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Abstract 

Immunotherapy has recently garnered plenty of attention to improve the clinical outcomes in the 

treatment of various diseases. However, owing to the dynamic nature of the immune system, this 

approach has often been challenged by concerns regarding the lack of adequate long-term 

responses in patients. The development of microneedles (MNs) has resulted in the improvement 

and expansion of immuno-reprogramming strategies due to the housing of high accumulation of 

dendritic cells, macrophages, lymphocytes, and mast cells in the dermis layer of the skin. In 

addition, MNs possess many outstanding properties, such as the ability for the painless traverse 

of the stratum corneum, minimal invasiveness, facile fabrication, excellent biocompatibility, 

convenient administration, and bypassing first-pass metabolism that allows direct translocation 

of therapeutics into the systematic circulation. These advantages make MNs excellent candidates 

for the delivery of immunological biomolecules to the dermal antigen-presenting cells in the skin 

with the aim of vaccinating or treating different diseases, such as cancer and autoimmune 

disorders, with minimal invasiveness and side effects. This review discusses the recent advances 

in engineered MNs and tackles limitations relevant to traditional immunotherapy of various hard-

to-treat diseases. 
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1. Introduction 

Microneedles (MNs) are needle-like structures with microscale diameter and lengths up to 1 mm 

that can penetrate into the stratum corneum (10–40 µm in thickness), and enter the 

epidermis/dermis layers without touching blood vessels and pain-sensing neurons, while the 

administration is easy enough to avoid the need for professional training [1-3]. Therefore, MNs 

have garnered great attention for transdermal immunotherapy since they can bypass the stratum 

corneum layer and directly deliver antibodies, allergens, and therapeutic antigens into the skin, 

painless and with minimal invasiveness [4, 5]. All types of MNs can promote the delivery of 

immunostimulatory or immunosuppressive payloads into the immune cell-rich 

microenvironment of the dermis layer [6, 7], while controlling the dosage and improving the 

consistency of therapeutic response is achievable [8-11].  

Immunotherapy has been proposed as a promising strategy to manage or fight different diseases 

through the activation or suppression of the patient’s immune system [12]. The controlled 

modulation of the immune system is an important issue that should be taken into account during 

the design of novel immune-formulations, in order to achieve desired therapeutic effects without 

off-target responses [13]. For example, in the case of cancer and infectious diseases, 

immunomodulators should activate immune cells and elicit stimulatory responses. In contrast, in 

the context of allergies, autoimmune disorders, transplantation, and wound healing, 

immunomodulators are applied to hinder the activation of immune cells in hyperactive biological 

environments to accelerate treatment or tissue regeneration [14, 15]. Therefore, immunotherapy 

can be achieved by various approaches, including immune-modifying agents (e.g., cytokines and 

vaccines), oncolytic viruses, adoptive cell therapy, immune checkpoint inhibitors, etc. [16, 17]. 

The approaches can be used for either passive therapy, which refers to the use of cytokines, 
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antibodies, and immune cells in patients to trigger anti-tumor action without generating 

immunological memory, or active immunotherapy by triggering the immune system of the 

patient to create a long-lasting antigen-specific response. Nevertheless, there are still significant 

limitations to overcome, such as off-target toxicity, tissue heterogeneity, and insufficient 

durability, demonstrating the necessity for further investigations of advanced immunotherapeutic 

formulations due to the unpredictable efficacy, weak immunogenicity, and reduced tissue 

infiltration of the current formulations [18]. The successful implementation of immunotherapies 

and breakthroughs in clinical practice by new techniques and formulations depends on an 

adequate dose of immunomodulators, suitable delivery technique, and the right location of their 

infusion [19, 20]. It is well-known that both the antigen type and the route by which antibodies, 

therapeutic antigens, and allergens are delivered to the desired region strongly influence the 

resulting immune response [21]. For example, the initiation of a T-helper 2 (Th2)-based immune 

response against the allergen results in the maintenance or exacerbation of allergic inflammation 

in patients. In contrast, initiation of a Th1 type immune response against the allergen and viruses 

might create beneficial effects [22, 23].  

In this review, we discuss the recent progress in the development of MNs for immunotherapy of 

hard-to-treat and chronic diseases to achieve the highest efficiency with minimal side effects. 

First, we discuss recent advancements of MNs for immunotherapy of cancer, followed by 

autoimmune diseases, allergies, inflammatory diseases, as well as discussing vaccination against 

viral and bacterial diseases (Scheme 1). We summarize the outlooks on the trajectory of recent 

MN developments, highlighting the unanswered challenges and future trends of MNs for 

immunotherapeutic applications. 
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Scheme 1. Different strategies employed by MNs to treat or vaccinate various immune-related 

diseases. 

 

2. Physicochemical features of materials used in immunotherapeutic MNs  

Various types of materials have received substantial attention for MN design to induce 

programmed immune responses by contributing to sustained release of immunotherapeutic 

agents, safe transportation of vaccines to the skin, or programmed in situ T cell expansion [24]. 
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Moreover, using biomaterials within the structure of MNs can trigger a series of pathways for 

recruitment or reprogramming of immune cells, which results in more localized immune 

responses in comparison with systemic methods [25].  Successful immunotherapy by MNs 

strongly depends on the physiochemical properties of materials that are used to fabricate these 

needles. The most common materials include silicon [26, 27], metals [28, 29], glasses [30], 

ceramics [31], and polymers [32], which their mechanical strength, porosity, charge, and 

molecular weight can highly affect antigen stability, antigen or vaccine loading into the MNs or 

even control the kinetics of vaccine transportation in vivo [33].  For example, Kathuria et al. 

showed that the dissolution rate of polyvinylpyrrolidone (PVP)-based dissolvable MN patches 

can be tuned by the incorporation of hydroxypropyl methylcellulose (HPMC) and 

methylcellulose (MC) with different molecular weights as dissolution modifier [34]. The PVP 

MNs showed a rapid dissolution profile within 0.75 h, while incorporating HPMC with high 

molecular weight (K100LV, or K100M) into their structure resulted in dissolution profiles 

ranging from 2-2.5 h. Likewise, incorporating low molecular weight HPMCs (E3LV, or E15LV) 

into the structure of the PVP MNs resulted in dissolution time of  higher than 16 h. 

Moreover, fabrication methods of MNs can strongly affect the cost-effectiveness of 

immunotherapy.  For example, although micromolding is the most common fabrication 

technique for dissolving MNs,  its efficiency for immunotherapy has been often challenged by 

concerns regarding noticeable antigen wastage in this method and lack of cost-saving for 

manufacturers [35]. In addition, the selection of a suitable material that contributes to the 

localization of antigen within the needles is a substantial issue that needs much attention to 

optimize immunotherapy of various diseases by MNs. For example, Prausnitz et al. improved the 

localization of active therapeutic molecules to the needles through casting a highly concentrated 
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polymer solution that was able to increase viscosity or contribute to the incorporation of an air 

bubble at the base of the MN to hamper diffusion of therapeutic molecules into the backing [36]. 

A summary of materials used in the structure of MNs towards immunotherapy, as well as a 

comparison of their advantages and disadvantages, are shown in Table 1.  
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Table 1. A summary of various materials used into the structure of MNs towards 

immunotherapy, as well as a comparison of their advantages and limitations.  

Category Material Fabrication methods Advantages Limitations Ref. 

 

 

 

 

 

 

 

 

Silicon Wet etch technology - Ability for coating of the 

viable virus in a dry form 

around the shaft of needles 

- Elimination of cold chain 

storage 

 

---- [37] 

 

 

 

 

 

 

 

 

Silicon Wet etch technology - Successful delivery of 

liquid vaccinia virus Ankara 

(MVA) vaccine 

- Eliminating the skin 

inflammatory response 

----- [38] 

Silicon 

MNs 

Silicon Wet etch technology Decreasing the anti-vector 

antibody response 

------ [39] 

 Silicon -Photolithography  

-Thin-film deposition 

- 

Microelectromechanic

al systems (MEMS) 

Easily fabrication using 

existing MEMS technologies 

Easy breaking and  

subsequent creation 

of biohazardous 

waste 

[40] 

 Silicon  

----- 

- Capability of surface 

decoration of  silicon with 

pH-sensitive groups towards 

burst release of antigen 

within 15s 

Suitability for 

delivering only 

ovalbumin (OVA) 

antigen ( no for all 

the antigens) 

[41] 

 Silicon ------ ------ -Lack of FDA 

approval for silicon 

- Requiring 

extensive 

processing and 

clean-room 

facilities for 

fabricating silicon 

MNs 

[42] 

 - Stainless 

steel 

- Titanium 

- Micromachining 

- Laser ablation  

-Photochemical 

etching 

Adequate mechanical 

strength for 

penetration into the skin 

Possibility of 

creating a potential 

biohazardous waste 

[40] 

 Stainless 

steel 

           ---------- Capability for creating the 

nano-patterning on the 

surface of stainless MNs 

Poor coating 

efficiency of 

DNA-based 

immunotherapeutic 

agents owing to 

low hydrophilic 

nature of stainless 

steel 

[43] 

Metal 

MNs 

Stainless 

steel 

Laser cutting Cost-effective and FDA 

approval for stainless MNs 

           ----- [44] 
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 Titanium Lithographic masking 

followed by wet 

etching 

Facile adsorption of 

Vaccine to the titanium 

surface via 

electrostatic/hydrophobic 

interactions due to high 

dielectric constant (ε ~ 114) 

and isoelectric point ( 

3.5–6.7) of titanium oxide 

        ------ [45] 

 Alpha 

calcium 

sulfate 

hemihydrate 

Micromolding process Higher mechanical strength 

and better stability at high 

temperature and humidity 

than most polymeric MNs 

Possibility of 

contamination 

during production 

and risk of 

microbial spoilage 

[46] 

 - β-

Tricalcium 

phosphate 

(Ca3(PO4)2)  

- 

Monocalciu

m phosphate 

monohydrate 

(Ca(H2PO4)2·

H2O) 

- Calcium 

sulfate alpha 

hemihydrates 

(CaSO4·0.5H

2O) 

Micromolding process Capability for controlling 

drug release by changing the 

bulk surface area, porosity 

and resorbability of the 

ceramics 

Low drug loading 

capability 

[47] 

Ceramic 

MNs 

Al2O3 Micromolding process Capability for creating 

nanoporous MNs for both 

delivery of substances, and 

the extraction of compounds 

---- [48] 

 - Alumina 

- Alpha 

calcium 

sulfate 

hemihydrate 

- Micromolding 

process 

- Sintering 

technique 

- Good in vivo resorbability 

(micromolding process) 

- Adjustable porosity 

Non-resorbability 

of sintered ceramic 

MNs 

[49] 

 Alumina - Sintering 

technique 

good mechanical strength in 

comparison with 

monocrystalline silicon 

Poor loading 

efficiency for 

thermo-labile 

medications into 

sintered ceramic 

MNs due to the 

high temperature 

treatment during 

the fabrication 

process 

[50] 

 polyvinylpyr

rolidone 

(PVP) 

Soft lithography Highly water solubility, high 

tensile strength, and FDA 

approval of PVP 

----- [51] 

 PVP Micromolding process  safely clearance of PVP via 

the kidneys within a few 

days 

---- [52] 

 PVP Micromolding process  Low likelihood of RNase 

contamination of PVP 

-Poor solubility of 

mRNA vaccine in 

[53] 
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concentrated PVP 

solutions 

- Inhibitory effect 

of concentrated 

PVP solutions on 

mRNA transfection 

due to steric 

hindrance. 

 PVP In situ micromolding 

process 

Good mechanical strength of 

PVP due to the presence of a 

ring in the chemical 

backbone structure of the 

vinyl pyrrolidone monomer  

 [32] 

dissolvab 

le 

Polymeri 

c MNs 

PVP Micromolding process ----- Possibility for the 

DNA vaccine 

degradation in 

PVP matrices 

[54] 

 PVP/ dextran two-step molding 

process 

the adjuvant effects of PVP 

and dextran 

----- [55] 

 hyaluronan Micromolding process FDA approval and 

biodegradability of 

hyaluronan 

 

 

Possibility for 

insoluble particle 

formation and 

entrapment of 

vaccine antigens 

into them during 

MN preparation 

[56] 

 chitosan Micromolding process - Excellent biodegradability 

- Noncytotoxicity 

- Ability of chitosan for 

improving both humoral and 

cell-mediated immune 

responses 

- creating  an antigen depot 

by the viscous chitosan 

solution  

- Requiring 

supporting arrays 

for insertion owing 

to weak 

mechanical 

strength of 

chitosan 

[57] 

 Gantrez Micromolding process Highly water solubility and  

biodegradability of Gantrez 

---- [58] 

 Trehalose 

and sodium 

carboxymeth

yl cellulose 

(CMC) 

TheraJect's 

microneedle 

technology 

------- The difficulty of  

analysis of the 

samples by single 

radial 

immunodiffusion 

(SRID) with 

increasing the 

viscosity of 

Trehalose and 

sodium 

carboxymethyl 

cellulose 

[59] 

 Trehalose 

and CMC 

 - FDA approval for both 

trehalose and CMC 

- Increasing antigen stability 

by trehalose 

- water-solubility and 

mechanical strength of CMC 

------- [60] 
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 CMC and 

amylopectin 

Micromolding process --- Producing 

deformed 

microneedles with 

weak mechanical 

strength at high 

viscosity of CMC  

[61] 

 Sodium 

Alginate 

Micromold casting 

technique 

- Adjuvant properties of 

sodium alginate 

- Good biocompatibility 

and biodegradability 

- Utilizing  sodium alginate 

as a permeation enhancer 

---- [62] 

 Sodium 

Alginate 

Spin-casting approach ---- Less physical 

robustness than 

biodegradable 

polylactic-co-

glycolic acid MN 

[63] 

 Silk fibroin 

/poly(acryli 

c acid) 

Micromolding process - Good 

Biocompatibility and 

Biodegradability of silk 

fibroin 

- Simple one-step process for 

loading antigens in silk 

protein matrices 

- Facile stabilization of 

immunotherapeutic agents 

and vaccines in silk at room 

temperature for more than 

two months 

- Rapid dissolution of PPA 

in the skin 

- Sustained vaccine release 

from silk protein matrices 

(over 1–2 weeks) 

- The high 

brittleness of silk 

fibroin 

[33] 

 poly(lactid 

e-

coglycolide) 

(PLGA)/PP 

A 

Micromolding process - Rapid dissolution of 

PPA in the skin 

- Adjustable sustained 

release of encapsulated 

vaccines based on the PLGA 

molecular weight 

- Complexity of 

the vaccine loading 

process in PLGA 

polymer 

[64] 

 Carboxyme 

thylcellulos 

e and 

trehalose as 

coating 

Dip-coating - Improving antigen stability 

during drying by trehalose 

disaccharide 

- Improving the retention of 

Hemagglutination activity of 

influenza vaccine after 

drying by trehalose 

Loss of 

Hemagglutination 

(HA) activity at 

high concentrations 

of CMC (1wt%) 

[24] 

 Carboxyme 

thylcellulos 

e and 

trehalose as 

coating 

Dip-coating --- Increasing 

trehalose 

crystallization and 

vaccine separation 

from the trehalose 

crystal matrix 

during 

crystallization 

result in 

[65] 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

12 
 

denaturation of 

antigenic proteins 

Coated 

MNs 

Carboxyme 

thylcellulos 

e and 

trehalose as 

coating 

Dip-coating Reducing virus aggregation 

at 3% concentration of 

trehalose 

Reduced delivery 

efficiency of the 

inactivated virus at 

a high 

concentration of 

trehalose 

[66] 

 Poly(o-

nitrobenzyl 

- 

methacrylat 

e-

comethylmet

hacrylat 

e-copoly( 

ethyle 

ne-glycol)- 

methacrylat 

e) (PNMP)/ 

polyelectro 

lyte 

multilayers 

as coating 

Layer by layer 

assembly 

 

- Ability for the preparation 

of bioresponsive MNs due to 

photo-sensitive and pH-

responsive properties of 

PNMP polymer 

- Delivery of antigens in a 

sustained manner after 

photoswitching PNMP 

polymer through ultraviolet 

irradiation (254 nm, 

2.25 mW cm
−2

) 

for 15 min during coating 

The need for 

reformulation of 

vaccine 

components for 

their coating 

[67] 

 

3. Trend of material development in the clinical trials of MN technology 

MNs are still under development for the translation of immunotherapeutic molecules into the 

clinical trial phase. The solid and hollow MNs fabricated from silicon and metals have 

dominated the clinical trial setup for transportation of immunotherapeutic molecules [68, 69]. 

Although coated silicon MNs were used for the first time to create immunization, most of MNs 

in clinical trial have polymeric structure [2]. It has been reported that Soluvia
TM

 microinjection 

system and MicronJet
TM

, hollow MNs device made of silicon, are the two most widely used MN 

devices for intradermal vaccine delivery in clinical trials [2]. In a clinical trial study by Icardi et 

al., intradermal vaccine delivery using Soluvia
TM

 microinjection system in children, adults <60 

years, and elderly people demonstrated well tolerability without safety issues [70]. Likewise, 

using MicronJet
TM

 for the delivery of inactivated polio vaccine (IPV) to in 6–14 week-old infants 

demonstrated promising outcomes [71]. A 60% reduction in the standard IPV dose without 
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decreasing in antibody titers was found after using MicronJetTM injection in human 

immunodeficiency virus (HIV)-infected patients compared to intramuscular (IM) injection [72]. 

Although above-mentioned studies show that silicon or metal MNs might possess beneficial 

effects on clinical trial outcomes, their clinical translation has been often challenged by concerns 

regarding lack of FDA approval for silicon and producing biohazardous sharp wastes by metals 

[73]. Currently, polymers are accelerating into the clinic for MN fabrication due to increasing 

interest in biocompatible systems [74]. Phase 1 of the clinical trial studies have shown that using 

biocompatible and dissolvable polymeric MNs for influenza vaccination was well tolerated and 

generated robust antibody responses compared to IM injection [75]. Hirobe et al. reported that 

using a self-dissolving MN (MicroHyala; MH) made of hyaluronic acid (HA) and collagen in 20 

healthy volunteers enrolled in a clinical study effectively increased antibody titer in comparison 

with transcutaneous immunization (TCI) without any severe adverse reactions [76][77]. 

Likewise, a clinical trials study showed that dissolvable polymeric MNs composed of 50% (w/w) 

polyvinyl alcohol (molecular weight 31 kDa) and 50% (w/w) sucrose did not create pain or 

swelling in the skin, and only mild erythema localized to the injection site was found after 

administration [78]. Considering the above examples, we estimate that in the near future we will 

observe a high interest in the design and fabrication of biocompatible and dissolvable polymeric 

MN systems for immunotherapeutic applications.  

 

4. Cancer immunotherapy by MN patches 

Various types of MNs, including solid removable, coated, dissolving, hollow, and hydrogel-

forming ones, have been proposed (Figure 1) [9, 79], in order to overcome the challenges and 
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drawbacks of cancer immunotherapy by other approaches that have hindered their clinical 

translation.  

 

Figure 1. Different types of MNs used for the delivery of immunotherapeutic agents and 

mechanisms of action for the controlled release of payloads. Solid MNs: immunotherapeutic 

agents are able to pass via the micro-channels created by MN. Coated MNs: immunotherapeutic 

agents are able to mix with interstitial fluids and then their delivery occurs through diffusion. 

Dissolving MNs: dissolution and diffusion of immunotherapeutic agents occur into the body 

along with other components within the structure of MNs. Hollow MNs: immunotherapeutic 

agents are able to pass through the MNs. Hydrogel-forming MNs: immunotherapeutic agents are 

able to diffuse into the body after insertion and the swelling of MNs. Adapted with permission 

from ref.[79]; Copyright 2018, Elsevier B.V. 
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In general, current limitations include inadequate infiltration of lymphocytes during the evolution 

of tumoral immune escape, the presence of immune checkpoints in the tumor site, the high cost 

of immune checkpoint inhibitors, and the possible development of dosage-related autoimmune 

side effects through off-target binding of therapeutic agents to healthy tissues [80-83]. In this 

section, the discussion is subdivided based on the biological pathways and biological molecules 

used for MN-mediated cancer immunotherapy. 

 

4.1. Design of MNs for immune checkpoint inhibition 

Tumor cells possess several mechanisms to conceal themselves as ―healthy cells‖ and prevent 

their detection and digestion by the immune system. These mechanisms have been summarized 

in the review by Liu et al.[84].  Although immune checkpoint molecules display powerful roles 

in the prevention of autoimmunity and tissue damage following the immune reaction in the 

pathogenic infection, dysregulating their expression in cancer tissue results in innate- and 

adaptive immune resistance of tumor [85]. Generally, the programmed cell death protein 1 

(PD1), indoleamine 2,3-dioxygenase (IDO), and the cytotoxic T-lymphocyte-associated antigen 

4 (CTLA4) are the three most important immune checkpoint molecules that are involved in the 

regulation of T-cell function and are extensively used to modulate antitumor immunity [86].  

 

4.1.1. Design of MNs for cancer immunotherapy by IDO blockade 

IDO is an enzyme with the ability to degrade essential amino acid, tryptophan, in an independent 

process of normal tryptophan homeostasis. IDO is highly expressed in both tumor cells and 

stromal cells and contributes to the establishment of peripheral tolerance to tumor antigens. IDO 

give power to tumor cells to escape from T-cell-dependent immune attack and improve tumor 
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survival and outgrowth through the creation of pathogenic inflammatory states [87]. Although 

photothermal therapy (PTT) has been reported to be a promising approach for the treatment of 

metastatic tumors through alteration of immune response with the help of releasing neoantigens 

and damage-associated molecular patterns, the upregulation of IDO by mild heating limits 

effective immunotherapeutic outcome. PTT can increase interferon-γ (IFN-γ) secretion and 

subsequently enhance the IDO expression in tumor cells and antigen-presenting cells (APCs) 

[88]. High expression levels of IDO suppresses APCs activation and decline their antigen-

presenting efficacy [89]. IDO is able to catalyze the degradation of tryptophan into kynurenine, 

which, in turn, gives rise to impairment of CD8
+
 T cells activation and inhibition of their 

antitumor ability via increased activity of regulatory T cells (Tregs) [90, 91]. To address these 

limitations of PPT, Chen et al. engineered an ingenious core-shell structure MN (CSMNs) array 

that was able to synergistically boost robust immune response through intralesional co-delivery 

of a photosensitizer and IDO blocking agent [92]. They loaded 1-methyl-tryptophan (1-MT) into 

the cross-linked PVP and poly (vinyl alcohol) gel as the MN core and encapsulated 

photosensitizer indocyanine green into chitosan nanoparticles (ICG-NPs), followed by 

concentrating on the tip shell of MNs. The in vivo experiments in the lung metastatic tumor 

model showed that treatment with 1-MT@ICG-NPs-MN+L (laser irradiation) resulted in 1.8-

fold higher percentage of CD8
+
 T cells in the primary tumors than blank group (Figure 2A and 

2B). The immunofluorescence staining demonstrated that that treatment with 1-MT@ICG-NPs-

MN+L significantly increased the amount of CD8
+
 T cells in the lung slices whereas markedly 

reduced the expressions of IFN-γ in the metastatic nodules compared to the blank group (Figure 

2C and 2D). Likewise, H&E staining and terminal deoxynucleotidyl transferase dUTP nick-end 

labeling staining demonstrated that apoptosis and proliferation inhibition of the cancer cells were 
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higher in 1-MT@ICG-NPs-MN+L group as compared to other groups (Figure 2E and 2F). 

Immunohistochemistry staining further confirmed that the anti-metastatic effect of 1-MT@ICG-

NPs-MN+L was associated with significantly reduced levels of IDO enzyme compared to other 

groups (Figure 2G). Generally, the results of this study showed that 1-MT@ICG-NPs-MN+L 

could exert good anti-metastatic effect through the activation of robust immune response in the 

tumor microenvironment (TME) using synergistic immunotherapy. 

 

Figure 2. The immune response of CSMNs on a lung metastatic B16 tumor model. A) Flow 

cytometric assay of CD4
+
 and CD8

+ 
T cell infiltration in primary tumors. B) Quantitative 

analysis of CD8
+
 T cell infiltration in primary tumors. Immunofluorescence staining of C) CD8

+
 

T cells (red) and D) IFN-γ (green) in metastatic lung nodules. E) Histological assessment of 

primary tumors (Scale bar: 400 μm). F) TUNEL staining of the primary tumors (Scale bar: 50 

μm). G) Immunohistochemistry staining for evaluation of IDO expression in the metastatic lung 
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nodules of the B16 tumors after various treatments (Scale bar: 200 μm). (G1) Blank, (G2) 1-MT-

MN, (G3) ICG-NPs-MN+L, (G4) 1-MT@ICG-NPs-MN+L. L= (laser irradiation) in G3 and G4 

groups (* P<0.05, ** P<0.01, *** P<0.001). Reproduced with permission from ref.[92]; 

Copyright 2020, American Chemical Society. 

 

4.1.2. Design of MNs for cancer immunotherapy by PD-L1 blockade  

The interplay between programmed cell death receptor 1 (PD-1), present on the surface of 

activated anti-tumor cytotoxic T-cells, and PD ligand one (PD-L1), found on the surface of 

tumor cells, results in facilitating tumor immune escape. Indeed, the interaction between PD-1 

and PD-L1 results in the initiation of apoptosis in the tumor-specific cytotoxic T-cell, annealing 

their antitumoral immune effects [93-95]. Immune checkpoint inhibitors against PD-1, such as 

nivolumab, are routinely employed for the treatment of metastatic melanoma [96]. Nevertheless, 

as an expensive therapeutic option, this drug cannot bring optimal results in up to 80% of 

patients due to the presence or development of resistance mechanisms or the instauration of off-

site immunotoxicity derived from the systemic administration of the medicines [96, 97]. To 

address these limitations, a biodegradable MN was designed to target the PD-1 pathway by 

delivering a checkpoint blockade antibody against melanoma locally in the TME [98]. In this 

study, Wang et al. embedded the anti-PD-1 antibodies (aPD1) and glucose oxidase 

(GOx)/catalase (CAT) enzymatic system within pH-sensitive nanoparticles composed of ketal 

modified dextran and then loaded it into HA-based MNs (Figure 3A and 3B) [98]. Various 

microscopic methods (scanning electron microscope (SEM) and fluorescence) confirmed the 

distribution of the loaded pH-sensitive NPs at the tips of the MNs (Figure 3C–3E). In vivo 

experiments demonstrated that the MNs were capable of penetrating the TME to a depth of 

approximately 200 μm (Figure 3F–3H). The MN patch used in this study showed a sustained 

release profile and improved retention of aPD1 into the TME. The release profile was modulated 
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by the CAT enzymatic system: the enzymes convert glucose into gluconic acid, decreasing the 

pH in their immediate surrounding, dissolving the NPs and releasing the antibody. The MN patch 

elicited a robust immune response against B16F10 mouse melanoma in comparison to free aPD1, 

completely eradicating the tumors in some of the animals treated. Their results showed that 

treatment with this aPD1 patch resulted in the survival of 40% of mice after 40 days, while all 

the mice treated with free aPD1 or a MN patch without the CAT enzyme died within 30 days 

after treatment due to tumor relapsing.  

 

Figure 3. Innovative self-degradable MN patch for the sustained and smart release of aPD1 

towards cancer immunotherapy in a B16F10 mouse melanoma model. A) Schematic depiction of 

HA-based MNs loaded with pH-sensitive NPs (ketal modified dextran containing 

aPD1/GOx/CAT) and the fate of NPs at the tumor site after insertion into the skin. The release of 

aPD1 was based on the enzyme-mediated conversion of blood glucose to gluconic acid and 

subsequent gradual dissociation of NPs. B) The blockade of PD-1 by aPD1 and subsequent 

activation of the immune system to fight skin tumor cells. C) SEM image of a MN patch (scale 

bar 200 μm). D) SEM images at a higher magnification that confirmed the loading of pH-
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sensitive NPs into MNs (scale bar 5 μm). E) Fluorescence imaging of MNs containing FITC-

antibody loaded NPs (scale bar 200 μm). F) Desired region for the insertion of MNs on the 

mouse skin (red dashed line) and proof of effective delivery by trypan blue staining (scale bar 1 

mm). G) H&E stain of mouse skin region penetrated by MN (scale bar 200 μm). H) Merged 

fluorescence and bright field image demonstrating the presence of FITC-antibody loaded MN in 

mouse skin after insertion (green: aPD1) (scale bar 200 μm). Reproduced with permission from 

ref.[98]; Copyright 2016, American Chemical Society.  
 

In another study, a transdermal hollow structured MN array (MNA) patch was designed to 

enable cold atmospheric plasma (CAP)-mediated aPD-L1 therapy [99]. The application of CAP 

improved the transportation of the payload into the TME by the MN patch. Furthermore, CAP 

was channeled to the tumor, inducing the death of cancer cells and the release of tumor-

associated antigens, which resulted in the significant maturation of dendritic cells (DCs) and 

presentation of the antigens to T-cells in the draining lymph nodes. The release of tumor-

associated antigens combined with the simultaneous release of aPD-L1 antibody controlled the 

tumor growth in both primary tumors and distant tumors, demonstrating the effective priming of 

a systemic antitumoral immune response.  Since the therapeutic potential of various approaches 

might be undermined due to the diversity, complexity, and heterogeneity of tumors, MNs can 

provide a paradigm shift for combination therapy to enhance treatment efficacy [100]. For 

example, Yanqi et al. developed a transcutaneous delivery platform for aPD1. The technology 

combined nanocapsules of HA modified with 1-MT, an inhibitor of IDO, embedded within MNs 

[101]. The IDO enzyme is responsible for maintaining DCs in an immature state, suppressing 

antigen-specific T cell proliferation by increasing their sensitivity to apoptosis [102]. 

Furthermore, this enzyme has been correlated with an increased number of anti-inflammatory 

Tregs [103]. The TME is characterized by the overexpression of hyaluronidase, which controls 

the release of aPD1 through the enzymatic digestion of HA-based MNs. In vivo experiments on a 

B16.F10 mouse model of melanoma showed that the MNs induced a significant increase in the 

amount of T-cell, and, in particular, in CD8
+
 cytotoxic T-cells, while reducing the number of 
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Tregs in the TME. However, the authors did not evaluate whether the increased presence of 

cytotoxic T-cells is correlated with an increase in the number of antigen-specific cytotoxic T-

cells.  

Despite all the advantages of MNs as innovative formulations, they suffer from several 

disadvantages towards the effective delivery of immune checkpoint inhibitors. The limitations 

include low drug loading capacity owing to the small volume of their microstructures and the 

inability of simultaneous multi-drug loading due to the specific interaction of drug-matrix [104, 

105]. To overcome some of these disadvantages, Yang et al. fabricated a highly drug-

concentrated hybrid core-shell MN (CSMN) system to facilitate the co-delivery of checkpoint 

inhibitors, 1-MT and aPD-L1, into the TME (Figure 4A and 4B) [106]. The author firstly 

synthesized the shell of CSMN by pipetting sodium alginate and chitosan solution onto the 

surface of a polydimethylsiloxane (PDMS) mold, followed by the addition of aPD-L1. In the 

next step, an aqueous solution containing 25% (w/v) PVP K30 with 15 mg/mL 1-MT and 15% 

(w/v) PVA was added on the surface of the molds to create the core (Figure 4C). This fabrication 

method resulted in the concentration of aPD-L1 in the tips of MNs and increased protein loading, 

which was mainly attributed to electrostatic interactions between polymers and proteins and to 

hydrogen-bond interaction between 1-MT and the polymeric matrix of MN. The developed patch 

possessed adequate mechanical strength to penetrate into the corium layer of rat skin to the depth 

of 700 μm (Figure 4D). In vitro experiments showed a complete release of the cargo and the 

degradation of chitosan shell after 48 h. Additionally, in vivo experiments in a B16 subcutaneous 

melanoma mice model demonstrated that the CSMN system better inhibited the tumor growth, 

owing to the longer local retention time of inhibitors compared to the intra-tumor injection route. 

The highest infiltration of T lymphocytes, such as cytotoxic T lymphocytes (CD3
+
 CD8

+
) was 
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found in the tumor site of mice treated with the aPD-L1/1-MT CS-CSMN in comparison with 

blank CS-CSMN control (Figure 4E and 4F). 

 

Figure 4. A highly drug-concentrated hybrid CSMN system for co-delivery of checkpoint 

inhibitors, including 1-MT and aPD-L1 and cancer immunotherapy in a B16 subcutaneous 

melanoma mice model. A) Schematic representation of CSMN-assisted co-delivery of aPD-L1 

and 1-MT for the treatment of melanoma. B) A representative photograph of the CS-CSMN 

patch. C) Bright-field image of CS-CSMN (scale bar 500 μm). D) H&E staining image of rat 

skin after insertion of CS-CSMN patch (scale bar 100 μm). The numbers of E) CD3
+
 T cells and 

F) CD3
+
 CD8

+
 T cells per 10,000 of cells in tumor tissue after the removal of red blood cells 

at12 days after treatment. Data are expressed as Mean ±SD (n = 3 animals per group). ** P<0.0 

and *** P<0.001 versus the aPD-L1/1-MT CS-CSMN group. Reproduced with permission from 

ref.[106]; Copyright 2020, Acta Materialia Inc. Published by Elsevier Ltd.  
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In another interesting example, Lan et al. developed a MN patch loaded with pH-responsive 

tumor-targeted lipid NPs, which provide the possibility of local delivery of aPD-1 and cisplatin 

(CDDP) to create a synergistic immuno-chemotherapy [107]. They firstly synthesized the aPD-

1/CDDP@NPs using a reverse-phase microemulsion technique. Then, aPD-1/CDDP@NPs were 

further encapsulated into dissolving MNs made of PVP using the molding method (Figure 5A). 

Lipid coated NPs were able to facilitate drug release and tumor-targeting. The in vivo 

experiments showed that MN group cause the most notable tumor regression (strongest effect on 

reducing tumor volume and tumor weight) in comparison with PBS, aPD-1, aPD1 + CDDP, and 

aPD-1/CDDP@NPs groups (Figure 5B and 5C). Additionally, the authors investigated body 

weight loss, the blood urea nitrogen (BUN) value, and total immunoglobulin G (IgG) value in the 

serum to assess the systemic toxicity and side effects of engineered MNs. Their results showed 

that the BUN values in all the MN patch groups were within the normal range (Figure 5D). 

Likewise, IgG values were markedly increased in the aPD-1/CDDP@NP MNs group compared 

to other groups (Figure 5E). Histopathological assessments using H&E staining indicated that the 

CDDP group and the aPD-1 plus CDDP group exhibited severe toxic tubular necrosis (the 

glomeruli and Bowman’s capsule collapsing), while no evidence of renal damage was seen in 

mice treated with aPD-1, aPD-1 MNs, and aPD-1/CDDP@NP MNs. Jo
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Figure 5. MNs loaded with anti-PD-1–cisplatin NPs for synergistic cancer 

immunochemotherapy.  A) Schematic representation of MNs loaded with aPD-1/CDDP@NPs 

towards synergistic cancer immunochemotherapy. The combination of chemotherapy and 

immunotherapy was carried out through encapsulation of aPD-1 and CDDP into NPs and then 

embedding into the MNs. The aPD-1 was able to block the binding of PD-L1 to PD-1 that 

confers the activation of T-cells whereas intracellular release of CDDP facilitated the death of 

tumor cells via inducing direct cytotoxicity to them. B) Tumor volume and (C) tumor weight 

following sacrifice. When the tumor volume reached 10 mm
3
, the treatment of each group was 

started (Three treatments for each group and lasted for three cycles). The measurements of tumor 

volume were performed before the treatment and 3 times after the treatment. D) The BUN value 

and E) total IgG value in the serum. Data were expressed as ± S.D (n = 7 per group). Statistical 

analysis was carried out based on the Mann–Whitney U test (P-value: *p < 0.05, ***p < 0.001). 

Reproduced with permission from ref. [107]; Copyright 2020, The Royal Society of Chemistry. 

 

In another study by Yang et al., a rolling MN electrode array (RoMEA) was engineered to inhibit 

tumor growth in both B16F10 and CT26 xenograft murine models [108]. RoMEA was able to 

conduct low-voltage and large-area nucleic acid delivery (PD-L1-against siRNA (siPD-L1)) 
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through electroporation without any noticeable damage to the skin (Figure 6A). The MN 

electrode array contributed to reducing the pulse voltage by penetrating via high-resistance 

stratum corneum layer. The penetration depth of RoMEA was about 500 µm that was larger than 

the epidermal skin thickness of mice (200 µm), ensuring MN entrance into subcutaneous tissue. 

The researchers employed anti-PD-1 monoclonal antibody or CpG oligodeoxynucleotides 

(CpGODNs) of CpG 2395 (immunoadjuvant) to synergistically improve the antineoplastic 

effects through blocking PD-L1/PD-1 recognition between tumor cells and T cells and increasing 

populations of CD8 
+
 T cells and CD4

+
 T cells.  For combination therapy using siPD-L1 and PD-

1mAb, the antibody was infused into the tumor after siRNA electroporation to synergistically 

block PD-1 on lethal T cells (Figure 6B, parts a and b). In vivo experiments showed that siPD-L1 

without electric pulse stimulation failed to create protective effects and exhibited similar tumor 

growth and survival profiles to PBS, all mice died within two weeks (Figure 6B, parts c-e). 

Although treatment with only anti-PD-1 antibody repressed tumor growth and reduced tumor 

volume, the differences did not reach significant levels, and the survival time was increased to 18 

days. The animals treated with siPD-L1 by RoMEA or in combination with anti-PD-1 antibody 

injection exhibited the highest inhibition of tumor growth, survival profiles, and reducing tumor 

volume (Figure 6B, parts c-e). Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

26 
 

 

Figure 6. The design of RoMEA MN for combination therapy of tumor through large-area 

nucleic acid delivery (PD-L1-against siRNA (siPD-L1)) and intratumor injection of PD-1 

antibody. A) Schematic representation of RoMEA. (a) Illustration of minimally invasive 

RoMEA that creates continuous electroporation in desired tissue. (b) The overall design of 
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RoMEA device that shows the stainless steel 316 parallel circular blades with MN arrays on edge 

as the electrodes. Two adjacent MN blades connect to the anode (red) and cathode (black), 

respectively. (c) Schematic representation of MN electroporation. (d) Simulation of electric field 

using the RoMEA (50 V). (e) The RoMEA prototype in hand. B) RoMEA-mediated 

immunotherapy in the B16F10 model and its effects on tumor growth and survival profiles. (a) 

Schematic representation of the experiment protocol in a melanoma tumor model in C57BL/6 

mice. (b) Conceptual design of combined immunotherapy approach used in this study. (c and d) 

The tumor growth and survival curves of the mice during the treatment period. (e) 

Representative optical images of the melanoma tumors excised on day 14 post-treatment. 

Information about experimental groups: PBS (control without any treatment), PD-1mAb (mice 

treated with only PD-1mAb), siPD-L1 W/O EP (siPD-L1 without electroporation), siPD-L1 with 

EP (siPD-L1 electroporated with RoMEA), and siPD-L1 with EP & PD-1mAb (siPD-L1 

electroporated with RoMEA plus PD-1 mAb). Data were expressed as the mean ± SEM. * P < 

0.05; ** P < 0.01;*** P < 0.001, **** P < 0.0001 vs the control group. Reproduced with 

permission from ref.[108]; Copyright 2020, Elsevier B.V. 

 

In 2020, Zhou et al. engineered HA MNs loaded with anti-CD40 antibody (DCs targeting 

antibody) and surface decorated by GMS (monostearin)-conjugated HA transfersomes co-

encapsulating poly I:C adjuvant, the tumor-associated antigen (tyrosinase-related protein-2), 

ovalbumin (OVA), and pembrolizumab (anti-PD1 antibody) to improve the maturation of DCs 

and infiltration of effector T cells in tumor-draining lymph node (tdLN) and tumor tissue towards 

synergistic reinforcement of anti-PD1 immunotherapy (Figure 7A) [109]. The authors monitored 

intradermal fluorescence intensity to evaluate the distribution of transfersomes (DiI labeled) in 

vivo. The fluorescence distribution was investigated in lymph nodes, hearts, livers, spleens, and 

kidneys to ascertain tdLNs targeting capacity of transfersomes based nanovaccine- complexed 

MNs. At 48 h after H-αCD40 T(OVA+PolyI:C)/MNs transdermal administration, the DiI 

fluorescence appeared at the lymph node and reached the maximum at 96 h, indicating 

accumulation of the transfersomes in the lymph nodes. Likewise, a gradual increase of the 

fluorescence intensity was found in livers after 96 h. The highest photon quantum intensity was 

seen in lymph nodes (~25 × 104/g; 2-fold higher than livers at 96 h). A significant increase in the 

number of CD4
+
 T or CD8

+
 T cells was found in H-αCD40-T(PolyI:C+TAA+αPD1)/MN 
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compared to blank MNs (Figure 7B and 7C), indicating that the activation of effector T 

lymphocytes occurred by DCs mediated cascade reactions. Generally, the engineered MNs were 

able to activate DC maturation and improve Th1 immune responses, which, in turn, resulted in 

the inhibition of tumor growth and improving survival profiles.  

 

Figure 7. Combined therapy with nanovaccine complexed MNs with pembrolizumab (αPD1) for 

improving the maturation of DCs and infiltration of effector T cells in tdLN for tumor 

immunotherapy. A) Schematics illustration of modified transfersomes induced immune 

responses in tdLNs through MNs assisted transdermal immunization. Transdermal delivery 

resulted in accumulation in tdLN and surface decoration with αCD40 increased cellular uptake 

by DCs. Uptake of cargo activated DCs maturation and facilitated differentiation of naïve T-cells 
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into effector T lymphocyte. In the next step, reducing regulatory T lymphocytes conferred 

reversion of immunosuppressive microenvironment in tdLN into immune activation. B) 
Representative fluorescence images indicating retention of DiI labeled transfersomes in various 

tissues in vivo at 48, 96, 120, and 168 h after insertion of transfersomes complexed MNs. C) and 

D) Flow cytometry assay of the percentages of CD4
+
 T or CD8

+
 T cells among all lymph nodes 

or tumor tissue cells (n = 4). Data are expressed as mean ± SD. *p < 0.05, compared with MN. 
Reproduced with permission from ref.[109]; Copyright 2020, Springer Nature. 

 

4.1.3. Design of MNs for cancer immunotherapy by CTLA-4 blockade 

CTLA-4 is known as a protein receptor that acts as an immune checkpoint. CTLA-4 is expressed 

on T cells in lymph nodes, and its physiological interaction with APCs results in suppressing the 

activation of T-cells and the inflammatory response [82, 110]. Antibodies directed against 

CTLA-4 have been the first treatments in the class of immune checkpoint inhibitors to gain 

approval for the treatment of melanoma [111]. However, this target is systemically expressed, 

and the interference with this signal induces the emergence of immune-related side effects [112]. 

In order to improve the local delivery of anti- CTLA-4 and hinder systemic drug exposure, 

nanotopography-based MN array (MNA) can be applied. As an example, Kwon et al. designed a 

nanotopography-based MNA composed of a single-use, 66 mm
2
 arrays of 100 MNs of 110 μm 

diameter, 350 μm long, and with a 30 μm hole located off-center (named SOFUSA
TM

) to allow 

the delivery of anti- CTLA-4 into tdLN in an orthotopic mammary carcinoma murine model 

[113]. Repeated treatment with SOFUSA
TM

 inhibited tumor growth and metastasis development 

in bone, lymph nodes, and lungs better than the traditional systemic administration, an 

intraperitoneal administration (IP) of anti-CTLA-4 at 10 mg/kg. Moreover, the authors evaluated 

the transport of liquid from SOFUSA
TM

  to the brachial lymph nodes by infusing 100 μL/h of 

indocyanine green (ICG) into the epidermal spaces using near-infrared fluorescence imaging 

(NIRF). The lymphatic vessels collect the dye and transport it to the lymph nodes. 
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As mentioned above about cancer immunotherapy by PD-L1 blockade, a single treatment 

modality might be unable to efficiently treat malignant skin melanoma. To this end, Chen et al. 

designed a physiologically self-degradable MN-assisted platform to combine immunotherapy 

and photodynamic therapy (PDT) through controlled co-delivery of checkpoint inhibitor anti-

CTLA4 antibody (aCTLA4) and photosensitizer (PS) and create synergistic effects against 

tumors [114]. The hydrophobic (Zinc Phthalocyanine) and hydrophilic agents (aCTLA4) were 

synchronically encapsulated into the pH-sensitive dextran NPs using a double emulsion 

water/oil/water (w/o/w) evaporation method. The acetylation of the dextran pendant hydroxyl 

moiety resulted in the co-loading of hydrophobic photosensitizer/hydrophilic antibodies into the 

NPs. UV-Vis spectra of co-encapsulated NPs showed an absorption peak around 490 nm that 

was an indicator of the successful encapsulation of aCTLA4-FITC. Then, the pH-sensitive 

dextran NPs were embedded into the biocompatible HA MNs. In vivo experiments in 4T1 mouse 

models showed that three-times of MN insertion in combination with laser resulted in sustained 

tumor inhibition, while other treatment groups failed to create this outcome. The authors stated 

that the first destroying of partial tumor by PDT resulted in the initiation of the immune response 

that in turn, facilitated aCTLA4-mediated immunotherapy in the next step. Additionally, 

preliminary systemic assessments demonstrated that the engineered MNs had favorable safety 

without causing any systemic immune disorder. 

 

 

 

4.2. Design of MNs for the delivery of therapeutic cancer vaccines 

4.2.1. MNs for effective delivery of DNA cancer vaccines 
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Unique properties of DNA vaccine technology, including stability, simplicity, and safety, make 

them attractive immunotherapeutic approaches to treat cancers [115]. In this technology, the 

resulting immune responses can be manipulated by designing genes in DNA vaccines to encode 

immunomodulatory molecules and various antigens [116]. Currently, several research groups 

loaded DNA vaccines in the MNs to treat various cancers [52, 117, 118].  

The poor targeting of APCs and the lack of appropriate adjuvants have been major limitations in 

the transdermal delivery of a DNA vaccine for cancer immunotherapy [119]. To circumvent 

these shortcomings, Xu et al. fabricated a MN composed of a DNA vaccine in a polymeric 

nanocomplex, encapsulating a low concentration of paclitaxel (PTX) [120]. This MN patch was 

developed as a DC-targeted transdermal strategy for cancer immunotherapy, exploiting low-dose 

PTX as an adjuvant. They firstly synthesized a DNA plasmid that encodes GM-CSF, a DC 

chemoattractant cytokine, and a fusion protein of tyrosinase-related protein-2 (Trp-2), as a 

melanoma tumor antigen. In order to facilitate targeting to the mannose receptors present on 

DCs, the resulting plasmid was incorporated into a mannosylated N,N,N-trimethyl chitosan 

(mTMC) solution. At the same time, PTX at a low concentration was encapsulated in 

sulfobutylether-β-cyclodextrin (SBE), as a solubility enhancer and polyanionic linker. In the next 

step, ionic interactions between the cationic complex of mTMC/DNA and the negatively charged 

inclusion complex of PTX/SBE resulted in the creation of the PTX/SBE-mTMC/DNA 

nanocomplex. This DC-targeted nanocomplex can efficiently improve the maturation of DCs, 

with an increase in the secretion of IL-12p70. Furthermore, DCs pulsed with the nanocomplex 

enhance the proliferation of CD4
+
 and CD8

+
 T cells, as well as decrease the percentage of 

immunosuppressive FoxP3+ Tregs. The co-delivery of DNA vaccine, mannosylated chitosan, 

and PTX as a combination of antigen and adjuvant results in stronger suppression of tumor 
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growth compared to only DNA vaccine or only mannosylated chitosan/PTX in in vivo 

experiments in mice. It has been reported that incorporation of pH-responsive copolymers into 

the structure of MNs can accelerate the release of DNA vaccine in tumor acidic pH 

microenvironment [121]. Recently, Duong et al. designed and fabricated a smart DNA vaccine 

delivery system using polycarbonate MNs coated by layer-by-layer (LbL) deposition. The two 

layers are composed of positively charged ultra-pH-responsive oligo sulfamethazine conjugated 

poly(β-amino ester urethane) (OSM-(PEG-PAEU)) and a negatively charged immunostimulatory 

adjuvant, polyriboinosinic:polyribocytidylic (poly(I:C)), at low pH, to facilitate the controlled 

release of DNA vaccines and adjuvants in the immune cell-rich epidermis/dermis layer of the 

skin [122]. It was shown that the pH-sensitivity of OSM-(PEG-PAEU) led to the protonation of 

the copolymer to positively charge at pH 4.0, capable of forming a complex with poly(I:C) and 

hampering the release of the OVA- expressing plasmid (pOVA) and poly(I:C) from the LbL 

coated MNs. In addition, the presence of ionized sulfonamide moieties in the OSM oligomers 

resulted in the deprotonation of OSM-(PEG-PAEU) copolymer at the physiological pH (pH 7.4), 

resulting into a negative charge and facilitating the release of pOVA and poly(I:C) via 

electrostatic repulsion. The combined delivery of the DNA vaccine and adjuvant by the LbL 

coated MNs resulted in the induction of type I interferons followed by the production of antigen-

specific antibodies by B cells and the priming of CD8
+
 T-cell. The antigen-specific CD8

+
 T-cells 

induced the production of interferon-gamma (IFN-γ) and enhanced cancer cell death. In vivo 

experiments showed that the LbL-coated MNs resulted in higher OVA protein expression 

compared to the group where the plasmid was subcutaneously injected, which may be attributed 

to the penetration of MNs, of ca. 600 μm height, to the dermis, and the presentation of 

nanoengineered DNA polyplex to antigen-presenting cells. Compared to soluble DNA vaccine 
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formulation, implantation of the LbL-coated MNs loaded with pOVA and poly(I:C) in mice 

caused a threefold increase in IFN-γ positive tumor-infiltrating CD8
+
 T cells and threefold higher 

amounts of anti-OVA IgG serum antibody, indicating suitable stimulation of the humoral and 

cellular immune response.  In another study by the same group, an array of dissolving MN was 

prepared using a bioresorbable polypeptide matrix  (mPEG5K–PN2LG30),  with nanosized 

polyplexes composed of pOVA and poly (I:C), which were loaded into high-transfection cationic 

amphiphilic conjugates (DA3) and added to the polypeptide matrix (Figure 8A) [123]. The 

positive charge of polyplex improved its uptake by DC 2.4 cells and RAW 264.7 macrophage 

cells (Figure 8B and 8C) and created a repulsive force on the other cationic copolymers, which 

resulted in burst release of ca. 85% of poly(I:C) and ca. 97% of pOVA within 5 min of 

application of the MN. This indicated the suitability of the MNs for future clinical use owing to 

the short treatment time with improvement of patient convenience. Additionally, the MN 

dissolved in the interstitial fluids of skin, mainly due to the presence of the polyethylene glycol 

(PEG) component in its structure. In vivo and in vitro experiments demonstrated the higher 

expression of OVA in the dissolving MN group compared to control and subcutaneous injection 

groups (Figure 8D), suggesting that the nanopolyplex can reach APCs, such as DCs and 

macrophage cells in the epidermis/dermis layers, and can be effectively captured by them. The 

administration of pOVA through dissolving MNs resulted in higher antibody titer (Figure 8E and 

8F) while reducing the number of OVA-expressing metastatic foci through antibody-dependent 

cellular cytotoxicity (ADCC) activity, prolonging the overall survival compared to traditional 

vaccination. 
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Figure 8. Dissolving MN polypeptide cocktails comprising of cationic nanopolyplex containing 

ovalbumin-expressing pOVA and poly(I:C) for cancer immunotherapy. A) A schematic 

representation of the proposed anticancer mechanism of dissolving MNs containing mPEG5K–

PN2LG30 and the nanopolyplex (DA3 and (pOVA + poly (I:C)). The dissolving MNs interact 

with mature APCs followed by stimulation of antiOVA antibody production for ADCC of cancer 

cells. Confocal microscopy images of in vitro cellular uptake of the nanopolyplex released from 

dMN arrays in B) DC 2.4 and C) RAW 264.7 cells, respectively. Scale bar = 20 mm. D) Double 

immunohistofluorescence staining showing the in vivo OVA protein expression in DCs. E) 

Serum levels of Anti-OVA antibody IgG1 after one week in different experimental groups (*p < 

0.05, **p < 0.01, ***p < 0.001, n = 3). Serum levels of Anti-OVA antibody IgG1 were markedly 

elevated in DA3/(pOVA + poly (I:C) compared to negative control and subcutaneous injection 

(SC) groups. F) Serum levels of Anti-OVA antibody IgG1 before and after challenge with OVA 

protein (*p < 0.05 and **p < 0.01, n = 5). Serum levels of Anti-OVA antibody IgG1 markedly 

increased in MNs compared to SC groups after challenge. Reproduced with permission from 

ref.[123]; Copyright 
 
2020, Royal Society of Chemistry. 

 

 

 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

35 
 

 

4.2.2. MNs for effective delivery of other cancer vaccines 

One of the primary objectives of cancer immunotherapy is the establishment of a broad tumor-

targeting T cell repertoire that is able to recognize and destroy heterogeneous tumor cell 

populations. One promising strategy is in situ vaccination that contributes to starting a selective 

and durable adaptive immune response using the diverse collection of tumor antigens within the 

tumor. Moreover, in situ vaccination plays an important role in reprogramming the TME toward 

an immunostimulatory state. The high interstitial fluid pressure of the TME can act as a barrier 

for immunotherapeutic agents to enter into the tumor. To address this limitation, Boone et al. 

developed an autonomous active MN for the direct transportation of cowpea mosaic virus NPs 

(CPMV) as potent immunoadjuvants towards the treatment of B16F10 melanoma in mice [124]. 

In this system, magnesium (Mg) microparticles were embedded into active MNs to facilitate the 

entrance of the NP payload into the tumor through their reaction with the interstitial fluid in the 

TME and creating a propulsive force. In vivo experiments demonstrated that active MNs strongly 

increased tumor regression, improved survival profiles of tumor-bearing mice, and represented 

enrichment in the CD8
+
 T cell population. As mentioned in the previous section, combination 

therapy of cancer using immune-stimulating antigens and other techniques can be considered as 

a valid approach to more effectively treat cancers than monotherapy. One of the promising 

strategies to improve the anti-tumor immune responses is the vaccination with whole tumor 

antigens derived from whole cell lysates. In addition to whole tumor antigens, the whole cell 

lysates possess melanin that can as a photosensitizer for heat generation and subsequent PTT of 

cancer [125]. As an example, Ye et al. reported the design and fabrication of a transdermal 

cancer vaccine MN patch based on cross-linked HA materials [126]. The polymeric MNs were 
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loaded with B16.F10 whole tumor lysate containing melanin and granulocyte-macrophage 

colony-stimulating factor (GM-CSF). In addition to the sustained release of lysate into the skin, 

melanin can act as a photosensitizer for heat generation through localized near-infrared light 

(NIR) irradiation, while the presence of GM-CSF enhances the recruitment and activation of 

immune cells. In vitro experiments demonstrated that 10 min of NIR irradiation provided an 

optimal activation of matured DCs (CD80
+
/CD86

+ 
cells, increasing from 36.7 ± 2.3% to 48.9 ± 

3.1% after 10 min) and did not reduce their viability and functionality. In vivo experiments in a 

prophylactic set up in B16.F10 models indicated that the combined therapy of MNs loaded with 

tumor lysate and GM-CSF with NIR irradiation resulted in complete tumor rejection in 87% of 

the treated mice and long-term survival. Furthermore, the authors analyzed also the 

immunological mechanisms responsible for the vaccination efficacy by testing the MNs in 

animals genetically modified not to express lymphocytes (both T- and B- cells) to evaluate the 

contribution of the adaptive immunity, or treated with diphtheria toxin receptor to deplete DC to 

assess the contribution of the innate immunity and antigen processing and presentation. The 

results highlight the importance of both components in the instauration of an optimal immune 

memory against future tumor challenges. These MNs are also able to control tumor growth in a 

therapeutic setup after NIR irradiation. Furthermore, this immune response is systemic and able 

to affect distal, non-treated, or irradiated tumors. 

In the case of IM or subcutaneous vaccination, patients might experience stress, fear, pain, and 

undesirable specific immune responses. In this regard, using MNs can be a good choice to 

achieve maximum delivery while limiting side effects. To this end, Lee et al. used a MN 

containing the antigen OVA as an immune-stimulating antigen delivery system to activate anti-

tumor immunity into the skin of mice [127]. They observed that the OVA-loaded MN patch 
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exhibited a significantly reduced tumor size (78.75±30.1 mm
3
) and weight (0.82±0.5 gr) 

compared to a control patch, which had a tumor size and weight of 249.67±39.1 mm
3
 and 

2.33±0.9 g, respectively. This observation was mainly attributed to the increased population of 

OVA-specific CD8
+
 T cells and CD4

+
 T cells. These cells were responsible for the cytotoxic 

effect against the graft of OVA-expressing EG7 tumor cells.  

In another example, an amphiphilic triblock copolymer (Pluronic F27) was employed in 

constructing a dissolving MN-based cancer vaccine able to create nanomicelles (NMCs) in the 

intradermal fluid (Figure 9A) [128]. The amphiphilic property of the Pluronic F27 enabled the 

co-delivery of OVA, hydrophilic, and resiquimod (R848), hydrophobic, into in situ micelles 

formed after cutaneous application, contributing to the dissolution of R-848. In vitro experiments 

confirmed the immunostimulatory potential of R848 encapsulated within the NMCs. 

Furthermore, upon administration of the MN patch in vivo, the NMCs can efficiently migrate to 

lymph nodes and induce antigen-specific humoral and cellular immunity in EG7-OVA tumor-

bearing mice (Figure 9B). Significantly increased levels of INF-γ
+
CD8

+
 T cells and reduction in 

tumor size and weight were found in mice treated with OVA/R-848 MNs compared to the mock 

group (Figure 9C-E).  
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Figure 9. The amphiphilic triblock copolymer-based dissolving MNs containing OVA and R848 

with the ability for in situ generation of NMCs and inhibition of tumor growth upon their 

dissolution after cutaneous application in EG7-OVA tumor-bearing mice. A) Schematic 

illustration of dissolving MNs for co-delivery of hydrophobic immunomodulators and tumor 

antigens via in situ formation of nanomicelles. B) OVA-specific IgG levels after immunization 

(****P<0.0001, n=5). C) Amount of INF-γ
+
CD8

+
 T cells in different experimental groups (**p 

< 0.01, n = 5). Co-delivery of R-848 and OVA by MNs resulted in a higher percentage of IFN-

γ+CD8+ T cells compared to the mock and the MNs containing antigen only.  D) Tumor size 

from the three experimental groups. The mock group only received PBS (**p < 0.01 compared 

to mock group, n = 5). E) Tumor weight in different experimental groups (*p < 0.05 and **p < 

0.01, n = 5). The MNs containing antigen only (OVA) contribute to a partial control over the 

tumor growth, as demonstrated by the reduction of the tumor weight when compared to the 

mock. However, the administration of the complete formulation, antigen, and adjuvant (R-848) 

in the same MNs results in a higher activation of the immune system and better control over the 

tumor growth. Reproduced with permission from ref.[128]; Copyright 2018, American Chemical 

Society.  
 

In conclusion, MN patches represent an excellent alternative to conventional cancer vaccine 

designs by allowing a painless administration in an area rich in APCs. Moreover, researchers 
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have proposed innovative formulations to allow a simple simultaneous delivery of antigens and 

adjuvants with opposite hydro/lipophilic characteristics or enabling efficient delivery of the 

payload to the draining lymph nodes. Finally, MNs can also play a role in improving the efficacy 

of immune checkpoint inhibitors, allowing for local delivery in the tumor area with a decrease in 

the immune side effect associated with systemic delivery.  

 

5. Autoimmune diseases 

Currently, MNs have been extensively investigated to precisely treat or manage autoimmune 

diseases, such as type 1 diabetes (T1D), alopecia areata, systemic lupus erythematosus, multiple 

sclerosis, and rheumatoid arthritis (RA) [129-133]. The direct administration of 

immunomodulatory peptides and immunosuppressive drugs to patients with the traditional 

techniques is no longer applicable owing to their intrinsic limitations such as poor oral 

bioavailability, gastrointestinal side-effects, enzymatic hydrolysis in the gastrointestinal tract, 

rapid plasma clearance, and poor patient compliance [134]. To address some of these limitations, 

Lin et al. developed dissolving MNA to deliver Thymopentin (TP5), a synthetic pentapeptide 

with a very short half-life in plasma (about 30 s) and immunomodulating properties for the 

treatment of autoimmune diseases, in immunosuppressed Sprague-Dawley rats [135]. A MN 

array containing TP5 was fabricated by a modified two-step molding technology using bovine 

serum albumin (BSA) as a mechanical strength regulator. The high-performance liquid 

chromatography (HPLC) chromatogram confirmed the maintenance of the integrity of TP5 after 

loading in the MN patch. The administration of TP5 through the MNs improved the levels of T-

cells and reversed the ratio of CD4
+
/CD8

+
 7 days after the treatment in immunosuppressed rats. 
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In 2020, Ahmad et al. fabricated thiolated chitosan (TCS)-based MN patch containing tacrolimus 

(TM), an immunosuppressant agent for the treatment of autoimmune disorders, by a mold casting 

method. The TCS-based MN patch was able to improve the drug bioavailability through 

circumvention of the hepatic first-pass metabolism and intestinal P-gp efflux and deliver the drug 

in a more sustained manner than oral administration [136]. Attenuated total reflectance-Fourier 

transform infrared (ATR-FTIR) analysis demonstrated that characteristic peaks of TM were 

retained in MN patches, suggesting the stability of TM during the preparation process of the 

patches. The author found the best tensile strength (0.05 mPa) at 2% concentration of TCS and a 

higher skin distribution for MN-TM (15.34 ± 2.4%) compared to ointment (9.45 ± 3.2%). 

Additionally, they further mentioned 84% penetration of TM with no breakage of the MNs and a 

sustained release (82.5%) from patches with no visible erythema or edema.  

 

5.1. Design of MNs for immunotherapy of type 1 diabetes  

The loss of T-cell-dependent immunological tolerance to β-cell autoantigens has been proposed 

as the most critical pathological event of T1D. A possible solution for the optimal treatment of 

this disease is to reverse this process [137]. Antigen-specific immunotherapy (ASI) is a 

promising therapeutic strategy to treat T1D through the induction of an immune regulatory 

response to hinder autoimmune-mediated β-cell destruction to maintain insulin production [138]. 

Peptide immunotherapy has been proposed as promising strategy to induce tolerance to 

pancreatic self-antigens. A key aspect to consider in MNs is to analyze their advantages 

compared to an ID injection. In a comparative study for the delivery of four different antigenic 

peptides, including WE 14, Insulin B9-23, Epstein–Barr virus peptide 280–288 and BDC2.5 

mimotope in the non-obese diabetic (NOD) mice model, Zhao et al. found that dry-coated MN 
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patches consisting of methyl butanol, polyvinyl alcohol, and acetic acid exhibited a more 

effective delivery and prolonged antigen presentation in the skin [139]. Comparable reductions 

in the auto-reactive cell proliferation were observed when the authors immunized the animals 

with two concentrations of WE14 (6 μg of the peptide in dry-coated MNs and 50 μg of the 

peptide in ID injection) (Figure 10A). The results can be mainly attributed to the higher retention 

time of the peptide-loaded into the MN patch, which in turn resulted in providing enough time 

for the APCs in the skin to tender antigenic peptides to the patrolling T cells and create tolerance 

at lower peptide concentration. In order to minimize immune stimulation and control the 

localized kinetics in immunotherapy of T1D, nanomaterials with anti-inflammatory properties 

can be used as appropriate multi-cargo delivery platforms to present tolerogenic auto-antigens to 

APCs and promote a regulatory response. In another example, Dul et al. used MicronJet600, a 

clinically approved MN delivery system, to treat T1D through intradermal delivery of a human 

leukocyte antigen-DR4 (HLA-DR4)-restricted peptide epitope of proinsulin (C19-A3) tethered to 

gold NPs (GNPs) (Figure 10B) [140]. Ex vivo experiments showed that GNPs quickly diffused 

throughout human skin. Additionally, in vitro experiments indicated that uptake of GNPs -

peptide complexes by DCs resulted in a reduction of their capacity to active naïve T cells. 

One of the major disadvantages of the above-mentioned studies for T1D immunotherapy is the 

loading of a single peptide autoantigen in the MNs, which in turn can limit their applications to 

sub-populations of patients with a specific human leukocyte antigen (HLA) molecule [141]. It 

has been reported that using coated MN systems loaded with complete protein containing 

multiple epitopes provide high therapeutic potential for ASI of T1D because of the ability of 

APC to synchronically generate tolerance to a range of epitopes and be therapeutically applicable 

to more patients [139]. 
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Following this concept, Arikat et al. developed Proinsulin (PI)-coated MNs to transport PI 

protein into the superficial layers of the skin, targeting immature epidermal Langerhans cells 

(LCs) and steady-state DCs, which exhibit tolerogenic functions [142]. The presence of 

polysorbate 80 as a non-ionic surfactant in the coating formulation resulted in the uniform 

coating of protein onto the outer surface of MNs. The authors found that the delivery efficiency 

of PI was 77.5 ± 17.3% after 1 minute of MN application and increased to 86.1 ± 4.4% after 2.5 

minutes. Based on in vivo experiments in NOD female mice, significant proliferation of 

adoptively transferred G9 CD8
+
 T cells was seen in the draining (axillary) lymph nodes (AxLNs) 

in the MN treated group (29.1%) while traditional ID PI injection failed to create this effect 

(4.6%).  

It can be assumed that compared to conventional ID routes, delivery by coated MNs (dry coating 

of therapeutic antigen onto their outer surface) for treatment of T1D represents a valid method 

with numerous advantages, such as highly efficient antigen delivery to the dermis and epidermis, 

capacity for the co-delivery of multiple therapeutic agents, the prolonged retention time for 

therapeutic antigens in the skin, the possibility of sustained exposure of APCs to low 

concentrations of therapeutic antigens, less pain, no bleeding and distension of skin layer, with 

less skin damage and subsequent infection [143-146]. 

 

5.2. Design of MNs for Rheumatoid Arthritis immunotherapy  

RA is a long-term autoimmune or chronic inflammatory disorder that can cause progressive 

disability of synovial joints owing to inflammation of synovial membrane, cartilage, and bone 

damage [147]. Glucocorticoids are frequently used in the short term to relieve pain and 

inflammation, but higher doses can cause serious side effects for a prolonged period. 
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Immunotherapy aims to reduce inflammation and protect the integrity of the joint, with 

manageable side effects [148]. Topical drug delivery is only able to deliver therapeutic 

molecules with proper oil-water partition coefficient, low molecular weight, and low melting 

point due to the characteristics of the stratum corneum [149].   

To address these challenges, Yao et al. developed a neurotoxin (NT)-loaded dissolving MNs 

through two-step centrifugation, with 15.4 ± 0.5 μg of the drug-loaded in the upper part of each 

needle [150]. The MN exhibited good mechanical properties and less toxicity on chondrocytes. 

The MN could penetrate the skin at a depth higher than 70 μm. Also, the cumulative penetration 

of NT in MNs reached 95.8% in 4 h, whereas a NT solution could hardly penetrate the skin. 

After administration to animals, NT-MNs were capable of suppressing the secretion of pro-

inflammatory cytokines such as the tumor necrosis factor α (TNF-α) and interleukin 1 β (IL-1β) 

as well as reduce the toe swelling of RA rats. 

Although nonsteroidal anti-inflammatory drugs (NSAID), such as meloxicam, are widely used to 

reduce inflammation and protect the integrity of the joint in RA patients, their long-term use 

results in poor patient compliance due to their serious side effects such as hypertension, diabetes, 

ulceration and gastrointestinal perforation [151]. 

In order to highlight the compliance of MN technology, Amodwala et al. developed fast-

dissolving MNs loaded with meloxicam as a patient-friendly tool to promote drug delivery to 

deeper layers of skin and circumvent the drug’s poor patient compliance owing to 

gastrointestinal disturbances after oral administration [152]. They reported a 2.58-enhanced 

penetration, improved transdermal flux of 1.60 μg/cm
2
/h, and 63.37% deposition of meloxicam 

in excised rat abdominal skin compared to the drug solution. Moreover, rats treated with the MN 

exhibited a similar anti-inflammatory activity than the existing marketed oral tablet. In another 
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interesting example, Chen et al. went on to address the limitations of NSAID through the design 

and fabrication of tip-dissolving MNs. In their study, polymer solutions containing meloxicam 

were added into the PDMS mold, and high pressure was exerted to drive the air bubbles out of 

the cavities of the mold. In the next step, the residual solutions were removed to facilitate drying 

the tip solutions in the cavities of mold. Finally,  molten polycaprolactone (PCL) was poured into 

the mold, and high pressure was exerted again [153]. The author pointed out that tip-dissolving 

MNs exhibited burst release of the encapsulated meloxicam (91.72% within 30 min), excellent 

bioavailability (122.3%), favorable drug transportation to the skin (79.18%), high anti-

inflammatory and analgesic activities without any adverse effects such as skin irritation. In 

another study, Cao et al. engineered dissolvable HA crosslinked MNs as the transdermal 

alternative to deliver etanercept (EN), a TNF- α inhibitor for RA therapy since the subcutaneous 

(SC) injection of EN is associated with low compliance, infection risk, and other side effects 

[154]. The engineered MNs exhibited good mechanical strength and excellent biocompatibility 

and did not reduce the bioactivity of EN. In vivo experiments in adjuvant-induced arthritis mice 

showed that treatment with both EN by SC (eSC) and EN by MN (eMN) reduced the paw 

swelling ratio from 1.70 to 1.48 and 1.68 to 1.44 in 10 days, respectively, indicating anti-

inflammatory effects. Additionally, ELISA assay showed significantly reduced serum levels of 

the TNF-α and IL-6 level in both eSC and eMN mice compared to the mice that were treated 

with saline (SA) (Figure 10C and 10D). 
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Figure 10. Comparing ASI of T1D using dry coated MNs or ID administration. A) Measuring 

the auto-reactive cell proliferation (proliferated BDC2.5 T cells) in the pancreatic lymph node 

after WE14 administration by ID injection or MNs.  (**p<0.01). MNs with low peptide 

concentration (6 µg) exhibited similar efficiency to ID injection with high peptide concentration 

(50 µg) in reducing proliferated BDC2.5 T cells and inducing tolerance. Reproduced with 

permission from ref.[139] Copyright 2016, Elsevier B.V. MicronJet600 for ID delivery of 

proinsulin (C19-A3) tethered to GNPs towards T1D immunotherapy. B) Schematic 

representation of the delivery of AuNP-peptide complexes into the skin by MNs and their 

subsequent quick diffusion throughout the skin, capturing by APCs and suppressing activation of 

naïve T cells. Reproduced with permission from ref.[140] Copyright 2019, Elsevier B.V. C) the 

TNF-α and D) IL-6 serum levels in different experimental groups. * p < 0.05 vs. SA. NS 

represents no significance. Reproduced with permission from ref.[154]; Copyright 2019, MDPI. 

 

In another study, Qiu et al. designed and prepared dissolvable MNs loaded with artemether, a 

drug for RA treatment, to address the poor water-solubility of this drug [155]. The dissolving 

MNs were capable of delivering 72.67±2.69% of the initial dose of artemether into the skin. 

Lower peak plasma levels but higher plasma concentrations of drug were observed for MNs at 8 
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h after administration compared to IM injection. The authors found an analogous reduction in 

total anti-CII IgG levels in collagen-induced arthritis rats compared to MI injection. 

Some previous studies have shown that the combination therapy of RA possessed higher effects 

in reducing inflammation compared to monotherapy [156]. Yu et al. designed and fabricated a 

dissolving MN system containing immunosuppressant tacrolimus (TAC) and anti-inflammatory 

diclofenac (DIC) in different layers of MNs, named TD-MN (Figure 11A) [157]. The tip-layer of 

TD-MN was composed of a blend of dextran, HA, PVP K17 and DIC or RhB. The inter-layer 

was included a blend of dextran, HA, PVP K17, and TAC. In vitro and in vivo experiments for 

skin permeation showed that the inter-layer was able to retain TAC within the skin of ∼100 μm, 

whereas the tip-layer transported DIC up to ∼300 μm into the articular cavity. The fluorescence 

images of the rat knee joints punctured by the layered MNs loaded with RhB demonstrated that 

the RhB fluorescence quickly entered in the articular cavity. This claim was confirmed by 

removing treated skin after 30 min. A gradual increase of the fluorescence intensity of RhB was 

seen over 6 h, and remained high for 24 h (Figure 11B). compared to the layered MNs, the intra-

articular injection of RhB solution showed a peak at 4 h post-injection, and a very low amount of 

RhB was maintained from 6 to 12 h post-injection (Figure 11C). In vivo experiments indicated 

that the TD-MN alleviated carrageenan/kaolin-induced arthritis compared to DIC injection by 

reducing cartilage destruction, muscle atrophy, and joint swelling. Significantly reduced levels of 

the serum TNF-α and IL-17A in arthritic rats treated with the TD-MN were found, while 

unlayered MNs loading a mixture of TAC and DIC (MIX-MN) failed to create protective effects 

(Figure 11D and 11E). These findings suggest that the synergistic effects highly rely on the 

effective integration of multiple therapeutic agents in different layers of a single platform rather 

than just simple mixing. 
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Figure 11. The TD-MN containing tacrolimus (TAC) and diclofenac sodium (DIC) in different 

layers for combined therapy of RA and psoriatic skin. A) Schematic representation of layed MNs 

for combined therapy of RA and psoriatic skin though modulation of inflammation. The tip-layer 

of TD-MN was composed from a blend of dextran, HA, PVP K17 and DIC or RhB.  The inter-

layer was included a blend of dextran, HA, PVP K17 and TAC. B) In vivo fluorescence images 

of RhB transportation of layered MNs into the articular cavity of rats at 0.5, 1, 2, 4, 6, 9, 12, and 

24 h. C) In vivo fluorescence images of intra-articular injection of RhB solution at 0, 0.5, 1, 2, 4, 

and 6 h. Effects of various MN formulations on serum levels of D) TNF-α and E) IL-17A in 

arthritic rats. Data are expressed as mean ± SD (n=6 animals per group). ∗P<0.05 versus 

carrageenan/kaolin-induced arthritic model group; 
#
P<0.05 versus MIX-MN group; and ns, no 

significant difference versus the negative group. Definition of MIX-MN group: Loading a 

mixture of TAC and DIC into the unlayered MNs. Reproduced with permission from ref.[157]; 

Copyright 2020, Elsevier B.V. 

 

In another study, Zhao et al. used bee venom gel instead of NSAID to prevent the occurrence of 

gouty arthritis inflammation in rats. The authors used MNs containing bee venom gel and found 

that the application of the 750 μm MNs with 10N force on skin for about 3 min resulted in anti-
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inflammatory effects [158]. For example, another type of hydrogel MNs encapsulated triptolide-

loaded liposomes as novel systems to treat collagen-induced arthritis in rats [159]. In this study, 

the pharmacodynamics experiments demonstrated that the MNs attenuated the degree of joint 

swelling and serum levels of IL-1β and interleukin-6 (IL-6) through regulation of the balance 

between Th1 and Th2 pathways. In summary, the possibility to transdermally deliver therapeutic 

molecules using MNs for RA treatment represents a great advantage for their clinical translation 

since they can reduce the adverse effects of RA drugs. 

 

6. Defeat allergy by MN patches 

6.1. Design of MNs for immunotherapy of food allergies 

Food allergens like peanut, milk, gluten, and aeroallergens, such as pollen and dust, can 

stimulate immune cells and result in the secretion of pro-inflammatory cytokines, activation of 

IgE antibodies, mast cells, and eosinophils [160-162]. Allergy immunotherapy promotes 

immunological tolerance, with a long-term effect lasting past treatment termination [163]. In a 

study, Shakyaa et al. used peanut protein extract (PE)-coated MNs to provide desensitization of 

peanut sensitized mice [164]. They firstly fabricated MNA from 50-μm thick stainless steel (304 

grade) sheets through a wet etch process and then coated them by dipping in a coating solution 

containing PE, carboxymethyl cellulose (as a viscosity enhancer), and Lutrol F-68 NF (as a 

surfactant). The authors further revealed that PE-coated MN group had significant down-

regulation of systemic anaphylaxis mediators like mast cell protease-1 (MCPT-1) and histamine 

and up-regulation of Th1 cytokines like interleukin-2 (IL-2) and IFN-γ compared to the untreated 

group, indicating that PE-coated MNs contributed to immune regulation by targeting the Th1 

pathway. In their work, histopathological assessments of small intestinal tissues showed that PE-
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coated MNs reduced the infiltration of eosinophils compared to the untreated group. It is well 

documented that the allergen dose delivered into the skin is a decisive factor of successful 

allergy immunotherapy [165]. As a result of some limitations of coated MNs, such as the 

difficulty of precise coating and insufficient delivery of therapeutic allergen, some researchers 

have used dissolvable MNA to ensure effective PE transportation into the epidermis/dermis 

layers. For example, Yu et al. showed that a powder-laden, dissolvable MNA (PLD-MNA) 

encapsulating peanut allergen (PNA)/ 1,25-dihydroxyvitamin D3 (VD3)/CpG could be used to 

manage IgE-mediated allergies in peanut-sensitized mice [166]. The authors revealed that the 

MNA was able to deliver most of its content after 1 h into the epidermis of mouse skin, with no 

evident skin irritation or leakage into the circulation. The intravital confocal microscopy of MHC 

class II–EGFP mice showed that OVA-555–laden PLD-MNA was dissolved into the mouse ears 

within 15 min, and the APCs were highly accumulated around each powder dot (OVA), with a 

peak on days 1 and 2. The emerged yellow colors of green and red on days 1 and 2 confirmed the 

uptake of OVA by APCs. Decreasing powder quantity in the epidermis from day 1 to day 5 

resulted in the gradual reduction in the number of APCs (Figure 12). The researchers further 

stated that PLD-MNA encapsulating PNA/VD3/CpG reduced clinical allergy scores (from 3.5 to 

1), the number of treatments, and the required dose of PNA in each treatment compared to 

conventional intradermal immunotherapy.  
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Figure 12. The ability of OVA-555–laden PLD-MNA for attracting and activating APCs and 

promoting antigen uptake by these cells. Two-photon confocal microscopy for tracking OVA-

555 in the epidermis from day 0 to day 8. White triangles in upper panels show accumulation of 

APCs around each powder dot on day 1. White arrows indicate the merged yellow color of green 

and red owing to the uptake of OVA (red) by APCs (green). Scale bars represent 500, 200, and 

50 mm in the upper, middle, and bottom panels, respectively. Reproduced with permission from 

ref.[166]; Copyright 2020, Elsevier B.V. 

 

6.2. MNs for immunotherapy of allergic respiratory diseases 

Airway allergies, including allergic asthma, allergic rhinitis, and allergic conjunctivitis, are 

common public health concerns due to their increasing prevalence worldwide [167]. The release 

of toxic protein granules or ROS by infiltrated eosinophils at the site of inflammation enhances 

the allergic immune response [168]. Moreover, mast cells are a major effector cell type in IgE-

mediated hypersensitivity that induces airway allergies through releasing various inflammatory 

mediators, such as histamine [169]. A promising strategy for the treatment of airway allergies is 

allergen-specific immunotherapy (AIT). The principle of AIT  is based on repeated 

administration of an allergen with increasing doses until the achievement of tolerance [170]. AIT 

is classified into two types, including sublingual allergen-specific immunotherapy (SLIT) and 
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subcutaneous allergen-specific immunotherapy (SCIT).  SLIT is safe, but it needs high allergen 

doses and is not a satisfactory method for administration in kids and infants [171]. Although SCIT 

uses lower doses compared to SLIT, it is painful and inconvenient with other systematic side 

effects [172]. To overcome the limitations of SCIT, coated MNs can be applied to improve the 

efficiency of immunotherapy of allergic airway diseases. For example, Shakya et al. developed a 

coated MN with Ova and CpG (MNs-Ova+CpG) to evaluate its efficiency for allergen 

desensitization in a mouse model of Ova-induced airway allergy compared to SCIT [173]. The 

authors stated that treated mice were challenged with Ova through the nasal route to examine 

efficacy against allergen challenge. Treated mice with coated MNs demonstrated significantly 

increased levels of Ova specific serum IgG antibodies in comparison with SCIT-Ova+alum 

treated group. Likewise, up-regulation of anti-inflammatory cytokine IL-10, downregulation of 

pro-inflammatory cytokines, including IL-5 and IL-13, and activation of Ova specific immune 

response in bronchoalveolar fluid showed that (MNs-Ova+CpG have the ability to suppress the 

airway inflammation in allergic mice. Additionally, H&E stains for eosinophils and May-

Grünwald Giemsa (MGG) stains for mast cells showed that treatment with MNs-Ova+CpG 

markedly reduced infiltration of these cells in lung tissues compared to the untreated and the 

SCIT-Ova+alum groups ( Figure 13A-13D).  Jo
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Figure 13. The effects of coated MN with Ova and CpG on the infiltration of eosinophils and 

mast cells in lung tissues. A) H&E stained lung tissue sections for evaluation of eosinophil 

infiltration. B) Eosinophil count. C) May-Grünwald Giemsa stained tissue sections for evaluation 

of mast cell infiltration. D) Mast cell count. Arrows show cells or mucus deposition (n = 3 

animals per group). Data are expressed as mean ± SEM. ** p ≤ 0.01, and ns: not significant. 
Reproduced with permission from ref.[173]; Copyright 2020, American Chemical Society. 

 

In another interesting example, the same research group loaded Der p 1, a house dust mite 

allergen, onto an MN patch composed of 57 total MNs to hamper the onset and progression of 

Der p 1–induced airway allergy [174]. Their results by calibrated fluorescence spectroscopy 

demonstrated that 73.3% ± 7.4% of coated Der p 1 was transported into the skin. The authors 

further found that Der p 1 coated MNs created a more reliable anti–Der p 1 IgG response than 
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the untreated and subcutaneous immunotherapy groups. The addition of CpG as an adjuvant to 

Der p 1 coated MN resulted in a more significant anti–Der p 1 IgG2a response and higher IL-10 

and transforming growth factor-beta (TGF-β) secretion than both the Der p 1 coated MN and 

subcutaneous immunotherapy.    

In another example, Shakya et al. coated MNs, using an in-house micro-precision dip-coating 

device, in a solution containing OVA, Lutrol F-68 NF, and carboxymethylcellulose (1%, w/v) to 

create a preventive vaccine against airway allergy [175]. The authors stated that the coated MNs 

are beneficial for treating airway allergy in infants as the sublingual route is not suitable for 

them, and injections are painful. A strong OVA-specific systemic immune response was induced 

following the insertion of MN coated with OVA and CpG oligonucleotide as adjuvant into the 

mice’s skin. The MNs modulated a variety of cytokines, including anti-inflammatory cytokines 

(IL-10) and Th2 cytokines (IL-13, IL-4, and IL-5) in the bronchoalveolar fluid, as well as Th1 

cytokines (IFN-γ and IL-2) in re-stimulated splenocyte cultures, indicating improvement of 

clinical symptoms of allergy.  

Owing to limitations of coated MNs, Park et al. developed a biodegradable MN patch (MNP) 

comprising of hyaluronate and Dermatophagoides farinae (D. farinae) extract (DfE) using a 

droplet-born air blowing method for transdermal immunotherapy (TDIT) to ameliorate airway 

hyperresponsiveness (AHR) and inflammation in a house dust mite (HDM) asthma model 

(Figure 14A and 14B) [176]. The delivery test showed that 77% and 85.4% of the allergen were 

absorbed after 1 and 8 h of MNP insertion, respectively. In vivo experiments indicated that 

treatment with 10 μg TDIT improved HDM-induced AHR most significantly in comparison with 

low-dose (10 μg) and high-dose (100 μg) SCIT. TDIT had the strongest effect in reducing the 

secretion of cytokines associated with the Th2 inflammatory response (IL-4, IL-5, and IL-13) 
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and epithelium-derived cytokines (IL-33 and TSLP) as indicators of allergic inflammation 

(Figure 14C). Likewise, only treatment with 10 μg TDIT markedly increased Treg-associated 

cytokines (IL-10 and TGF-β), which are known to be expressed following AIT (Figure 14D). 

Their results showed that treatment with 10 μg TDIT resulted in the largest decrease in D. farina-

specific IgE and IgG2a. Histopathological experiments demonstrated that treatment with 10 μg 

TDIT reduced goblet cell hyperplasia, subepithelial fibrosis, and HDM-induced inflammation. 

 

Figure 14. The effects of a biodegradable MNP loaded with D. farinae extract in reducing 

airway hyperresponsiveness (AHR) and inflammation. A) Schematic illustration of MNP loaded 

with DfE on the skin. MNP loaded with DfE were dissolved into the skin after insertion. B) MNP 

insertion on BALB/c female mice. Flow cytometry analysis of C) T helper 2 (Th2) cells and D) 

Regulatory T cells in Sham (control), Asthma (without treatment), Low SCIT (10 μg), and High 

SCIT (100 μg), and TDIT (MNP loaded with DfE) groups. Data are expressed as the mean ± SD. 
#
P < 0.05 compared to asthma; 

##
P < 0.001 compared to asthma; *P < 0.05 and **P < 0.001 

between AIT modality (SCIT or TDIT). Reproduced with permission from.[176]; Copyright 

2020, John Wiley & Sons Ltd. 
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6.3. MNs for allergen-specific immunotherapy 

To compare the efficiency of MNs for cutaneous allergen-specific immunotherapy (ASIT) with 

other conventional routes like the IP, IM, and subcutaneous allergen immunotherapy, Shakya et 

al. fabricated MNs coated with OVA by a micro-precision dip coater and a coating solution 

containing OVA, carboxymethyl cellulose and Lutrol F-68 NF [177]. They demonstrated that 

most of the coating was transported into the skin following the insertion of the fluorescein-OVA 

coated MN patch in a mouse model. The coated MN-treated animals demonstrated an increased 

anti-OVA IgG response compared to IP and subcutaneous allergen immunotherapy and similar 

anti-OVA IgG response to IM administration at 28 days after insertion. Generally, they observed 

lower secretion of pro-inflammatory IL-1β, interleukin-13 (IL-13), interleukin-15 (IL-5), and IFN-

γ after the insertion of OVA coated MN patches compared to the other routes of administration, 

as well as higher activation of the Th1 pathway, indicating their potential use for painless ASI. 

The authors stated that a shift from Th2 to Th1 response is thought to be beneficial for ASI. 

In 2019, the same researchers coated two stimulators of interferon genes (STING) agonists, 

namely, cyclic diadenylate monophosphate (c-di-AMP) and cyclic diguanylate monophosphate 

(c-di-GMP), along with OVA as a model allergen on MN patches characterized by 57 individual 

micron-sized needles and transported them into mouse skin [178]. Calibrated fluorescence 

spectroscopy confirmed delivery of 78.8% (±4.2) of coated OVA into the skin, while 4.2% 

(±1.1) was seen on the skin and 17.0% (±4.0) OVA remained on the surface of MN patches. The 

authors showed a higher OVA-specific IgG2a antibody in serum as a surrogate marker for Th1 

type immune response and higher levels of Th1 cytokines (IFN-γ and IL-2) in re-stimulation of 

splenocytes culture for coated MN groups compared to the approved subcutaneous hypodermic 

injection.  
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In a clinical trial conducted in Germany, Spina et al. compared MNs and adhesive-tape stripping 

in skin preparation for epicutaneous allergen immunotherapy [179]. They observed that MNs 

increased stratum corneum penetration in comparison to tape stripping and induced dendritic 

cell-mediated T cell responses. 

Benefitting from their tailorability to the location of different subtypes of dendritic cells, such as 

LCs, MN patches can be designed to target LCs for allergy immunotherapy with minimal side 

effects. The presence of LCs in the epidermal layer makes them the first line of APCs that meet 

skin-invading antigens. This opens up a new avenue for immunotherapy of diseases without 

causing noticeable adverse effects [180]. For example, Burg et al. designed microprojection 

arrays (MPA) in polycarbonate material through a hot embossing procedure and coated OVA 

onto the surface of the MPAs [181]. In this study, they found that slit-MPAs (110 μm ± 3 μm tall 

projections at 7k p/cm
2
) with higher tip surface areas than conical-MPAs (207 μm ± 5 μm tall 

projections at 10,000 (10k) projections/cm
2
 (p/cm

2
)) were more suitable for only epidermal 

delivery using low application energies. They further stated that the mouse epidermis (eMPA) 

delivery with larger projection tip surface areas had a lower inflammatory response and 

epidermal cell death, lesser erythema after 24 h, and epidermal swelling after 72 h than dermal-

targeted MPAs (dMPA). Flow cytometry analysis showed that only the eMPA increased the 

migration of LCs with a low expression of major histocompatibility complex (MHC) II, without 

migration of dDCs.  

Overall, the delivery of allergens by MNs to both the epidermis and the dermis can be further 

explored as a convenient and effective new means of allergen immunotherapy, which would 

encourage patient compliance and minimize side effects. 

 

 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

57 
 

7. MN-based vaccines 

The need for improvement of percutaneous vaccination arises from several major limitations of 

this technique, including needle phobias, the need for high doses and reconstitution of 

lyophilized vaccines, and the production of a huge amount of biohazardous waste, including 

sharp materials, such as needles that require special disposal protocol [182]. 

Currently, vaccine-loaded MNs have attracted tremendous attention from the scientific 

community as safe and dose-sparing tools to control vaccine release kinetics or improve immune 

response through manipulation of the composites of MNs [183-185]. For example, DeMuth et al. 

developed layer-by-layer assembled polyelectrolyte multilayers (Poly-1/ICMV) deposited onto 

poly(lactic-co-glycolic acid) (PLGA) MNs, which provided a possibility to control the film 

thickness and dosage of immunomodulators for adjustable releasing and stabilizing goals (Figure 

15A) [186]. The authros firstly synthesized nanocapsules containing interbilayer covalent cross-

links among maleimide head moieties of adjacent phospholipid lamellae present in the walls of 

multilamellar vesicles and then deposited them onto the surface of PLGA MNs. By co-

encapsulating OVA as an adjuvant and a fluorescent tracer in the structure of nanocapsules 

loaded into MNs, they found that OVA was taken up by the APCs into the epidermis, which, in 

turn, gave rise to higher serum levels of anti-OVA IgG titers and improved humoral immune 

response in a mice model (Figure 15B).  

In another study, Boopathy et al. developed solid pyramidal MNs composed of silk fibroin (SF) 

protein tips encapsulating a stabilized HIV envelope immunogen and adjuvant to maintain drug 

concentrations in the skin by tailoring the speed of release [187]. It was shown that Env trimer 

was released over 2 weeks after immunization in the mice skin, resulting in increased germinal 

center (GC) B cell responses, increasing bone marrow plasma cells (16-fold), and increasing 
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serum IgG titers (∼1,300-fold). Balmert et al. developed dissolving MNAs containing OVA plus 

Poly(I:C) via the combination of 3D laser lithography with nanoscale resolution and 

micromolding to compare its effects on induction of antigen-specific cellular and humoral 

immune responses with traditional IM [60]. The authors argued that this multi-component 

vaccine delivered 80.2% ± 12.5% OVA and 79.6 ± 5.0% Poly(I:C) within 10 min to murine skin 

(Figure 15C-15G). Likewise, epifluorescence microscopy showed penetration of MNs through 

the epidermis into the dermis for human skin, indicating MNs had suitable mechanical strength 

to penetrate into the human skin. The authors further stated that serum levels of anti-OVA IgG 

titers were markedly higher in immunized mice with multicomponent vaccine MNs compared to 

immunized mice with traditional IM injection. 

 

Figure 15. Transcutaneous vaccine delivery using releasable layer-by-layer assembly of 

stabilized lipid nanocapsules on MNs. A) Schematic illustration of deposition of (Poly-1/ICMV) 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

59 
 

multilayers onto PLGA MN surfaces, transportation into the skin after insertion, and boosting 

immune function. B) Serum levels of anti-OVA IgG titers at different days after immunization 

(
#
p < 0.05 and 

##
p < 0.01, and ***p < 0.001). Reproduced with permission from ref.[186]; 

Copyright 
 
2012, American Chemical Society. C) Amount of OVA and poly (I:C) transported 

into the skin at different time points after MN insertion (***p < 0.001). No significant 

differences for delivery of OVA were seen at different times after insertion (5, 10, and 20 min), 

whereas the highest transportation of poly (I:C) was observed 20 min after insertion. D) Optical 

stereomicroscopy and fluorescence images of MNs containing both Alexa555-OVA (red) and 

Alexa488-Poly (I:C) (green). Scale bar: 500 μm. E) Optical stereomicroscopy photo of 

OVA/Poly (I:C) loaded MNs after insertion in murine skin. Scale bar: 250 μm. Effective 

transportation of (F) Alexa488-Poly (I:C) and (G) Alexa555-OVA into the mouse skin after MN 

insertion. Reproduced with permission from ref.[60]; Copyright 2019, Elsevier B.V. 

 

7.1. Design of MNs for transdermal delivery of viral vaccines  

The utility of vaccines can be improved by the use of coated and dissolving MNs since they are 

capable of carrying vaccines in a dried form [188]. The MNs can then release the components of 

the vaccine after dissolution in the epidermis/dermis, resulting in more thermostability and 

reducing the necessity for vaccine reconstitution as one of the steps of traditional percutaneous 

vaccine administration [189, 190]. The improved thermostability by coated and dissolving MNs 

provides the possibility to decrease or eliminate high costs relevant to the ―cold chain‖ for 

storage or transportation of vaccines [191, 192]. Additionally, MNA vaccines are advantageous 

to create immunization against infectious diseases (SARS and COVID-19) in that they possess a 

high potential for self-administration without the need for any specialized equipment or an 

applicator [193, 194]. Although it has been reported that hollow MNs can be applied to facilitate 

penetration of NP loaded with therapeutic antigens into the skin and induce higher antibody 

response and a higher amount of interferon-γ compared to IM injection, needle clogging during 

piercing of skin and resistance to flow can limit their application for vaccination [195].  

In the recent decade, a number of groups have used coated MNs for viral vaccinations since they 

are able to introduce the vaccine in a dry state (without the need for reconstitution) and improve 
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vaccine stability [196]. For example, Shin et al. coated 2 and 10μg of GMP with the influenza 

vaccine onto the stainless steel MNs using the dip-coating process before delivering them into 

the skin of a mice model to evaluate the reduction in influenza susceptibility [197]. In this study, 

mice immunized with the vaccine antigen and 2μg of GMP demonstrated the highest level of IgG 

at the second and fourth week after insertion (7-fold and 2.8-fold higher than the vaccine alone) 

while mice immunized with the vaccine antigen and 10μg of GMP did not induce a significant 

IgG response. Furthermore, mice immunized with 2μg GMP and the virus exhibited stronger 

protective immunity, while mice immunized with 10μg GMP, and the virus demonstrated the 

lowest lung viral titer and rapid recovery rate. Thereby, the simultaneous delivery of the 

influenza vaccine and GMP by MNs improved both cellular and humoral immunity. In another 

example, Nguyen et al. designed and fabricated 800-µm-long polylactic acid MNs coated with L-

HBsAg s (a third-generation hepatitis vaccine) to investigate its efficiency compared to IM 

immunization [198]. It was shown that the coated MNs more effectively elevated IgG1 and 

IgG2a titers and increased thermal and freeze-thaw stability compared to IM immunization.  

Despite the potential benefits, several drawbacks of the coated MNs, such as poor coating 

efficiency and immunogenicity, might limit their future clinical use for viral and bacterial 

vaccinations [43]. The small surface area of the MNs results in delivering only small amounts of 

therapeutic molecules and antigens into the skin. To address this limitation, Maaden et al. coated 

pH-sensitive MNs with inactivated polio vaccine (IPV) particles and N-trimethyl chitosan 

chloride (TMC) through electrostatic interactions to achieve a sufficiently high antigen dose 

[199]. In their study, the MN surface was firstly decorated with pH-sensitive (pyridine) moieties 

and then coated with negatively charged IPV and a positively charged TMC. The authors coated 

ten layers of IPV alternately with TMC to achieve the required dose of antigen. With further 
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analysis, the authors found 45 D antigen units IPV and 700 ng TMC per MN. The ex vivo 

experiments demonstrated the release of both IPV and TMC into the human skin, and in vivo 

experiments confirmed the induction of IPV specific antibody responses. Another possible 

solution to overcome the limitation of coated MNs for vaccination is to use dissolvable MNs 

[200].  

In another example, Erdos et al. developed dissolvable MNAs, consisting of trehalose and 

carboxymethyl cellulose, incorporating adenovirus vaccines (Ad5.OVA) with or without 

Poly(I:C) using a spin-casting technique to enhance the immunogenicity of skin-targeted 

adenovector vaccines [201]. The authors confirmed the dissolution of the MNAs upon skin 

insertion using optical stereomicroscopy. The multicomponent MNA vaccine platforms 

determined an increased OVA-specific lytic immunity compared to MNA containing 

adenovectors alone. In 2019, Chen et al. demonstrated that when inactivated influenza virus or 

OVA antigen is loaded into dissolving chitosan MNs, the delivery of inactivated influenza virus 

occurred in a sustained manner (up to 28 days), and induction of influenza-virus-specific IgG 

responses were higher than IM injection in mice (Figure 16A-C) [82]. 

 

7.2. Design of MNs for transdermal delivery of bacterial vaccines 

In 2017, Pastor et al. developed outer membrane vesicle-loaded dissolving MNs to generate 

intradermal immunization against enteropathogens like the bacterium Shigella through induction 

of specific systemic IgG and mucosal IgA [202]. In 2019, Zhu et al. developed pertussis toxin 

(PT) vaccine MNs to transdermally target immune cells against Pertussis (whooping cough) 

caused by the bacterium Bordetella pertussis [203]. PT vaccine MNs released antigen in a more 

sustained manner (Figure 16D) and efficiently reduced the dose necessary to generate a high 
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level of PT-specific IgG via several pathways, mainly Th1 and Th17 pathways when compared 

to subcutaneous injection. In another study, Chen et al. designed and fabricated a MN 

incorporating F1 antigen-loaded liposomes (F1-liposomes) to deliver the F1 protein of Yersinia 

pestis and generate immunity against plague in a mice model [204]. Mice immunized with F1-

liposome demonstrated the highest levels of the anti-F1 IgG antibody titers after 45 days 

compared to mice immunized with PBS buffer or F1-Alugel.  

 

Figure 16. Immunity against influenza virus infection using patch-free chitosan MNs. A) 

Schematic illustration of the implantable chitosan (CS)-MNs with the ability to boost immune 

function via effective intradermal influenza vaccination through a sustained release profile. B) 

3D reconstruction of confocal images of rat skin showing the degradation of CS-MNs and 

release of inactivated influenza virus in a sustained manner. FITC-Chitosan MN and Alexa 594-

OVA signals were seen until 28 days after insertion of the MNs in the rat skin. C) Influenza-

virus-specific IgG responses after IM injection of influenza vaccine or treatment using MN 

vaccine (***P < 0.001, n=5). Significant differences were observed between IM saline, IM 

vaccine, and MN vaccine. Reproduced with permission from ref.[82], Copyright
 
2019, Acta 

Materialia Inc. Published by Elsevier B.V. D) Fluorescent images showing the sustained release 
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of PT vaccine MNs compared to subcutaneous injection. No signals were seen for subcutaneous 

injection after 6h, while signals for MN insertion were observed until 12 h. Reproduced with 

permission from ref.[203]; Copyright
 
2019, American Chemical Society. 

 

8. MN-mediated treatment of inflammatory diseases 

MNs can reduce the required dose and adverse effects of anti-inflammatory drugs and contribute 

to the maintenance of the physical stability of their nanocarriers [205]. Currently, dissolving 

MNs have garnered much attention from the scientific community for immunotherapy of 

inflammatory diseases.  

8.1. MN design for psoriasis treatment 

Psoriasis is a chronic inflammatory disorder that is mainly characterized by vasodilation and 

immunological imbalance. The activation of NF-κB by some factors results in the initiation of 

inflammation in psoriasis [206]. The presence of T cells and DCs in the psoriatic lesions enhance 

the secretion of pro-inflammatory cytokines such as TNFα, IL-1β, IFNγ, IL-17, IL-22, and IL-23 

[207]. Currently, evidence has shown that MNs can effectively manage psoriasis [208]. 

An advantage of using the dissolving MNs for immunotherapy of inflammatory diseases 

compared with other types of MNs and traditional needles is the dissolution of the needles within 

the skin and hence no requirement for proper needle disposal or the fear of needle reuse [209]. 

Du et al. pioneered a project using dissolving MNP composed of HA loaded with Methotrexate 

(MTX) using a two-step micromolding process. The aim of the study was to enhance the efficacy 

of psoriasis treatment by targeting inflammatory responses [210]. The release of MTX reached 

52% within 10 min, 76%, and 87% at 30 and 60 min, mainly due to the water solubility of HA. 

In vivo experiments demonstrated a complete dissolution of MNP- MTX within 10 min resulted 

in a reduction in ear thickness, suppression of the IL23/IL17 axis, and imiquimod (IMQ) -

induced psoriasis-like skin inflammation. They reported that both IMQ mice treated with MTX-
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loaded MNs (13.8 μg) and oral administration at a double dose (27.6 μg) of MTX exhibited 

much milder psoriasiform dermatitis whereas oral administration at a same dose with MNs (13.8 

μg) failed to exert such protective effects (Figure 17A).  

In another study, Korkmaz et al. developed carboxymethyl cellulose-based dissolving MNs 

containing anti-TNF–α for localized ID delivery to reduce the immunosuppression associated 

with systemic administration of antibody and related adverse events [211]. The antibody cargo 

was incorporated in the needle tips using a micromilling/spin-casting fabrication method. The 

MNs nearly completely dissolved into the human skin explants and reduced the critical 

biomarkers of psoriasiform inflammation (epidermal thickness and IL-1β expression) in a 

psoriatic mouse model. The following year, the same group conjugated high molecular weight 

HA to the anti-TNF-α antibody in the same dissolving MNs to hinder the fast diffusion of 

antibodies from the target site to other body regions [212]. The high efficiency of this delivery 

method was assessed in human skin explants without antibody diffusion from the delivery site. 

8.2. MN for acne treatment 

One of the main causes of acne is inflammatory responses that occur in the sebaceous glands of 

hair follicles [213]. The proliferation of microorganisms in hair follicles in large quantities, 

especially Propionibacterium acnes (P. acnes), results in free fatty acid production, excessive 

production of reactive oxygen species (ROS), chemotaxis of inflammatory mediators, 

inflammatory cells, and finally the formation of acne lesions [214]. Therefore, simultaneous 

inhibiting bacterial growth and suppressing inflammatory responses are essential to achieve a 

successful acne treatment. 

Excessive production of ROS under pathological conditions (more than 500 μM) in 

inflammatory tissues provides the possibility to design ROS-responsive MNs that are able to 
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release therapeutic molecules in a sustained manner based on ROS-induced degradation into the 

acne lesion site [215]. Based on this concept, Zhang et al. prepared ROS-responsive MNs 

containing poly(vinyl alcohol) PVA/ clindamycin (CDM) networks that were loaded into a 

substrate composed of HA and diatomaceous earth (DE) to improve interactions for the 

treatment of acne vulgaris, a common inflammatory skin disease caused by colonization of P. 

acnes (Figure 17B) [216]. The use of ROS-responsive MNs highly reduced the number of 

infiltrated inflammatory cells into the dermis in a P. acnes-induced mouse model while a CDM 

cream failed to create such protective effects (Figure 17C and 17D).  
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Figure 17. HA-based dissolving MNP loaded with methotrexate for psoriasis treatment. A) 

Comparison between therapeutic effects of MTX-loaded MNs (13.8 μg), oral administration of 

the same dose (13.8 μg), and a double dose (27.6 μg) of MTX on IMQ-induced psoriasis-like 

skin inflammation at day 7. (a) Representative images of left ear lesions, (b) H&E staining. 

Reproduced with permission from ref.[210], Copyright 2019, American Chemical Society. ROS-

responsive MNP for acne vulgaris treatment. B) Schematic representation of the fabrication and 
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proposed mechanism of ROS-responsive MNs containing CDM for the treatment of 

inflammatory acne vulgaris. The excessive production of ROS under pathological conditions 

(more than 500 μM) in inflammatory tissues results in the sustained release of drug molecules. 

C) Quantitative analysis of infiltrated inflammatory cells in different groups. Control group: 

negative control without treatment, CDM cream: treatment with 1 wt-% CDM cream, RR-MN 

group: ROS-responsive PVA/CDM MN patches, CDM MN group: CDM loading HA MN 

patches, NR-MN group: Nonresponsive PVA/CDM MN patches and blank MN group: blank 

MN patches without CDM (CDM dose: 0.4 mg per mouse). There were no significant 

differences between RR-MN and normal groups. D) Representative images indicating the 

significant reduction in the swelling volume of the RR-MN treated back skin of P. acnes-induced 

mice on day 6 after MN insertion. Scale bar: 5 mm. Reproduced with permission from ref.[216]; 

Copyright 2018, Wiley-VCH. 
 

 

In another interesting example, Zhang et al. designed and fabricated an active pharmaceutical 

ingredient poly (ionic liquid) (API PIL)-based MN patches containing salicylic acid (SA) via 

photo-crosslinking of an imidazolium-type ionic liquid (IL) monomer in MN micro-molds, and 

following by anion exchange with SA
−
 anions [217]. Electrostatic interactions between 

imidazolium cation and SA anion facilitated loading salicylic acid anions onto PIL-MN. 

Characterization tests showed that the cross-linked SA-PIL-MN patches possessed high strength 

( > 0.72 MPa), high stretchability ( > 135 % strain), high compressibility ( > 60 % strain) and 

relatively high strength ( > 0.45 MPa) (Figure 18A and 18B). SEM images displayed that the 

bacteria (P. acnes and E. coli) were rod-like in control, and their surface remained smooth and 

complete, whereas culturing bacterial suspensions with the PIL-based MNs for 4 h resulted in 

irregular and unclear edges, atrophy, partial or complete membrane lysis or membrane 

perforation of the bacteria (Figure 18C). The SEM images further showed that the SA-PIL-MN 

patches had higher antimicrobial efficacy than only SA or only PIL-MN, mainly attributed to the 

synergistic activity of PIL and SA moieties against the bacteria. Histological and 

immunohistochemical analyses further demonstrated that expression of inflammatory cells and 

factors such as TNF- α, IL-8, and matrix metalloproteinase (MMP) significantly reduced in mice 
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treated with SA-PIL-MN while only SA or only PIL-MN groups failed to exert noticeable anti-

inflammatory effects (Figure 18D and 18E).  

 

Figure 18. Anti-bacterial and anti-inflammatory effects of SA-loaded PIL-MNs in an acnes mice 

model. A) True tensile stress-strain. B) Compression stress-strain. C) SEM images showing P. 

acnes morphological changes in control, SA, PIL-MN, and SA- PIL-MNs for 4 h (scale bar: 1 

μm). D) H&E and immunohistochemical images displaying tissue damage and the expression of 

the TNF- α, IL-8, and MMP in P. acnes -infected skin 72 h post-operation in control, SA, PIL-

MN, and SA- PIL-MNs treated mice. Scale bar: 100 μm. E) The inflammatory cell counts and 

positive expression values of the TNF- α, IL-8, and MMP in control, SA, PIL-MN, and SA- PIL-

MNs groups.  Data are expressed as mean ± SD, (n = 3 per group); *P < 0.05, **P < 0.01. 

Reproduced with permission from ref. [217]; Copyright 2020, Elsevier B.V. 

 

 

8.3. MN design for atopic dermatitis treatment 

Atopic dermatitis (AD) is a common, chronic skin inflammatory disease that is characterized by 

eczematous lesions and abnormal immune responses [218]. Although detailed acknowledgments 
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about mechanisms of AD pathogenesis are not completely available, previous studies have 

shown that AD is associated with an overactive immune system, aggressive response to 

environmental irritants and allergens, and subsequently causing skin inflammation [219]. The 

onset and development of AD are associated with T helper type 2 (Th2)-polarized immune 

responses, including secretion of IL-4, IL-5, and IL-13 [220]. Excessive secretion of pro-

inflammatory cytokines creates a sequential chain of events, including stimulating 

immunoglobulin (Ig) E and IgG1 production by B cells, degranulation of mast cells, histamine 

release, and initiation of allergic responses [221, 222]. Chen et al. developed dissolvable MNs 

composed of low- and high- molecular-weight (LMW and HMW) poly- γ- glutamate ( γ-PGA) 

using micromolding method with immunomodulatory effects to effectively decrease abnormal 

immune responses and AD-like symptoms in Nc/Nga mice (Figure 19A) [223]. Their results 

demonstrated that γ-PGA MNs were able to penetrate the epidermis easily and modulate immune 

responses by releasing γ-PGA into the dendritic cell-rich dermis and its interaction with DCs. 

Compared to AD control, noticeable reductions of clinical dermatitis scores, epidermal thickness 

(Figure 19B), and mast cell infiltration (Figure 19C) in treated mice with γ-PGA MNs were 

found. The protective effects of engineered γ-PGA MNs were attributed to downregulation of 

IgE and IgG1 levels (Th2-associated antibodies) (Figure 19D-19F). There was no evidence of 

weight loss or abnormality in the MN-treated mice during the 8-week treatment period. 

Additionally, the authors found that the MW of γ-PGA highly affected immunomodulatory 

properties of the engineered MNs. 
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Figure 19. The γ-PGA MNs as transdermal immunomodulators for improving AD symptoms. A) 

Schematic representation of transdermal delivery of γ-PGA MNs for reducing skin inflammation 

through down-regulation of the IgE and IgG1 (Th2-associated antibodies) and hampering mast 

cell infiltration. PCL supporting substrate contributes to improving MN penetration by providing 

a greater length upon insertion, and then it can be quickly removed from the skin when the MN is 

dissolved within the skin. The dissolved γ-PGA directly confers DCs activation in the dermis, 

which in turn results in regulating immune responses towards ameliorating atopic dermatitis 

pathology. B) The epidermal thickness, and C) Mast cell number obtained from the H&E- and 

toluidine blue-stained skin sections at Week 8. D) Serum IgE, E) IgG1, and F) IgG2a. The serum 

levels were measured using ELISA. Data are expressed as the mean ± SD (n = 4 animals per 

group). *P < 0.05, **P < 0.01, ***P < 0.005 compared with the control group. Reproduced with 

permission from ref.[223]; Copyright 2020, Elsevier B.V. 

 

 

A recent study has shown the superiority of AD immunotherapy using MN technology compared 

to other routes of administration (IM, IP, oral, and SCIT). Kim et al. have evaluated the ability of 

DfE-loaded sodium hyaluronate-based MN patches for the establishment of immunotherapy  in 
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coping with AD [224]. The researchers found that an antigen extract’s concentration of 10 µg 

into the MN patches created similar efficiency to subcutaneous immunotherapy with 100 µg of 

the antigen extract, as quantified by the improvement of clinical appearance and reduction of 

eosinophil cell counts, indicating that MN patches possess more substantial immunological 

efficacy and safety. Thereby, MN patches could be considered as potential candidates for the 

treatment of AD as they can transport antigen straightly into the epidermis and dermis at a lower 

dose, hence reducing the risk of anaphylaxis.  

 

8.4. MN for modulation of inflammation during the wound healing process 

Inflammation displays a powerful role during the wound healing process. In the first hours after 

injury, recruitment of inflammatory cells, and releasing different molecules by them contributes 

to matrix remodeling and keratinocyte migration towards promoting the healing process. After 

this initial response, which is mainly mediated by neutrophils, elimination of inflammation is 

essential to accelerate the healing process [225]. To this end, Jeon et al. developed a hydrogel-

forming double-layered adhesive MN patch comprising of a non-swellable SF-based core (for 

effective tissue fixation without delamination) and a swellable mussel adhesive protein (MAP)-

based shell that was able to improve wound sealing capacity through reduction of inflammatory 

responses [226]. In this system, in-situ rigid base was comprised of the regenerated SF with 

improved water solubility that was able to support effective tissue insertion of the adhesive MN 

patch. The hydrogel-forming adhesive MN patches exhibited good adhesion on wet and dynamic 

biological surfaces via both MAP-derived surface adhesive and swelling-mediated mechanical 

interlocking (Figure 20A). Monitoring time-dependent shape changes of various DL-MN patches 

demonstrated that water absorption of the 20% and 40% DL-MN patches was confined to only 
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the end of tip region while the base region of 80% DL-MN patches began to swell up due to high 

amounts of hydrophilic materials (Figure 20B). The authors reported the 80% DL-MN patch for 

surgical closure owing to detachment of the swollen shell from the core that hampered stable 

interfacial adhesion. A bud-like shaped MN structure was found for the 60% DL-MN patch at a 

maximum swollen state that provided the possibility of physical interlocking with surrounding 

tissues without delamination. In vivo experiments in a full-thickness incision of rat skin showed 

that the strip-type of 60% DL-MN patch showed excellent adhesion liquid absorption ability, 

which in turn resulted in good wound closure at days 4 and 7 compared to non-treatment and 

suture (Figure 20C and 20D). Histological examination with H&E-staining indicated that the 

60% DL-MN patch contributed to wound closure, re-epithelialization, and reducing 

inflammation and inflammatory cells into the wound site, whereas prolonged intense 

inflammation, delayed re-epithelialization, and impaired dermal healing over 21 days was seen 

for non-treatment group (Figure 20E). Masson’s Trichrome staining further confirmed fast 

deposition of produced collagen at the junction site and reducing inflammatory cells at days 4, 7, 

14, and 21 (Figure 20F). The ex vivo experiments demonstrated that hydrogel-forming adhesive 

MN patches had superior wound sealing capacity against luminal leaks (139.7 ± 14.1 mmHg) in 

comparison with suture (151.0 ± 23.3 mmHg).  Jo
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Figure 20. The bioinspired adhesive MN patch for regenerative internal/external surgical closure 

by modulation of inflammation. A) Schematic representation for the proposed working 

mechanisms of a hydrogel-forming double-layered adhesive MN protein patch comprising of a 

non-swellable silk fibroin (SF)-based core (for effective tissue fixation without delamination) 

and a swellable mussel adhesive protein (MAP)-based shell. B) Merged images from 
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fluorescence and bright-field micrographs for investigation of time-dependent shape change of 

various DL-MN patches with different height ratios of the swellable MAP/HA layer after 

incubation in PBS at 0, 1, 5, and 10 min. White dashed circles show radial expansion by water 

absorption, and yellow triangles demonstrate the stiff core layer (scale bar=250 μm). C) 

Photographs of the transparent strip-type 60% DL-MN patch. Scale bar = 2 mm. D) Macroscopic 

photographs for wound healing of full-thickness incisions in rats following after non-treatment, 

suture treatment, and 60% DL-MN patch treatment at 0,4,7,14, and 21 days. E) H&E staining 

and F) Masson’s trichrome staining of skin wounds after non-treatment, suture treatment, and 

60% DL-MN patch treatment. Scabs are indicated as sc. Black arrows show inflammation, and 

black stars indicate defects. Scale bar = 500 μm. Reproduced with permission from ref.[226]; 
Copyright  2019 Elsevier B.V. 
 

 

In another interesting example, Gao et al. engineered an intelligent origami SF MN-structured 

dressing (i-SMD) with a smart drug release system and capability for epidermal sensing and 

wound healing (Figure 21A). The authors used temperature-responsive N-isopropylacrylamide 

(NIPAM) hydrogel and inverse opal (IO) photonic crystals (PCs) to obtain a controllable release 

of VEGF on the i-SMD. In order to improve the mechanical properties of SF membranes, the SF 

solution was mixed with PVA solution. Patterned SF-based MNs were fabricated using the 

micromolding technique. Microfluidic channels and electro circuits were first patterned on the 

same SF MN and then origami to prepare multifunctional integrated i-SMD. In vivo experiments 

showed that general wound closure rates were markedly higher in treated mice with VEGF i-

SMD than i-SMD and control (without treatment) groups (Figure 21B). Additionally, 

immunohistochemistry (IHC) staining showed that the secretion of inflammatory factors 

including IL-6 and TNF-α significantly reduced in VEGF i-SMD group compared to i-SMD and 

control (without treatment) groups (Figure 21C and 21D). 
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Figure 21. Intelligent SF based MNs dressing (i-SMD) for epidermal sensing and wound healing 

through modulation of inflammation. A) Schematic illustration of intelligent, biocompatible, 

stretchable, and highly integrated i-SMD for biochemical sensing and wound healing by 

modulation of inflammation. B) Representative images of wound closure rate in the diabetic 

mice treated with no therapy (control), blank i-SMD, and drug-loaded i-SMD (VEGF i-SMD). 
Scale bar = 1 cm. C) Immunohistochemistry staining of TNF-α and D) IL-6. The scale bar = 

100µm. Reproduced with permission from ref [227]; Copyright 2020, Wiley-VCH.  
 

10. Conclusions and future perspectives  

Although immunotherapy has been proposed as a clinical revolution, it still remains in its 

infancy. Detailed knowledge about its mechanistic intricacies is still not completely available, 

limiting the effective treatment of diseases in a safe, potent, and durable fashion by 

immunoengineering. In addition, the poor biodistribution of many immunotherapies can cause 

toxicity and adverse effects in off-target tissues. To address these challenges, great efforts have 
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been made to design MN transdermal delivery systems to locally deliver immunotherapeutic 

with the highest efficiency and minimal invasiveness. Nevertheless, Concerns regarding the future 

success of MNs for clinical immunotherapy is totally dependent on FDA approval for novel 

biomaterials used in this delivery system for MN fabrication. In addition, future developments 

should take into account some of the current challenges, including the difficulty of precise 

coating of biomolecules on the MNs and insufficient delivery of therapeutic antigens, allergens, 

or immunotherapeutic drugs to the desired site.  

The improvement of the mechanical properties of MNs is another decisive factor for successful 

clinical translation and future commercialization. The mechanical characteristics of MN must 

meet two properties to ensure successful immunotherapy. First, the insertion force should be 

enough to neglect the skin friction force for the insertion of the MNs before puncturing the skin. 

Second, the insertion force must be higher than the skin force in order to perforate the skin and 

create holes in the epidermis/dermis layer. The insertion force strongly depends on thickness, the 

wall angle, and tip radius. Up to now, in vivo performance and efficiency of MN technology for 

immunotherapies have been mainly investigated on small animals, such as mice, rats, and 

rabbits, while the physiology, anatomy, and biomechanics of these animalsʼ skins are different 

from the human’s skin. Future evaluations of MN technology for immunotherapies should be 

implemented on the body of large animals (e.g., dogs and monkeys), on the excised human’s skin 

models, or even human volunteers. However, the skin properties of each person and even of 

various parts of the body are different; thereby additional investigation is required to determine 

the best application areas. Another concern regarding the wide clinical use of MNs is their large-

scale production in sterile conditions, which needs a carefully thought setting. The material type 

for the fabrication of MNs is another substantial issue that needs much attention. Although 
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hollow and solid MNs fabricated by metals and silicon have mainly been applied in the clinical 

trial setup to deliver various immunotherapeutic molecules for immunotherapy, the lack of 

approval for silicon and the possibility of sharp hazardous tip wastes limit their clinical 

applications. Owing to the increasing interest in the design of biocompatible systems, researchers 

have recently focused on polymer science to fabricate biocompatible or dissolvable polymeric 

MNs with minimum side effects. Therefore, it is expected to see a tremendous interest in 

designing biocompatible and dissolvable MN systems in the near future with current advances in 

polymer science. We believe future researches should focus on the scaling up of sterile MNs 

with adequate loading capacity and minimal defects for clinical translation.  
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Table 1. A summary of various materials used into the structure of MNs towards 

immunotherapy, as well as a comparison of their advantages and limitations.  

Category Material Fabrication methods Advantages Limitations Ref. 

 

 

 

 

 

 

 

 

Silicon Wet etch technology - Ability for coating of the 

viable virus in a dry form 

around the shaft of needles 

- Elimination of cold chain 

storage 

 

---- [37] 

 

 

 

 

 

 

 

 

Silicon Wet etch technology - Successful delivery of 

liquid vaccinia virus Ankara 

(MVA) vaccine 

- Eliminating the skin 

inflammatory response 

----- [38] 

Silicon 

MNs 

Silicon Wet etch technology Decreasing the anti-vector 

antibody response 

------ [39] 

 Silicon -Photolithography  

-Thin-film deposition 

- 

Microelectromechanic

al systems (MEMS) 

Easily fabrication using 

existing MEMS technologies 

Easy breaking and  

subsequent creation 

of biohazardous 

waste 

[40] 

 Silicon  

----- 

- Capability of surface 

decoration of  silicon with 

pH-sensitive groups towards 

burst release of antigen 

within 15s 

Suitability for 

delivering only 

ovalbumin (OVA) 

antigen ( no for all 

the antigens) 

[41] 

 Silicon ------ ------ -Lack of FDA 

approval for silicon 

- Requiring 

extensive 

processing and 

clean-room 

facilities for 

fabricating silicon 

MNs 

[42] 

 - Stainless 

steel 

- Titanium 

- Micromachining 

- Laser ablation  

-Photochemical 

etching 

Adequate mechanical 

strength for 

penetration into the skin 

Possibility of 

creating a potential 

biohazardous waste 

[40] 

 Stainless 

steel 

           ---------- Capability for creating the 

nano-patterning on the 

surface of stainless MNs 

Poor coating 

efficiency of 

DNA-based 

immunotherapeutic 

agents owing to 

low hydrophilic 

nature of stainless 

steel 

[43] 

Metal 

MNs 

Stainless 

steel 

Laser cutting Cost-effective and FDA 

approval for stainless MNs 

           ----- [44] 
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 Titanium Lithographic masking 

followed by wet 

etching 

Facile adsorption of 

Vaccine to the titanium 

surface via 

electrostatic/hydrophobic 

interactions due to high 

dielectric constant (ε ~ 114) 

and isoelectric point ( 

3.5–6.7) of titanium oxide 

        ------ [45] 

 Alpha 

calcium 

sulfate 

hemihydrate 

Micromolding process Higher mechanical strength 

and better stability at high 

temperature and humidity 

than most polymeric MNs 

Possibility of 

contamination 

during production 

and risk of 

microbial spoilage 

[46] 

 - β-

Tricalcium 

phosphate 

(Ca3(PO4)2)  

- 

Monocalciu

m phosphate 

monohydrate 

(Ca(H2PO4)2·

H2O) 

- Calcium 

sulfate alpha 

hemihydrates 

(CaSO4·0.5H

2O) 

Micromolding process Capability for controlling 

drug release by changing the 

bulk surface area, porosity 

and resorbability of the 

ceramics 

Low drug loading 

capability 

[47] 

Ceramic 

MNs 

Al2O3 Micromolding process Capability for creating 

nanoporous MNs for both 

delivery of substances, and 

the extraction of compounds 

---- [48] 

 - Alumina 

- Alpha 

calcium 

sulfate 

hemihydrate 

- Micromolding 

process 

- Sintering 

technique 

- Good in vivo resorbability 

(micromolding process) 

- Adjustable porosity 

Non-resorbability 

of sintered ceramic 

MNs 

[49] 

 Alumina - Sintering 

technique 

good mechanical strength in 

comparison with 

monocrystalline silicon 

Poor loading 

efficiency for 

thermo-labile 

medications into 

sintered ceramic 

MNs due to the 

high temperature 

treatment during 

the fabrication 

process 

[50] 

 polyvinylpyr

rolidone 

(PVP) 

Soft lithography Highly water solubility, high 

tensile strength, and FDA 

approval of PVP 

----- [51] 

 PVP Micromolding process  safely clearance of PVP via 

the kidneys within a few 

days 

---- [52] 

 PVP Micromolding process  Low likelihood of RNase 

contamination of PVP 

-Poor solubility of 

mRNA vaccine in 

[53] 
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concentrated PVP 

solutions 

- Inhibitory effect 

of concentrated 

PVP solutions on 

mRNA transfection 

due to steric 

hindrance. 

 PVP In situ micromolding 

process 

Good mechanical strength of 

PVP due to the presence of a 

ring in the chemical 

backbone structure of the 

vinyl pyrrolidone monomer  

 [32] 

dissolvab 

le 

Polymeri 

c MNs 

PVP Micromolding process ----- Possibility for the 

DNA vaccine 

degradation in 

PVP matrices 

[54] 

 PVP/ dextran two-step molding 

process 

the adjuvant effects of PVP 

and dextran 

----- [55] 

 hyaluronan Micromolding process FDA approval and 

biodegradability of 

hyaluronan 

 

 

Possibility for 

insoluble particle 

formation and 

entrapment of 

vaccine antigens 

into them during 

MN preparation 

[56] 

 chitosan Micromolding process - Excellent biodegradability 

- Noncytotoxicity 

- Ability of chitosan for 

improving both humoral and 

cell-mediated immune 

responses 

- creating  an antigen depot 

by the viscous chitosan 

solution  

- Requiring 

supporting arrays 

for insertion owing 

to weak 

mechanical 

strength of 

chitosan 

[57] 

 Gantrez Micromolding process Highly water solubility and  

biodegradability of Gantrez 

---- [58] 

 Trehalose 

and sodium 

carboxymeth

yl cellulose 

(CMC) 

TheraJect's 

microneedle 

technology 

------- The difficulty of  

analysis of the 

samples by single 

radial 

immunodiffusion 

(SRID) with 

increasing the 

viscosity of 

Trehalose and 

sodium 

carboxymethyl 

cellulose 

[59] 

 Trehalose 

and CMC 

 - FDA approval for both 

trehalose and CMC 

- Increasing antigen stability 

by trehalose 

- water-solubility and 

mechanical strength of CMC 

------- [60] 
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 CMC and 

amylopectin 

Micromolding process --- Producing 

deformed 

microneedles with 

weak mechanical 

strength at high 

viscosity of CMC  

[61] 

 Sodium 

Alginate 

Micromold casting 

technique 

- Adjuvant properties of 

sodium alginate 

- Good biocompatibility 

and biodegradability 

- Utilizing  sodium alginate 

as a permeation enhancer 

---- [62] 

 Sodium 

Alginate 

Spin-casting approach ---- Less physical 

robustness than 

biodegradable 

polylactic-co-

glycolic acid MN 

[63] 

 Silk fibroin 

/poly(acryli 

c acid) 

Micromolding process - Good 

Biocompatibility and 

Biodegradability of silk 

fibroin 

- Simple one-step process for 

loading antigens in silk 

protein matrices 

- Facile stabilization of 

immunotherapeutic agents 

and vaccines in silk at room 

temperature for more than 

two months 

- Rapid dissolution of PPA 

in the skin 

- Sustained vaccine release 

from silk protein matrices 

(over 1–2 weeks) 

- The high 

brittleness of silk 

fibroin 

[33] 

 poly(lactid 

e-

coglycolide) 

(PLGA)/PP 

A 

Micromolding process - Rapid dissolution of 

PPA in the skin 

- Adjustable sustained 

release of encapsulated 

vaccines based on the PLGA 

molecular weight 

- Complexity of 

the vaccine loading 

process in PLGA 

polymer 

[64] 

 Carboxyme 

thylcellulos 

e and 

trehalose as 

coating 

Dip-coating - Improving antigen stability 

during drying by trehalose 

disaccharide 

- Improving the retention of 

Hemagglutination activity of 

influenza vaccine after 

drying by trehalose 

Loss of 

Hemagglutination 

(HA) activity at 

high concentrations 

of CMC (1wt%) 

[24] 

 Carboxyme 

thylcellulos 

e and 

trehalose as 

coating 

Dip-coating --- Increasing 

trehalose 

crystallization and 

vaccine separation 

from the trehalose 

crystal matrix 

during 

crystallization 

result in 

[65] 
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denaturation of 

antigenic proteins 

Coated 

MNs 

Carboxyme 

thylcellulos 

e and 

trehalose as 

coating 

Dip-coating Reducing virus aggregation 

at 3% concentration of 

trehalose 

Reduced delivery 

efficiency of the 

inactivated virus at 

a high 

concentration of 

trehalose 

[66] 

 Poly(o-

nitrobenzyl 

- 

methacrylat 

e-

comethylmet

hacrylat 

e-copoly( 

ethyle 

ne-glycol)- 

methacrylat 

e) (PNMP)/ 

polyelectro 

lyte 

multilayers 

as coating 

Layer by layer 

assembly 

 

- Ability for the preparation 

of bioresponsive MNs due to 

photo-sensitive and pH-

responsive properties of 

PNMP polymer 

- Delivery of antigens in a 

sustained manner after 

photoswitching PNMP 

polymer through ultraviolet 

irradiation (254 nm, 

2.25 mW cm
−2

) 

for 15 min during coating 

The need for 

reformulation of 

vaccine 

components for 

their coating 

[67] 
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Highlights 

 Microneedles are promising devices for painless drug delivery with high bioavailability. 

 Transdermal microneedle can improve the biological effect of drugs through adjustable drug 

release. 

 Facile fabrication and versatility have caused high attraction towards microneedle-based drug 

delivery. 

 Microneedles are suggested for immunotherapy due to the high abundance of immune cells 

under the skin. 
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