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Abstract—We contribute MIDAS as a novel sensing solution
for characterizing everyday objects using thermal dissipation.
MIDAS takes advantage of the fact that anytime a person touches
an object, it results in heat transfer. By capturing and modeling
the dissipation of the transferred heat, e.g., through the decrease
in the captured thermal radiation, MIDAS can characterize the
object and determine its material. We validate MIDAS through
extensive empirical benchmarks and demonstrate that MIDAS
offers an innovative sensing modality that can recognize a wide
range of materials — with up to 83% accuracy — and generalize
to variations in the people interacting with objects.

Index Terms—thermal imaging, mobile computing, pervasive
computing, IoT, material sensing
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I. INTRODUCTION

Every day humans touch numerous objects, ranging from
their personal possessions to home appliances, food, clothing,
and many other objects [1]. Capturing information about
the objects people interact with has the potential to offer
rich insights into human behaviour [2], ranging from simple
everyday activity monitoring to more complex applications,
such as dietary monitoring [3] or detection of household
practices [4]. Unfortunately, capturing such information is
fraught with difficulty as current solutions suffer from some
significant limitations. Specifically, contact-based approaches,
such as RFID, either require instrumenting all objects or
keeping the sensing device in close contact with the object
for a sufficiently long period [S5], [6]. Non-contact based
solutions, such as image-based object recognition, in turn,
have limited discriminatory power and are vulnerable to the
environment where they are operated [7]. For example, image-
based recognition is vulnerable to changes in illumination,
camera angle, and picture resolution [8].

In this paper, we develop MIDAS as a novel sensing
solution for characterizing everyday objects using the thermal
dissipation resulting from human touch. MIDAS exploits the

fact that anytime a person touches an object, it results in heat
transfer. Over time, the transferred heat dissipates from the
object as the object attempts to reach thermal equilibrium with
the surrounding environment. The speed of this dissipation
depends on the material characteristics of the object. MIDAS
captures the heat transfer and the ensuing dissipation, and uses
these to model and characterize the materials of the objects that
the user interacts with. MIDAS captures the changes in heat
using a commercial-off-the-shelf thermal camera, which helps
us to overcome the key limitations of previous techniques.
Specifically, thermal cameras can operate without requiring
contact and being robust to illumination conditions and the
overall capture context. Thermal imaging is also increasingly
feasible thanks to affordable off-the-shelf thermal cameras.

We validate MIDAS through rigorous experiments that con-
sider 14 different everyday objects that cover the most com-
mon materials used in manufactured products. As part of the
experiments, we also demonstrate that MIDAS generalizes to
human temperature variations by considering the robustness of
thermal dissipation characteristics of objects with 18 different
individuals. Our results indicate that human-emitted radiation
can be used to characterize different materials and that this
characterization is robust against variations in individuals and
the way they interact with objects. MIDAS can determine the
correct material with up to 83% accuracy, a 16% improvement
on a computer vision baseline that uses deep learning. MIDAS
offers a novel sensing modality that is highly useful for
characterizing everyday objects, enabling a broad range of
innovative applications.

II. FEASIBILITY ASSESSMENT

We first conduct two preliminary studies to demonstrate that
heat transfer from humans can be used to characterize different
materials and household objects. We capture thermal radiation
using an off-the-shelf smartphone (CAT S60) and validate the
measurements using a thermometer scanner that serves as a
reference instrument. In the following, all statistically signifi-
cant differences were separately validated using measurements
from the reference device.



A. Testbed

We capture thermal footprints using two devices: a handheld
thermal imaging scanner (FLIR TG267) and a Caterpillar
smartphone (CAT S60) with an integrated FLIR thermal
imaging. In all experiments, we place the smartphone on
a tripod at a distance of 30cm to 35cm from the object.
We performed manual calibration on the camera after it had
attained thermal equilibrium with the environment — room
temperature of 22°C to 23.5°C. The video was recorded
with the CAT S60, while we took thermal reference photos
with the TG267 scanner. The room’s ambient temperature
was measured using a Netatmo weather station!. Dissipation
times were estimated automatically from the thermal video
and validated by comparing against a ground truth obtained
from a manual inspection of the video with a stopwatch.

B. Plastic thermal footprint dissipation

Experimental Design: We first measure the dissipation time
of a thermal footprint in different plastic materials and cor-
relate the captured footprint with the emissivity coefficient of
the material. In this experiment, we focus solely on plastics to
ensure the emissivity of the materials is known. In subsequent
sections, we demonstrate that our solution generalizes to other
materials. We consider the most common plastics that can be
found in everyday objects: LDPE (Low Density Polyethylene),
HDPE (High Density Polyethylene), PP (Polypropylene), PS
(Polystyrene), and PVC (Polyvinyl chloride). The material of
an object is specified by its Resin Identification Code (RIC),
and all materials have well known emissivity coefficients
(€=0.90 - 0.97). The tested plastic samples have identical shape
and size and have been produced by an identical manufacturing
process®. This ensures the samples’ differences result from
inherent material properties and are not an artifact of any
external differences (e.g., shape or stiffness). In the experi-
ments, we first place the plastic sample inside a fridge with a
constant temperature of 5 °C, to obtain a baseline temperature
for comparison. To measure different temperatures, we use a
constant heat source (lamp bulb of 60 W) to heat the plastic
samples. The lamp is placed at a fixed distance of 10cm
from the samples to avoid burn damage while ensuring they
are exposed to sufficient amounts of thermal radiation. We
consider different heating periods (1, 2, 3 and 4 minutes) to
correspond to differing initial temperatures and measure the
dissipation of the thermal footprint. During the experiments,
ambient temperature oscillated from 22 °C to 24 °C.

Results: The results in Figure 2a show that the thermal foot-
print dissipation varies across the materials. The (Spearman)
correlation between dissipation time and emissivity coefficient
of the materials was found statistically significant (p = 0.66,
p< .05), indicating that the dissipation characteristics indeed
provide information about the material of the object.

Uhttps://www.netatmo.com
Zhttps://www.materialsampleshop.com/products/plastics-sample-set

C. Other thermal footprint dissipations

Testbed: We next demonstrate that the findings of the previous
section generalize to other objects and materials by measuring
the dissipation time of a thermal footprint on different house-
hold objects. We consider common household objects, shown
in Figure 1, and include rubber, plastics, glass, ceramic, and
metal. The considered objects include: a beer can (A), ceramic
cup (B), takeaway box (C), plastic bottle (D), glass bottle (E),
coffee cup (F), plastic cup (G), cigarette butt (H), glass jar (I),
milk pack (J), aluminum aerosol can (K), rubber glove (L),
steel spoon (M) and a face mask (N). Similar to our previous
experiment, we analyze the thermal dissipation time after the
objects are held for 1,2,3, and 4 min. The average body
temperature of the human subject holding the object ranged
from 35°C to 36 °C, and the ambient temperature was from
22°C to 24°C.

Results: The results in Figure 2 are in line with the results for
the plastic objects and show that the dissipation times differ
across the objects and materials. Friedman test using object
materials as experimental condition showed the differences of
the materials to be statistically significant (x?(2) = 48.83, p
< .05, W = 0.93), demonstrating that thermal radiation can
characterize different object materials.

III. MIDAS PIPELINE

The results of the previous section demonstrated that dis-
sipation of thermal footprints provides information that can
be used to characterize different objects and identify their
materials. We next briefly describe the sensing pipeline used
by MIDAS, our sensing solution for characterizing everyday
objects. MIDAS takes a sequence of thermal images taken
from the object’s surface as input and returns an estimate of
the most likely material of that object.

Preprocessing: Commercial off-the-shelf thermal cameras are
commonly based on uncooled FLIR (forward looking infrared)
technology, and they suffer from inaccuracies resulting from
the heating of the camera [9]. Other factors to influence mea-
surement quality include misalignment between thermal and
RGB pictures, internal recalibration of the camera, and low
resolution. To mitigate these effects, we preprocess the thermal
camera data by examining the background of consecutive
images and removing images with significant dissimilarities.
We also apply denoising on the images and normalize the
thermal values to a consistent scale (between 0 and 255),
which allows us to manipulate the images in gray scale.
Dissipation rate: We estimate the dissipation rate of the
thermal footprint from the normalized sequence of pictures as
the function of area reduction of the thermal footprint given by
the equation: RA = (A; — A;)/A;, where RA is the reduction
area percentage, A; is the initial area, and A; is the reduced
target area [10] (see Figure 3). The reduction area between
consecutive images is used to create vectors that model the
dissipation time of thermal footprints for each object.
Implementation: Vectors (same length) with dissipation time
are used as feature vectors and the type of object as label class.



Fig. 1: Selected waste materials for preliminary experiments. A (Beer Can), B (Ceramic Cup), C (Takeaway Box), D (Plastic
bottle), E (Glass Bottle), F (Coffee Cup), G (Plastic Cup), H(Cigarette Butt), I (Glass Jar), J (Milk pack), K (Aerosol Can), L.

(Rubber glove), M (Metal spoon), N (Face mask).
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Fig. 2: Dissipation time of thermal footprints in different plastic materials and waste material using two different devices: (a)
Grouped by RIC code, (b) Thermometer scanner FLIR TG267 (baseline), and (c) Smartphone CAT s60.

We then construct classification models using common ML
techniques: Random Forests (RF), Support Vector Machines
(SVM), and Multi-Layer Perceptron Classifier (MLPC); see
Section V-C for comparison of these techniques.

IV. ROBUSTNESS OF THERMAL DISSIPATION FOOTPRINTS

The experiments shown in Sec. II demonstrated that the
dissipation characteristics of thermal footprints vary across
different materials. Human body temperature varies across
individuals and even within the same individual at different
times of day [11], which results in variations in the initial
thermal footprints. Ensuring MIDAS can operate robustly
against these variations is essential for ensuring the usefulness
of MIDAS in practical use. In this section, we describe
experiments where 18 different individuals touch everyday
objects, and we use the resulting thermal footprints and their
dissipation to characterize the materials of the objects. The
measurement setup is described in Section II-A.

A. Experimental Setup

Experiment Design: We conduct a 3 x 3 within-subject design
with holding pattern type and object type as independent
variables. Both variables have three levels: Fixed-hold (FH),
Natural-hold (NH) and Quick-hold (QH) for the former and
Plastic bottle (BOTTLE), Cardboard cup (CUP) and Cigarette
butt (CIGAR) for the latter. To eliminate order effects, whilst
keeping the number of combinations manageable, holding pat-
tern type was fully counterbalanced, whereas object type was
counterbalanced following a Latin Square design, resulting in
nine experimental conditions: (1) BOTTLE-FH, (2) CUP-FH,
(3) CIGAR-FH; (4) BOTTLE-NH, (5) CUP-NH, (6) CIGAR-
NH; (7) BOTTLE-QH, (8) CUP-QH, and (9) CIGAR-QH.
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Fig. 3: Processing pipeline of material classification based on
dissipation time of thermal footprints.

In the Fixed-hold condition, objects were grabbed and held
from a specific static position for one minute. In the Natural-
hold condition, objects were held freely for one minute,
simulating usual everyday interactions with the object. For
instance, a participant holds the empty bottle for one minute
while looking for a trash bin. In the Quick-hold condition,
objects were held by participants freely for a 10s span.

Participants: We recruited a total of N=18 participants
(Males=9, Females=9) for the user study. Participants were
students, admin staff and professionals from different fields,
and nationalities, with little or no knowledge about thermal
imaging. Their average age was 28 & 7.8 years.

Task: Participants were asked to hold objects and to simulate
normal interactions with them. To produce data for natural
interaction, we also asked the participants to contextualize a
normal interaction context. When interacting with the BOT-
TLE, participants were asked to simulate drinking from the
bottle and then looking for a trash bin to dispose an empty



bottle. Similarly, participants were asked to stand while en-
gaging in a short conversation with an acquaintance/friend for
the CUP. Finally, for the CIGAR condition, participants were
asked to simulate taking a cigarette from a cigarette box and
then holding the cigarette from the filter while asking for a
light. The cigarette was not lighted during the experiment.
Procedure: Before starting the experiment, each participant
was invited to relax on a comfortable chair for 10 minutes
to enable the body temperature to acclimatize to the room’s
ambient temperature, which oscillated around 22 °C to 23.5°C
throughout the experiments. During this period, participants
received a brief explanation of the study and signed an
informed consent form, following local IRB regulations. Once
the participant was ready to start the experiment, his/her body
temperature was measured from the forehead using a clini-
cally certified contactless optical thermometer (DR CHECK
FC500). The nine experimental conditions were presented to
participants. In each condition, the object was first placed
inside an empty fridge with a temperature of 5°C for one
minute. This procedure rules out residual thermal radiation in
the material between experiments and provides the material
with a baseline temperature to make our results comparable
across the participants.

Kitchen tongs were used to take the object from the fridge
to avoid heat transfer from humans to objects. Next, the
object was placed on a table for one minute to adapt it
to the ambient temperature. After that, participants carried
out the corresponding experimental condition. Once finished,
participants placed the object on a fixed marker drawn on a
table with a black background and surface. The researcher
conducting the study then used the CAT S60 to record video
footage of the dissipation of the object’s thermal footprint. In
parallel, a thermometer scanner took thermal photos to serve
as a reference baseline. A black background helps to obtain
clean video footage of thermal footprint without any thermal
influence from objects in the surrounding environment. At
the end of the experiment, we measured the participant’s
temperature from palm and finger to the objects using the
thermal imaging scanner. The evaluation took place in one
university room across two weeks in time slots between 11:00
and to 07:00 pm. Since human temperature varies during the
day [11], we considered only those times as they coincide with
the working hours of the participants. For each participant, the
overall experiment lasted 40 min to 45 min.

B. Baselines

As part of the experiments, we compare the recognition
performance of MIDAS to two state-of-the-art techniques:
deep learning based automated computer vision [12], [13] and
optical sensing [14].

Computer vision: We train a state-of-the-art Convolutional
Neural Network (CNN) model using the publicly available
TrashNet dataset [15]. We focus exclusively on the plastic ma-
terials category, which contains 626 images of plastic objects
for training the deep learning model. Plastics are malleable,
so their accurate recognition is very sensitive to changes. The

dataset has images where the individual pieces are shown
against a white background. As such images do not match
realistic recognition settings, we supplement the dataset with
an additional 767 images from the Japan Agency for Marine
Earth Science and Technology (JAMSTEC) Deep-sea Debris
Database dataset. We annotated the collected images manually
by drawing a rectangle box around the object material in
images. We labeled the TrashNet plastic items as "trash" and
the JAMSTEC plastic items as "plastic". Both datasets were
augmented by adding noise, hue, blue, horizontal flip, and
vertical flip modifications to each original image, resulting in
a total of 6985 images for model training input. We created
and trained the PlasticNet model using Google Collab server
GPU, with 100k iterations and a batch size of 12, running
TensorFlow Lite 1.15. We used ssd_mobilenetv2_oidv4 for the
base training model.

Light reflectivity: As our second baseline, we consider
reflectivity analysis of materials [14] using a photoresistor
connected to the analog input pin of an Arduino MEGA ADK.
The photoresistor captures light changes based on its resistance
exposure to the light intensity of the reflected material. As a
light source, we rely on a red laser diode (wavelength 650 nm).
The object was located 2cm away from the light source,
depicting a practical usage of the sensor in transport belts
and smart bins [12]. We took measurements with sensor for
different materials (selection is described in Section II), for
one minute from two different random places in the object.

V. RESULTS

We next demonstrate that MIDAS can characterize different
object materials accurately using the measurements from the
controlled user evaluation described in the previous section.
We consider robustness against variations in the way humans
interact with objects and variations in individuals, and the
overall classification performance for different materials.

A. Differences in Thermal Footprints

We first examine differences in thermal transfer from hu-
mans and the ensuing dissipation in the different objects. We
separately consider the impact of the object and the hold type
on thermal transfer.

The dissipation times of the three objects under the different
hold type conditions are shown in Figure 4. From the figure,
we can observe the differences in objects to be consistently
different regardless of the hold type. Friedman Test using
dissipation time and objects as experimental conditions shows
the differences in objects to be significant for all of the three
hold-type conditions: Fixed-hold (x%(2) = 20.33, p < .05,
W = 0.56), Natural-hold (x?(2) = 30.33,p < .05, W = 0.84)
and Quick-hold (x?(2) = 25.04, p < .05, W = 0.64).
Pairwise post hoc comparisons using Wilcoxon test (with Bon-
ferroni correction for multiple comparisons) confirmed that the
differences in dissipation times are statistically significant for
all object pairs across the three hold types.

We next assess how the hold type affects the thermal
footprints. Friedman test using dissipation time of each object



and the three experimental conditions shows hold type to result
in significant differences for the plastic bottle (x?(2) = 12.44,
p < .05, W=0.34) and the cardboard cup (x?(2) = 16.48,
p < .05, W=0.45), but not for the cigarette butt. Post hoc
comparisons indicate the thermal footprints for the Quick-
hold pattern to significantly differ from those in the Fixed-
and Natural- hold conditions. Results imply that differences in
thermal footprints contain significant variation across objects
regardless of how users touch or interact with them. Still, the
dissipation times are impacted by the time the user holds the
item. This is expected, as the time the user touches the object
affects the extent of heat that can transfer and thus controls
dissipation speed.

We also separately analyzed whether differences in body
temperature across different body parts can affect the thermal
footprint by comparing the thermometer results across the
three measurement locations (forehead, hand palm, finger
tips). Friedman test using part of body as experimental condi-
tions showed significant differences for temperature (y?(2) =
29.66, p < .05, W = 0.82). Posthoc comparisons (Dunn-
Bonferroni) verified that the differences were statistically
significant (p < .01) between forehead and hand-palm and
between forehead and finger-tips. The average temperature
for the different parts of body were: forehead 36.33°C,
hand-palm 30.16 °C and finger-tips 30.87 °C. These results
show that fingers and hand palm generally induce similar
heat transfer, further validating the robustness of the thermal
footprints against the way people interact with the objects. The
difference to forehead temperature, in turn, suggests that the
hand palm and fingertips react to ambient temperature instead
of correlating with the internal body temperature - as is the
case for the forehead measurements. We note that the higher
sensitivity of finger tips and hand palm also means that it can
be potentially used to extract insights about human activity.
For example, interactions with a smartphone can result in heat
caused by battery temperature to transfer into the hand, and
the contents of a hot drink can similarly affect the temperature.

Overall, the results indicate that human touch transfers a
sufficient amount of heat, making it possible to characterize
equipment based on touch without resorting to specialized
technology. However, the results show that the dissipation
times are affected by the time the user interacts with the
objects — and other factors as will be shown in the next
subsection — implying that relative differences in dissipation
characteristics should be used instead of the exact dissipation
times for characterizing materials.

B. Other factors that influence thermal dissipation

We thus far showed that the characterization of object
materials with thermal radiation depends on exposure time,
but not on the location where the object is being touched at.
In this section, we investigate other factors that influence the
transfer of thermal radiation from the human body to objects.

Gender and temperature: Body temperature generally influ-
ences thermal radiation transferred to objects. We next analyze

whether the gender of the participants affects thermal trans-
fer, i.e., whether there are significant differences in thermal
transfer between female and male participants. We separately
assessed effects for the hand palm and finger tips. Kruskal-
Wallis tests, using gender and part of the body as experimental
conditions, show that there are significant differences in ther-
mal transfer only for finger tips (x?(2) = 5.08, p < .05). This
is most likely the result of differences in the size of the contact
area with males typically having larger fingertip size [16].

When using gender and objects as experimental conditions,
Kruskal-Wallis tests show there to be significant differences
in the dissipation time for all three objects: cigarette butt
(x%(2) = 3.94, p < .05), plastic bottle (x2(2) = 12.17, p
< .05) and cardboard cup (x?(2) = 7.75, p < .05). These
results indicate that the thermal footprint’s dissipation time
depends on temperature and that it is possible to identify
whether a female or male individual has touched the object.
While this result does not change the fact that objects can be
characterized with thermal radiation, it is essential to highlight
that thermal radiation can disclose additional information
about the humans interacting with the objects. For example,
it could be possible to use thermal footprints to compare
household waste sorting practices between genders.

External temperature of ambient environment: Surround-
ing temperature of the object directly influences the dissipation
time of the thermal footprint. We quantity the influence of this
factor through additional small scale experiments. First, the
BOTTLE was held by a human hand for different periods
at an ambient temperature of 22°C to 23.5°C. Next, the
BOTTLE was placed inside a colder environment (fridge
with a temperature of 5°C). We then measured the dissi-
pation time of the thermal footprint when changing from
ambient to colder environment using both the CAT S60 and
the thermometer scanner. Figure 5 shows the results. We
also include the thermal footprint’s dissipation time in the
ambient environment for comparison purposes (baseline). We
notice the total dissipation time of the thermal footprint is
halved when changing to a colder environment. Still, overall
the differences in change patterns remain consistent for the
different objects. This suggests that the environment affects
the fingerprints. Note that the magnitude of this change is
proportional to heat difference and impacts all objects equally.
Hence, incorporating the ambient temperature in the thermal
dissipation footprints is sufficient to overcome potential issues
from differing temperatures.

Internal temperature absorbed from contents: Besides the
ambient temperature of the surrounding environment, objects
can also be influenced by the thermal radiation resulting from
the contents of the object. For example, a cardboard cup can
be filled with a hot or a cold drink. To investigate this further,
we fill the BOTTLE with water with a temperature of 21.2°C
to 21.5°C. Before the experiment, we place the BOTTLE
inside a fridge (5 °C) to eliminate thermal radiation carryover
effects between experiments. We then compare the dissipation
times of an empty and filled bottle in ambient temperature
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(22°C to 23.5°C). Figure 5 shows the results. We observe
that the internal radiation impacts the thermal footprint of the
BOTTLE. This is relevant to identify end-products that have
not been fully consumed. In practice, such cases should be
modeled as a separate (mixed) object to ensure the model can
distinguish the pure material from those cases where there
are no contents inside the object. Compared with the thermal
footprint of the empty BOTTLE, we can observe that the
thermal footprint of the filled water BOTTLE dissipates faster
as a result of the larger difference with the environment.

Distance between object and thermal camera: In the exper-
iments thus far, the distance between the thermal camera and
the objects has been fixed at 30 cm to 35cm (baseline). We
next analyze the effect of longer distances by considering three
additional distances: 70 cm (distance-1), 105cm (distance-
2) and 210cm (distance-3). We focus exclusively on the
BOTTLE with a Fixed-hold setup of one minute. At 70 cm
distance, the dissipation time does not change significantly
(average time = 1.13 min) for the CAT S60. At longer
distances, we observed higher variations in the dissipation
time with the CAT S60. At 105 cm distance the average time
was 0.76 minutes and at 210 cm the average time was 0.26
minutes. The resolution of the thermal camera in the CAT S60
is 80 x 60, which seems to be sufficient for up to a meter. The
thermometer scanner has a higher resolution 160 x 120, but a
slower frame rate (6.67 Hz vs. 8 Hz). For a 210 cm distance,
the thermometer fails to observe a proper thermal footprint.
This suggests that a higher resolution is not guaranteed to
extend the operational range of MIDAS as also the frame rate
needs to be considered.

Temperature sensitivity: We next analyze the sensitivity of
the dissipation times to slight variations in temperature. To
accomplish this, we further analyze the BOTTLE material in
the fixed-hold condition, as above. We use a JANOELI18S
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incubator with adjustable temperature to achieve controlled
changes in the temperature. We put the object inside the
incubator at a constant temperature for 15 min to ensure that
the entire object has exactly the same temperature. We expose
the material to temperatures ranging from 36°C to 39 °C,
corresponding to normal and elevated temperature levels in
a human. After the object was heated up, it was transferred to
the testbed that was used to record footage. We then proceed
to measure the dissipation time of the thermal footprint. The
room temperature that the object had to acclimatize ranges
from 23 °C to 23.5 °C. The dissipation times for the different
temperatures were: 3.33 min for 36 °C, 3.73 min for 37 °C,
4.23 min for 38 °C, and 4.34 min for 39 °C respectively. The
dissipation time is expected to be a function of the temperature
difference between the object and the environment, and our
results confirm that these subtle temperature differences can
be captured robustly using a commercial-off-the-shelf thermal
camera. While accurate human temperature is not possible to
estimate, we envision that our approach can be used to detect
abnormalities in human temperatures. For instance, instead of
monitoring the face of people with thermal cameras at an
airport, it could be possible to detect abnormal temperatures
by monitoring the tangible objects that people touch while
passing a security check.

C. Dissipation time classification performance

We next demonstrate that our approach can support the
coarse-grained classification of object materials based on the
dissipation time of thermal footprints — and other contextual
factors. As described in Section III, we considered three
classification techniques: Random Forest (RF), Support Vector
Machine (SVM), and Multi-Layer Perceptron (MLP). The
results of the classification experiments are shown in Table I.
When only the thermal footprint is available, the highest
classification accuracy for material detection is approximately
83%. Incorporating information about the hold pattern type
does not improve the results, suggesting that the way people
grasp the materials does not impact performance. In contrast,
when having information about whether the person is male or
female, we can observe that the accuracy to predict materials
improves up to 86%. Similarly, when attempting to predict
whether the user is male/female, we can observe that dissi-
pation time and material information provide a high accuracy
estimation of around 78%.



TABLE I: Material classification accuracy (%) in different
experimental conditions. Model data — Predicted. Classifi-
cation Method: Random Forest (RF), Support Vector Machine
(SVM), Multi-layer Perceptron (MLPC).

Test RF SVM MLPC  Average
Predicting Material (M)
(Vector) —M 90.9 77.3 81.8 83.3
(Vector, Context)—M 90.9 77.3 81.8 83.3
(Vector, Gender)—M 90.9 86.4 81.8 86.4
(Vector, Context, Gender)—M  86.4 81.8 81.8 83.3
Average 89.8 807 81.8 84.1
Predicting Context, Gender
(Material, Vector)—Context 77.3 81.8 72.7 77.3
(Material, Vector)—Gender 77.3 77.3 81.8 78.8
Average 77.3 79.6 77.3 78.1
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Fig. 6: Baselines, a) Trained model PlasticNet, discriminating
plastics against other object materials, b) Light reflectivity
values of different materials measured with a photo-resistor.

D. Comparison with other approaches

Finally, we compare MIDAS against the two baselines:
computer vision and optical sensing. We test computer vision
using 31 images depicting real tossed plastic objects [17].
In total, 33 separate plastic items were present in the 31
images. The deep learning model managed to identify 23 of
the 33 items (69.7% in accuracy). Figure 6 highlights the
main limitation of the model, being unable to identify mul-
tiple objects simultaneously and objects whose shape changes
drastically. As the vision-based approach does not extract any
internal characteristics of the objects, the only way to use
it for material recognition is to map specific item types to
materials (e.g., drink bottles are typically made of PET). This
approach works reasonably when the objects are sufficiently
distinctive but fails in everyday use cases where the shape
of the objects has changed, e.g., tossed objects often have
lost their original shape, and other visual characteristics may
similarly have undergone significant changes.

Figure 6b shows the results for the second baseline, light
reflectivity. The low variation in reflectivity values indicates
that light can accurately characterize different materials. How-
ever, we also observe that different parts of the same material
can be characterized very differently, e.g., Cardboard Cup-1
and Cardboard Cup-2. This is because objects comprise of
different materials and colors, which can affect reflectance.
Another limitation of this approach is the need for the sensors
to contact the material to classify it accurately.

VI. DISCUSSION

Human temperature: Human temperature changes in cycles,
being at its highest during hours of activity (day) and lowest
during sleep (night) [11]. We demonstrate that interactions
with objects can be used to characterize materials. The best
results are obtained when the body temperature is stable, but
the relative differences in thermal footprints are consistent
across variations in body temperature. Conversely, interactions
with an object of known material and in a stable environment
can be used to detect relative differences in body temperature.
Room for improvement: Adapting our approach to con-
tinuous monitoring requires accurate and noise-free thermal
images, e.g., using calibration [9]. Not all materials can be
characterized using our solution as thermal cameras have
different emissivity ranges and some materials may reflect
too much - or too little - thermal radiation. These materials
are usually used to preserve user’s privacy, e.g., ATM pin
codes [18]. While outside the scope of our present work, there
is also room for developing application areas, e.g., validating
temperature differences with patients as part of clinical studies.
Other material properties: Dissipation time of thermal foot-
print gives insights about material types and correlates with
emissivity. Thermal imaging could be used to potentially infer
other material properties, such as thickness and elasticity. Po-
tential use cases include detecting the pollutant type of marine
plastics [19] and monitoring the decay in organic materials
using differences in thermal dissipation characteristics.
Robots and autonomous devices: Thermal radiation analysis
of objects touched by humans can be used to inform and train
different robots and autonomous devices about the material
properties of objects. New sensing and interaction modalities
can also be envisioned as part of robotic systems, e.g., incor-
porating heat sensation to detect the material of an object and
to enable autonomous devices to adjust their operations with
objects in the surrounding environment [20].

Augmented reality systems: Augmented reality systems that
mix the real and virtual worlds can benefit from thermal
radiation monitoring. By piggybacking the human-touch on
objects, it is possible to recognize the materials of objects
further. These objects are mapped to the virtual world by
considering their inherent natural material properties, such as
wood, concrete, glass, and plastic.

VII. RELATED WORK

Thermal imaging: The usage of thermal imaging has been
studied in different domains and applications with examples
ranging from monitoring the manufacturing process of smart-
phone hardware components [21] to medical analysis [22],
[23]. Other examples include facial recognition for bio-metric
authentication [24], cognitive analysis [25], gestures [26], [27],
and energy modeling of IoT devices [28]. Our work extends
thermal imaging to material classification.

Material sensing: Materials have different characteristics dif-
ferent properties that can be exploited to categorize them. The
most common material sensing approach is to rely on different



parts of the light spectrum and measure either reflection or ab-
sorption at different frequencies. Examples range from the use
of green light sensing to detect plastic waste [29] to the use of
near-infrared sensing to facilitate medicine adherence [30] and
the use of hyperspectral imaging for estimating sugar content
in drinks [31]. Also, deep learning approaches for detecting
different material types from reflection patterns at different
wavelengths have been proposed [32]. Our work extends these
by using thermal radiation in the infrared spectrum to estimate
internal characteristics of materials through heat dissipation.
Sensorless sensing: Wireless signals can also be used to
identify properties in materials. Examples include the use of
variations in WiFi signal propagation characteristics to identify
liquids [33], and the use of surface tension to characterize
liquids [34], [35]. These methods generally require either
close contact with the material or a transmitter - receiver pair
to be placed on opposite sides of the material. Our work
offers a non-contact technique for material characterisation
that piggybacks thermal radiation generated from humans.

VIII. SUMMARY AND CONCLUSIONS

We developed MIDAS as an innovative sensing solution
for characterizing and recognizing everyday objects from the
dissipation of residual thermal energy resulting from human
touch. MIDAS uses thermal imaging to monitor thermal en-
ergy changes over time and models these changes to infer and
characterize the material type of an object. Through exten-
sive empirical benchmarks, we demonstrated that changes in
thermal footprints are robust to variations in the way people
interact with objects and the people themselves. MIDAS
recognizes different material with up to 83% accuracy using
only the dissipation of thermal footprints. Our solution offers
an innovative sensing solution for classifying materials and
taking advantage of human interactions with everyday objects.
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