positioning and surface-based stations.

Communication: Coordination between AUVs and other in-
frastructure is reliant on robust and sufficiently high band-
width communication links. Underwater communications are
among the most widely studied aspects pertaining to our
vision with acoustic, optical, ultrasonic, electromagnetic and
radio frequency based techniques being examples of solutions



TABLE I
CURRENT STATE OF AUV TECHNOLOGIES AND KEY CHALLENGES AND RESEARCH TOPICS FOR ENABLING AUTONOMOUS UNDERWATER POLLUTION

MONITORING.

State-of-the-Art Key Research Challenges Emerging Challenges

Sensing Algorithms and techniques for
monitoring individual pollution
sources.

Algorithms and techniques for
classifying pollution sources
and detecting multiple pollu-
tants simultaneously. Improved
robustness for variations in un-
derwater conditions.

Approaches to model internal
decomposition and transforma-
tion of materials exposed to en-
vironmental conditions

Situational
Awareness

Accurate sonar techniques and
underwater LIDAR technology.
Current LIDAR designs are
bulky, expensive and resource
consuming.

High-resolution and energy-
efficient situational awareness
techniques, including ranging
and camera-based solutions.

Coordinated data collection that
supports scientific sampling,
e.g., belt or grid transects or 3D
grid cluster sampling strategies.

Localization Ranging based localization and
underwater dead reckoning
techniques.

Positioning schemes for 3D ab-
solute underwater localization,
improved robustness for relative
positioning.

Hybrid localization solutions
that offer relative and absolute
positioning, e.g., by interacting
with infrastructure residing on
the surface or on the seabed.

Communications Acoustic, optical and electro-
magnetic underwater communi-
cation technologies.

High band short-range commu-
nication technologies and ro-
bust long-range technologies
that can interact with other in-
frastructure

Improving robustness of com-
munication technologies against
water characteristics, such as
currents or other water flows,
temperature, and salinity.

Design Fixed AUV designs that are
tightly sealed and difficult to
expand.

Designs that allow additional
modules, such as sensing or ex-
ternal processing units, to be
integrated into AUV’s.

Lightweight casing materials
that offer water and pressure
protection, but do not hamper
sensing or communication func-
tionality.

Power and Oper-
ational Time

Battery-based AUV’s with short
operating time. Low-efficiency
energy harvesting solutions.

Novel power solutions, includ-
ing wireless charging stations,
underwater energy harvesting
and other solutions.

Collaborative underwater pro-
cessing and offloading for re-
source augmentation and im-
proved energy efficiency.

that have been proposed [12]. Current technologies, however,
are insufficiently mature for unsupervised operation as they
suffer from limited range or bandwidth or are sensitive to
environmental characteristics such as salinity, water temper-
ature or currents. We envision AUVs to actively share in-
formation, e.g., share environmental information or offload
camera images for improved debris recognition. This requires
communication links with sufficiently high bandwidth. In
practice, realising our vision likely requires a combination of
long and short-range communication techniques. For example,
acoustic communications can be used to connect with surface
infrastructure (e.g., instrumented buoys or ships) whereas
optical communication offers sufficient range and bandwidth
for local connectivity. Optical communication has the added
benefit of being able to support simultaneous sensing and
communication. Both optical and acoustic communications are
sensitive to characteristics of underwater environments and
thus there is a need for improving their robustness or for
developing alternative communication mediums.

Design: Sensing and computing units traditionally are averse
to water, requiring watertight casing when integrated into
AUVs. This makes it difficult to extend or adapt AUV oper-
ations. Indeed, most AUVs are designed for a dedicated task,
such as estimating water velocity [13] or monitoring debris [8].
Realising our vision requires improved AUV designs that are
modular and extensible, allowing different types of sensors,
additional computing units, and even power sources to be
attached to AUVs. At the same time, AUVs need to offer
better programming interfaces and SDKs that allow adapting
them to different operations. Finally, ensuring sustainability
requires research on new types of materials that are durable
and harmless to the environment in case accidents happen. As
sensing and communication units need encasing, the materials
should also be such that they do not degrade sensing or
communication performance.
Power and Operational Time: Commercial off-the-shelf
AUVs have limited operational time, surviving at most 24
hours between recharges. For example, PowerRay, one of the



Fig. 2. Debris materials. A. Aluminium can, B. Ceramic plate, C. Paperboard,
D. Plastic bag, E. Plastic bottle, F. Wooden toy.

most popular commercial underwater drones, reportedly has a
four hour operational time while submerged. To avoid loss,
the internal processing units of AUVs commonly integrate
routines that estimate travel times and prevent travel if there is
not enough power for a return trip. Large-scale monitoring thus
requires designated station points where AUVs can be moored
and charged. Optimally charging would happen without human
intervention, e.g., using buoys that harvest solar energy or
seabed sensors harvesting energy from currents and seabed
motions [5]. This is difficult to achieve as station points
require additional deployment and maintenance. Besides novel
power solutions, operational time can be improved by design-
ing mechanisms for energy-efficient operations. For example,
image processing operations can be performed collaboratively
or offloaded to surface-based infrastructure. Indeed, in the near
future it may be possible for AUVs to link with data centers
that are located on the surface [14].

IV. FEASIBILITY EXPERIMENTS

We address feasibility of our vision through two benchmark
experiments addressing two of the key research challenges
described in the previous section. Our first experiment targets
energy-efficient classification of debris based pollutants using
optical green light sensing, whereas our second experiment
examines the feasibility of using commercial-off-the-shelf
devices for augmenting the processing resources of AUVs.
We next briefly summarize the experimental setup of our two
benchmarks. In the experiments we rely on measurements
from controlled testbeds to have better control over experimen-
tal variables. We have also separately verified the feasibility
of these technologies in AUV operations by integrating the
sensors onto a PowerRay underwater drone.

A. Underwater Material Sensing

Having a complete view of pollutant types and character-
istics is necessary for targeting appropriate cleaning actions
and estimating the severity of the current pollution situation.
Current monitoring solutions are unable to achieve this as they
can only detect the presence of pollutants without being able
to classify them. Our first experiment demonstrates that optical
sensors available on commercial-off-the-shelf devices can be
used to perform coarse-grained debris classification. We focus

(a) Underwater material sensing setup. (b) Micro-cloud deployment.

Fig. 3. Our controlled testbed for underwater material sensing and collabo-
rative processing.

on optical sensing as the sensors are inexpensive, have low
power draw, and are capable of operating normally underwater.

Apparatus: We perform our experiment using a commercial
off-the-shelf smartwatch (Samsung Gear S3 Frontier) which
integrates two green light LED lights and a photo-receptor.
We focus on green light due to its short wavelength, which
makes it excellent at penetrating water.

Materials: We test against common everyday objects with
different materials. The objects are shown in Figure 2 and they
were chosen as representative examples of common types of
underwater debris. The objects are: a snack box (paperboard,
PAP21), a plastic bag (high-density polyethylene HDPE), a
plastic bottle (polyethylene terephthalate PET), a soft drink
can (aluminium, ALU 41), a small ceramic plate (feldspar)
and a wooden toy box (solid walnut oak).

Setup: We place each object in turn into a glass container
covered with a non-reflective (black) lid. The smartwatch
is taped outside the container, directly below the measured
object; see Figure 3(a). For each object, we perform 4 sets of
measurements with each set consisting of 6 repetitions. Each
repetition contains light intensity measurements sampled with
100Hz frequency over a 90 second period. The four sets were
divided into a 2×2 design with sensing medium (air cf. water)
and luminosity (ambient cf. darkness) as the experimental
conditions. The two conditions for sensing medium refer to
whether the container was empty or filled with water. The
former emulates having a water-proof casing on the surface,
whereas the latter emulates detection in an underwater environ-
ment. The luminosity conditions correspond to a case where
the container is unobstructed, emulating case where ambient
light seeps into water, and darkness, emulating direct contact
between the sensor and the object. The average strength of
ambient light was measured as 15.5lx. Darkness was achieved
by covering the container with a cardboard box. We separately
verified that luminosity inside the box was zero.

B. Underwater Distributed Processing

Scaling up autonomous pollution monitoring requires par-
ticipating AUVs to be affordable yet sufficiently powerful to
carry out the required operations. Currently this is not the case,
with affordable AUVs having limited computational power and
a short operational time. For example, most AUVs integrate
a Raspberry PI (1.3Ghz CPU) or equivalent micro-controller,
and have a maximum operational time of four hours without
recharging. In our second experiment, we demonstrate how



the processing capability can be augmented by integrating
additional computing capability, in the form of a simplistic
micro-cloud, with the AUV.

Apparatus: We emulate an extendable AUV design and as-
sume a micro-cloud consisting of devices providing additional
computing power is attached onto the surface of the AUV.
In the experiment, we construct the micro-cloud from four
LG Nexus 5 smartphones. Each smartphone is placed inside a
sealed glass container. To control for communication distance,
instead of using the AUV, we attach the glass containers on a
wooden structure equidistant from each other; see Figure 3(b).
During the experiment we submerge the casings to assess
underwater performance.

Task: As the experimental task we consider object recogni-
tion from a video-feed. We chose this task as it emulates
the computational needs of vision-based underwater debris
recognition. As the video feed, we consider a set of 50
images (224 × 224 resolution) taken from ImageNet. For
recognition, we use a pre-trained and quantized mobilenet
model ( v1 1.0 224) which is deployed on each smartphone
participating in the micro-cloud.

Prototype: We implemented a proof-of-concept Android pro-
totype that runs on the smartphones. The app uses WiFi
to connect to the other participating devices. One device is
randomly chosen as a master that initiates computing on
the other devices, which act as workers. The master device
receives a sequential video feed and sends individual frames
to the worker devices in a round robin fashion. Once a worker
finishes its task, it sends the results back to the master.

Metrics: As the evaluation metrics we consider task com-
pletion rate, i.e., the number of frames processed by slaves,
and task success rate, i.e., the number of returned frames
that are successfully received by master. As our focus is on
assessing feasibility of underwater offloading and as we use a
pre-trained model, evaluating object recognition performance
was not meaningful and is omitted. The benefits of running
object recognition on smart device micro-clouds have been
demonstrated in our previous work [15] and hence we focus
on task completion and success rates.

V. RESULTS

A. Underwater Material Sensing

We first use statistical significance testing to verify that
the green light intensity measurements of different materials
indeed have sufficient variation to support debris identification.
Kruskal-Wallis test showed significant differences for all con-
ditions: air - ambient (χ2 = 6900, η2 = 0.95, p< .001), water
- ambient (χ2 = 7003, η2 = 0.97, p< .001), air - darkness
(χ2 = 7005, η2 = 0.97, p< .001) and water - darkness
(χ2 = 7004, η2 = 0.97, p< .001). Here air and water refer
to the conditions for sensing medium, i.e., having the glass
container empty or filled with water to emulate underwater
environment, whereas ambient and darkness refer to the two
luminosity conditions; see Section IV-A. Posthoc comparisons

TABLE II
CLASSIFICATION ACCURACY IN DIFFERENT EXPERIMENTAL CONDITIONS.

Cross Validation test k-NN Random forest Average
All conditions 6-folds 70.8 72.9 71.9
Ambient 6-folds 81.2 82.2 81.7
Darkness 6-folds 81.2 77.1 79.2
Air 6-folds 76.0 71.9 74.0
Underwater 6-folds 66.7 64.6 72.5
Average 74.8 73.5 74.1

(Dunn-Bonferroni) verified that the differences for objects also
were statistically significant in all experiment conditions.

We next demonstrate that optical sensing can provide a
coarse-grained classification of debris by using the light in-
tensity measurements to run classification experiments. We
test using two simple classifiers, a random forest model and a
k-nearest neighbour classifier, and under different evaluation
scenarios. We focus on simple classifiers as any models
deployed on AUVs need to be simple to ensure they are as
energy-efficient as possible. The results of our experiments
are shown in Table II. We separately tested how a change
in sensing medium (air cf. water) or luminosity (darkness cf.
ambient) affects performance. When all four test conditions
are included, the classification accuracy is around 70%. The
best classification performance, slightly over 80%, is obtained
when both testing and training measurements are from envi-
ronments with similar luminosity values (rows ambient and
darkness in the table). Changes in sensing medium have
some effect on performance, but these are not as pronounced
as in the case of luminosity changes. Overall, the results
demonstrate that optical sensing can be used to provide a
coarse-grained classification of different pollutants, as long
as the training samples provided by the machine learning
algorithms are sufficiently similar to the environment where
the AUVs operate.

B. Underwater Distributed Processing

We first consider the processing time of the micro-cloud
is affected by the number of devices participating in it.
Results of this evaluation are shown in Figure 4. As expected,
including more workers decreases processing time. Even with
one worker device, it is possible to reach a 30 fps processing
frequency, demonstrating that underwater micro-clouds could
be used to support tasks that rely on real-time analysis of
camera images. Increasing the number of workers would allow
using faster rate of video or higher image resolution. We also
assessed how encasing or submerging the devices affects their
computing performance. From the figure we observe these to
have a small but overall negligible effect (approximately 5ms
for the encasing and approximately 20ms for submerging).

Next, we evaluate task success rate by measuring the
percentage of frames that the workers return to the master,
i.e., loss due to communication failures. When the devices
operate above the surface, the success rate is 100% – also
when the devices are encased in the glass container. Once the
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Fig. 4. Collaborative processing with waterproof micro-clouds.

devices are submerged, the success rate decreases – as could
be expected. When devices are close to each other (within
7cm), success rate remains at 100%. However, once distance
exceeds this, the performance drops, first to 70% at around
10 cm distance, and then to 0% beyond 10 cm distance. Our
results thus suggest that underwater collaborative processing
itself is feasible with reasonably inexpensive components,
but there is a need for short-range communications solutions
that can operate efficiently underwater. Alternatively, devices
could operate inside a single container, in which case wireless
communications would be sufficient. However, in this case,
the weight of the container and heat accumulation inside it
easily become an issue for operating the AUV.

VI. DISCUSSION

Thus far we have focused on technological challenges in
enabling large-scale autonomous marine pollution monitoring.
In practice, there are many other challenges also, e.g., related
to the operations and the overall service ecosystem. Below we
briefly highlight some of these aspects:

Marine Hazards: AUV technology operating in aquatic
ecosystems can be perceived as invasive by wildlife and be
subjected to attacks or other unpredictable behaviors. These
operations may be harmful to aquatic wildlife or result in
damage to AUVs. Overcoming this issue requires better under-
standing of different AUV designs and how they are perceived
by different species, and algorithms that allow AUVs to adapt
their behavior to minimize disruptions to aquatic wildlife.

Further Issues: We have sought to highlight key research
challenges related to technology and to demonstrate the feasi-
bility of underwater pollution monitoring. In practice, several
other factors affect the adoption of AUVs. For instance,
operational regulations and legislation on operating AUVs,
especially in marine areas intersecting borders of multiple
countries. Other factors include integration of AUVs with
legacy technologies, such as already deployed underwater
sensor networks, and fabrication of suitable materials for
manufacturing of AUVs, e.g., using 3D printing.

Marine Data: Our results demonstrated how combinations of
different existing technologies could be adopted for improving
resolution of underwater pollution monitoring. In particular,
collaborative underwater processing supports applications that
require processing and analysis of camera images whereas
optical sensing could be used to support more fine-grained
classification into different materials. Improving the maturity
of these technologies, and supporting the development of new
sensing modalities, would benefit from large-scale datasets that
can be used to train and test different solutions.

Value Added Services and Stakeholders: Sustainability of
marine life and water resources is a primary concern for
governmental institutions across the globe, and aquaculture
industries in open waters. Thus, these are primary entities
that will foster large-scale and permanent deployments of
AUVs. Since AUV deployment is relatively easy and flexible,
other groups can also benefit indirectly from spontaneous
deployments to monitor emergency events underwater and
to offer other monitoring services, e.g., oil spills or fishery
monitoring. Supporting the requirements of external stakehold-
ers requires new types of service orchestration schemes that
allow easily adapting AUVs for different monitoring tasks,
data visualizations that can provide actionable feedback on
detection results, and even privacy and security solutions that
help preserve data confidentiality in case of unauthorized
access, e.g., due to previous loss of equipment.

VII. SUMMARY AND CONCLUSIONS

We developed a vision of large-scale autonomous marine
pollution monitoring that delivers accurate information about
the extent and characteristics of pollutants at high spatial
and temporal resolution. By contrasting our vision against
current deployments, we identified key research challenges and
discussed relevant reference technologies that can support de-
livering on our vision. These challenges include development
of new sensing techniques that can operate under naturalistic
degradation patterns, coordination techniques for AUVs, and
underwater positioning and networking solutions that improve
the process that is used for collecting measurements. Besides
highlighting the key challenges and technologies, we demon-
strated the feasibility of our vision through small-scale con-
trolled experiments that addressed distributed and cooperative
processing, and pollutant detection and classification, two key
research challenges for our vision.
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