
State of the Practice in Application
Programming Interfaces (APIs): A Case Study

Mikko Raatikainen1[0000−0002−2410−0722], Elina Kettunen1, Ari Salonen2,
Marko Komssi3, Tommi Mikkonen1[0000−0002−8540−9918] and Timo

Lehtonen4[0000−0001−8833−1725]

1 University of Helsinki, Helsinki, Finland
first.last@helsinki.fi

2 Digia Plc, Turku, Finland
ari.salonen@digia.com

3 F-Secure Plc, Helsinki, Finland
marko.komssi@f-secure.com

4 Solita Ltd, Tampere, Finland
timo.lehtonen@solita.fi

Abstract. Application Programming Interfaces (APIs) have become
prevalent in today’s software systems and services. APIs are basically
a technical means to realize the co-operation between software systems
or services. While there are several guidelines for API development, the
actually applied practices and challenges are less clear. To better under-
stand the state of the practice of API development and management in
the industry, we conducted a descriptive case study in four Finnish soft-
ware companies: two consultancy companies developing software for their
customers, and two companies developing their software products. As a
result, we identified five different usage scenarios for APIs and emphasize
that diversity of usage should be taken into account more explicitly espe-
cially in research. API development and technical management are well
supported by the existing tools and technologies especially available from
the cloud technology. This leaves as the main challenge the selection of
the right technology from the existing technology stack. Documentation
and usability are practical issues to be considered and often less rigor-
ously addressed. However, understanding what kind of API management
model to apply for the business context appears as the major challenge.
We also suggest considering APIs more clearly a separate concern in the
product management with specific practices, such as API roadmapping.

Keywords: Software engineering · Application programming interface
· API · API management · API management · Case study

1 Introduction

Application Programming Interfaces (APIs) have become prevalent in today’s
software systems and services. APIs play an integral role in enabling software
systems to interact with each other and in allowing applications to be built on the



2 M. Raatikainen et al.

data or functionality of other systems. In fact, companies have been opening their
products to third-party developers through various APIs for several years [4].

Despite being a central concept, the definitions for API are quite broad and
diverse [11]. For instance, on one hand, the term API includes libraries, frame-
works, and software development kits (SDKs). We refer these traditional APIs
as static APIs. On the other hand, APIs are accessible over a network, such as
SOAP or REST-based APIs from another component, system, or service. We
refer to to these as web APIs. Diversity exists also in the goals of using APIs.
Rauf et al. [24] see three main tasks for APIs. The first task is to enable software
reuse via defining the interfaces of software components. The second task is to
provide interfaces to software services that are available over a network. The
third task is to enable the publication of open data through APIs.

Various API development and management guidelines have been summarized
in textbooks (e.g., in [8]). In addition, many specific concerns of APIs have been
addressed in research, such as API learnability [25], evolution [13], and usability
evaluation [24].

However, a holistic overview of the API development and management state
of the practice has not been presented. Thus, our goal in this study was to
capture an overview of the API development and management in an industrial
context from the API owners’ and developers’ view rather than API users’ or
client developers’ point of view. We limit the investigation broadly to technical
concerns so that, e.g., API business or monetizing models are not our primary
concerns. The research problem we are addressing is:

– How are APIs technically developed and managed in the software industry
and what are the main challenges?

The study was carried out as a descriptive case study [27] in four Finnish
software product and consultancy companies. We interviewed one API expert
from each company. The case study method was selected as the research method
because we desired to construct broad and holistic understanding about practices
related to APIs in the industry.

The rest of the paper is organized as follows. Section 2 covers the background
and related work. Section 3 presents the research method and in Section 4 are the
results of the case study. Section 5 discusses the results and Section 6 considers
the validity of the study. Conclusions are in Section 7.

2 Background and previous work

Murphy et al. [19] conducted a study in which they interviewed professional
software engineers and managers from seven different companies. In the study,
the focus is on how API developers learned or received training on API design
and what processes are included in API design. In comparison to Murphy et
al., our study is more focused on technical concerns of API properties and API
development and management practices.



State of the Practice in Application Programming Interfaces (APIs) 3

In contrast to our focus on API developers viewpoint, empirical studies of
API client developers have been carried out revealing that often APIs are dif-
ficult to learn due to insufficient documentation [11,25]. In addition to being
difficult to learn, APIs also often have issues with usability [20]. APIs have been
also discovered to form from the API user’s perspective broader boundary re-
sources [3]. APIs have been found to be prone to evolve over time, and often
changes result in breaking the code of API clients [5,10,13,15]. Especially refac-
toring is one major cause for API breaking changes [10]. Thus, API evolution
is considered one major challenge in API development. Moreover, there may be
issues with APIs changing without a warning [11]. In research the literature, the
recommendations for API developers often include providing useful examples of
the interaction with the API, versioning system, API usage monitoring, and API
usability testing [6,11].

In addition to empirical studies, different types of API design guidelines have
been published by many companies that provide REST APIs to client developers.
In fact, Murphy et al. [18] conducted a study comparing 32 industrial REST
API style guideline sets and discovered how these guides handle some topics
differently and emphasize different concepts in API design.

Several academic papers have been written about API design and manage-
ment also give recommendations for API developers. In a paper on API design,
Henning [12] gives several recommendations on designing good APIs and empha-
sizes considering the needs of API callers in the design process. Espinha et al. [11]
base their recommendations on interviews of API client developers and the rec-
ommendations include avoiding changes in the API, having a versioning system,
and including examples of the interaction with the API in the documentation.

Despite the popularity of APIs in the practice and research literature, there
are only a few systematic literature reviews that focus and summarize concerns
specifically on APIs. By adapting the search protocol of an earlier study ([23]),
we found four systematic literature reviews or mapping studies that focus on
APIs and their properties [6,7,22,24]. However, these reviews — as summarized
below — can be characterized as mapping studies aiming at finding proposed
practices or guidelines rather than summarizing empirical evidence.

Burns et al. [6] have reviewed papers that have empirical justification for their
recommendations regarding API development divided into three categories: de-
sign, documentation, and methodology recommendations. Design recommenda-
tions include technical recommendations such as preferring simple architecture
and forms of object creation, using constructors instead of factories, avoiding un-
necessary inheritance and configuration files, and not forcing developers to set all
parameters. Documentation recommendations mention having useful examples
in the documentation, documentation integration with the IDE, and using unit
tests as a form of documentation. Methodology recommendations suggest using
actual developers to evaluate API usability and finding out the participants’
assumptions about an API. The recommendations focus on static APIs.

Cummaudo et al. [7] have synthesized a five-dimensional taxonomy for con-
structs needed to create good API documentation:



4 M. Raatikainen et al.

1. Usage Description (how the developer should use the API).

2. Design Rationale (when the API is the right choice for a particular use case).

3. Domain Concepts (why choose this API for a particular domain).

4. Support Artefacts (what additional documentation is provided by the API).

5. Documentation Presentation (visualization of the above information).

Each class of the taxonomy is further divided into 12, 7, 3, 6, and 6 different,
more concrete categories, respectively. Of these categories, the primary studies
mention most often code snippets, step-by-step tutorials, and low-level reference
documentation for the usage description; purpose or overview of the API as a low
barrier to entry to the design rationale; and the consistency in the look and feel
of the documentation for the documentation presentation. While the taxonomy
provides a long list of options for the documentation, as a systematic mapping
study, the level of empirical evidence is not covered.

Nybom et al. [22] have studied generative approaches available for creating
and improving API documentation. Generation and its tool support make cre-
ating and maintaining API documentation easier, as without proper tools code
updates may render the documentation at least in some parts obsolete or inad-
equate. The study lists tools in its primary studies and constructed taxonomies
for different sources for the generation, generation outputs, and quality proper-
ties of generative approaches. They conclude that many approaches contribute
to API documentation in the areas of natural language documentation and code
examples. All primary studies focus on new tool proposals rather than study the
existing, well-known tools, such as Javadoc or Swagger/OpenAPI. Therefore,
the tools appear to be mostly research prototypes or at least detailed empirical
evidence is not provided, but the taxonomies provide an overview of different
possibilities in generation. The focus is at least implicitly mostly on static APIs.

Rauf et al. [24] have studied different methods for evaluating API usability
outlining and categorizing the different methods. The majority of studies use
empirical methods about API use to evaluate the usability of an API. A less used
category is analytical methods about API specification that includes reviews and
metrics (the least addressed). Many research articles using empirical evaluation
methods aim to provide guidelines, recommendations, or general principles that
could be useful to API designers and developers in evaluating API usability.
Only a few studies aim to provide tools for usability evaluation and most of
these tools are not available for the public. The study differentiates usability
evaluation phases to be design, development, and post-development, where the
last category is dominant. They conclude that usability is inherently subjective
and there are several factors or concepts but a lack of synthesis or agreement
between the studies about the usability concepts.

Finally, there are also systematic literature reviews or mapping studies where
APIs are covered shortly as a part of a specific context or application domain,
such as in microservices or software ecosystems [1,9,17,26]. Notably, API ver-
sioning or evolution are mentioned as recurring challenges in three of these re-
views [9,17,26]. The problem of API portability can also be seen similarly as a



State of the Practice in Application Programming Interfaces (APIs) 5

challenge of different versions from the user perspective although the versions
do not typically have drastic differences.

To summarize the previous research in terms of the objectives of this paper,
we argue — in parallel with Rauf et al. [24] — that research needs also focus on
the development concerns rather than the post-deployment phase and API users’
or client developers’ perspectives. Another notable shortcoming is that much of
the research appears to be still done on static APIs rather than on web APIs. At
least explicit differentiation between different types of APIs is not usually made.
Finally, research often proposes guidelines or practices rather than characterizes
industrial state-of-the-practice in terms of challenges and tested solutions.

3 Research method: Case study

This study was carried out as a descriptive case study [27] that studied APIs
in four Finnish software companies. The primary selection of the companies for
the study was two-fold: First, we selected consultancy companies that develop
software for their customers both of them being large-sized and having several
different customers. Second, we selected product companies that develop their
own software being more focused on long-term development and maintenance of
APIs. All products or projects were related to information systems, rather than,
e.g., embedded systems, games, or mobile apps. We also practically knew that
the selected companies considered APIs being important for their business. Oth-
erwise, the case selection was based on convenience sampling, i.e. the companies
that we had easy access to based on ongoing or earlier research collaboration.

The consultancy companies in the study are Digia Plc5 and Solita Ltd6. Both
of them are medium-sized having several projects and over 1000 employees. Both
consultancy companies mainly operate on the Nordic or northern European mar-
kets. The third company, Vertex Systems Ltd7, is a product-oriented company
with around 100 employees. Vertex provides information management solutions
for the industry, especially for industrial products and building construction
design. The fourth company, F-Secure Plc8, is a product- and service-oriented
company with over 1700 employees providing cybersecurity solutions directly to
their end-users and end-customers but also often through different partnership
channels. Both these product companies operate on global markets.

The data was primarily collected by audio-recorded interviews that each took
between one to two hours. Two university researchers acted as main interviewers
with company representatives interested in the topic. One interview was carried
out on the premises of the responding company while others were carried out by
partly telecommuting due to the ongoing COVID-19 situation. Afterward, we
asked a few clarification questions and let the respondents review and comment

5 http://www.digia.com
6 http://www.solita.fi
7 https://www.vertex.fi
8 https://www.f-secure.com



6 M. Raatikainen et al.

Table 1. The typical API technologies and practices in the case companies.

Digia Solita Vertex F-Secure

Use case Integrations Integrations,
open APIs

Partner APIs Partner APIs,
internal APIs

Language Java most
common

Java most
common

Java Many

Framework Spring Boot Spring Boot Spring Boot Many
Cloud provider Amazon,

Azure, Google
Azure,
Amazon,
Google

None Amazon

Container Docker Docker No1 Docker
CI & CD Yes Yes Partial Yes
CI Tool Jenkins Jenkins Bamboo Jenkins
API Gateway Yes Yes No Yes
Monitoring Yes Yes None Yes
Logging Elastic Stack,

Splunk
Splunk, Elastic
Stack

None Splunk,
proprietary

API
Documentation

Annotation-
driven
(OpenAPI/
Swagger)

Annotation-
driven
(OpenAPI/
Swagger)

Postman Endpoint
reference,
Open API,
Github
examples

1 Container technology is currently being investigated.

on a draft of this paper. In addition, company representatives present in inter-
views co-author this paper but they are not the same representatives that were
interviewed.

The interviews were semi-structured focusing on the projects or products
that the respondent was familiar with. The questions in the interviews aimed to
cover APIs holistically from the technological rather than business perspective.
The interviews were structured by the following themes: technologies used for
API development, deployment, and run-time; API testing; API monitoring and
management; API documentation; API versioning practices; and API quality
attributes. Thus, the themes covered roughly first the general life-cycle phases
of API development and management, and then a few selected specific concerns.
The SQuaRE product quality model of ISO25010:2011 [14] was used and shown
to the respondent as a reference model for quality attributes during the study.
The model covers eight main quality characteristics — functional suitability, per-
formance efficiency, compatibility, usability, reliability, security, maintainability,
and portability — that have further sub-characteristics.



State of the Practice in Application Programming Interfaces (APIs) 7

4 Case study findings

We summarize a set of typical technologies and practices related to API devel-
opment in the case companies in Table 1 that are elaborated in more depth in
the following sections.

4.1 API usage scenarios

We identified four different usage scenarios for the concept of API. First, the
consultancy companies developed most often APIs that exchange data between
two or a few systems to integrate the systems for their customers — although
there can be a few systems involved, we refer this to as one-to-one integration
APIs. Second, all companies also developed partner APIs that their — or, in
the case of consultancy companies, their customers’ — partner organizations or
customers can use. A partner API is similar to the one-to-one integration API
but available to a broader audience of partners. Specifically, F-Secure has several
partner APIs that their integration partners use for end-customer solutions.
Third, especially Solita has projects to develop open APIs mainly to publish the
data of public sector systems. The idea of such open APIs is that anyone can
at least read data through the API. One example of open APIs are maritime
traffic APIs (see [16]). Fourth, internal APIs are a means of reuse between
products at F-Secure. F-Secure has many existing systems, some of which have
been acquired by business mergers and acquisitions. These systems integrate
through internally accessible APIs. However, some internal APIs are opened for
trusted partner organizations, thus widening the scope of reuse to partner APIs.

All above APIs rely on web APIs except that F-Secure also applies static APIs
for some of its internal APIs. Therefore, web APIs, especially in terms of REST-
architecture and JSON-messages, have become prevalent industry-standard for
all API usages. However, legacy systems still use SOAP or XML-based data and
APIs, which must be considered especially in the consultancy companies when
building APIs. Finally, other technologies for web APIs, such as GraphQL as an
example of emerging technology, are not common although getting increasing
interest in the industry.

4.2 Technologies and adoption of new technologies

While Table 1 highlights typical technologies and practices, there is a large se-
lection of technologies that are used depending on the context of the project.
Especially in the consultancy business, different technologies can be selected de-
pending on the specific project. The product companies have a more focused
selection of technologies but even F-Secure uses many different technologies,
some of which pertain to the long history of the different systems, and some
are inherited from business mergers and acquisitions. However, Java and Spring
Framework are very common for all companies and projects.



8 M. Raatikainen et al.

Fig. 1. A screenshot of the technology radar of Digia (https://techradar.digia.online).

The variety of technologies is well displayed by Digia’s Tech Radar, which
is used to understand and represent the ever-growing field of technological op-
tions both internally and to the customers. A screenshot of one quadrant in
the Tech Radar is presented in the following9. The quadrant in Figure 1, Inte-
gration & API, is the most relevant in the context of this paper. Tech Radar
contains four prioritized classes of the most relevant technologies represented by
four rings: Primary I (actively used and preferred), Primary II (widely used),
Trial (emerging and fading away), and Hold (not yet used or avoided). Plus signs
are used to indicate recent new entries and arrows the direction within the rings
(not visible in the screenshot). The first two rings contain the most important
technologies. For instance, in Integration & API quadrant, one of the primary
technologies used is Apache Camel. In the trial ring, there is Camel K mentioned
as an emerging technology. Technologies that are fading away in the Integration
& API quadrant, are, for instance, Scribe/Tibco. The other quadrants also con-
tain some relevant technologies for API development. For instance, in DevOps
& Tools quadrant, commonly used technologies for infrastructure-as-code ap-
proach [2], e.g., Ansible and Docker, are mentioned.

The majority of preferred technologies are similar and alternative to each
other although some variations exist between companies. For example, both
consultancy companies, Digia and Solita, make extensive use of the open source
Apache Camel framework as the main integration tool. Digia, as noted also
above in Tech Radar, was also interested in newer Camel K, which can run
integrations on Kubernetes. Solita, however, does not use Kubernetes as much
and expressed no interest in adopting Camel K to their technology stack for the

9 For readability and space reasons, we can only show one quadrant. Full Tech Radar
is available at https://techradar.digia.online.

https://techradar.digia.online
https://techradar.digia.online


State of the Practice in Application Programming Interfaces (APIs) 9

time being. There were also certain excluding selections, such as one company did
not practically use IBM’s tool stack at all. One key reason for not using a certain
technology is license costs. A commercial stack may have remarkable license
costs already at the beginning of the project, whereas a stack based on Open
Source products is free from license costs. Consultancy companies make a profit
by selling man-months, i.e., their business model is often based on providing
consultancy services in long-term customer relationships without license costs.

Especially among the personnel of the consultancy companies, technologies
are concentrated around interest groups with preferred technologies. For in-
stance, the two consultancy companies have tribes or competence communities
gathering around selected technologies that can complement each other, such
as Amazon and Microsoft Azure cloud technologies. The groups of people share
knowledge on the existing technologies and actively adopt new emerging tech-
nologies from the market or open source communities.

4.3 Deployment

Cloud deployment has become a de facto practice. A cloud readily offers some
essential services, such as an API gateway, a developer portal, and federated
user management. Of the cloud services, Amazon Web Servers (AWS) and Mi-
crosoft’s Azure are the two most commonly used especially in the projects of
the consulting companies. Google Cloud is used significantly less. Azure is very
widely used in organizations in the public sector in Finland. A reason for the
popularity was assumed to be the existing licenses to Microsoft products in the
public sector customers in Finland, which makes Azure an easy add-on option to
the existing technology stack of the organization. Containers, especially Docker,
also are usually used. Serverless architecture is also becoming increasingly com-
mon but by no means prevalent. There are still server-based installations: Vertex
had their software and APIs still running on their servers but transferring to a
cloud environment and container technology is under investigation and planned
in the near future.

Continuous integration and delivery (or deployment) (CI/CD) features have
also become the status quo in all companies involved in the study. The differ-
ences are in the environments used. The consultancy companies have typically
separate environments for development, test, and production with deployments
by a modern CI tool, most often Jenkins. F-Secure has an additional partner-
specific deployment and test environment where new versions are released. Vertex
had currently only the development and production environments in addition to
a playground server. The speed of CI/CD is the main challenge rather than
CI/CD itself. Some software frameworks, such as Spring, require inconveniently
long compiling time for today’s CI/CD needs.

4.4 API versioning

API versioning was considered a significant maintenance effort in the worst case,
but not especially technically challenging per se. As probably the most rigorous



10 M. Raatikainen et al.

example of versioning, F-Secure applies semantic versioning10 in their APIs con-
sisting of the major, minor, and patch version values (major.minor.batch). A
new major version can break backward compatibility but the end-of-life policy
of F-Secure guarantees a transition period of at least 12 months. F-Secure aims
to retain backward-compatibility so that the older API versions can be kept on-
line together with the newer versions. The consultancy companies likewise apply
API versioning although there are no such explicit guidelines or commitment as
in F-Secure because versioning is also the responsibility of their customers. It
was noted that especially integration APIs can be changed without versioning if
backward compatibility is guaranteed, such as in the case of adding endpoints.
Vertex, which in the early stages with APIs, had not yet adopted versioning
practices. Although several versions of APIs can be available simultaneously, old
versions are taken down when they are not used anymore. Monitoring the API
usage is used as an indicator when the old version can be taken down.

4.5 API documentation

As REST is the dominant architectural style for APIs, the endpoints in the con-
sultancy companies are documented using OpenAPI Specification11 (or Swagger
as it was earlier known). The consultancy companies also sometimes set up a
developer portal for their client companies. Solita mentioned using API catalogs
that can contain also other written documentation, such as tutorials and guides,
in addition to generated technological specifications. Vertex uses Postman to
produce similar endpoint specifications as OpenAPI. F-Secure maintains a ref-
erence guide to its API endpoints that is constructed using a proprietary tool.
Each endpoint has a description and types of its data, and one or a few simple
examples of the calls and responses. In addition, there are a few more complex
use cases. The APIs have also OpenAPI specifications. API usage code examples
are given publicly in Github12.

However, in all companies, the documentation consists mainly of technical
endpoint specifications and code examples, and there are usually very few other
kinds of documentation, such as tutorials or getting started guidelines. The com-
panies cited the lack of resources as the main reason for not having more ex-
amples of the API usage in the documentation. For the consultancy companies,
much of the documentation was considered more of the responsibility of their
customers. The operations of one-to-one integration APIs were noted to be quite
similar create, read, update and delete (CRUD) operations or other equivalent
obvious functionality that a domain expert can learn from technical endpoint
documentation without the need of more thorough documentation. Similarly, in
the case of F-Secure, the users of APIs are often partner companies who build
long collaboration relationships and have gained understanding about the do-
mains and products of the APIs. Being partner companies, F-Secure can also
give necessary guidance directly.

10 https://semver.org/
11 https://swagger.io/specification/
12 E.g., https://github.com/F-Secure/atlant-api



State of the Practice in Application Programming Interfaces (APIs) 11

4.6 API quality attributes

The companies did not report major challenges related to quality attributes in
APIs based on the SQuaRE [14] reference model. The existing standards, such
as OpenID Connect for security, and technologies, such as cloud servers and API
gateways for performance and scalability, provide typically sufficient solutions
for the majority of quality characteristics.

At the moment, Vertex has no issues with quality attributes despite relying
on server-based deployment. However, in the future, the company has plans for
more cloud-based solutions as a means to ensure dependability and scalability
with a more extensive user base. Challenges with quality attributes, especially
run-time quality such as reliability and performance, pertain typically to the
problems in the backend systems, such as databases, rather than APIs in all
companies. In a similar manner in the case of large data, network bandwidth
can also become a consideration.

The only issues concerning quality attributes were related to usability, porta-
bility, and maintainability. From the usability point of view, specific API testing
was not conducted in any company. For example, F-Secure considers API testing
as a part of product testing and usability is a part of general usability that the
product management is responsible for. In terms of portability, the consultancy
companies reported that portability — or adaptability as its sub-characteristic
— may require additional effort although it is not problematic per se. A typical
example is a deployment to a different cloud environment, or both to a cloud
and a local server. Finally, reusability was seen as the main point of API devel-
opment, but developing an API that is as reusable as possible and not difficult
to use was noted to be an endless issue for the design.

4.7 API management

The interest in API management among the customers of the consultancy com-
panies was mentioned being increasing considerably during the past few years.
Much like above, the existing technologies mostly provide sufficient tools: For
instance, Azure was mentioned having a good tool for API management or dedi-
cated tools can be used, such as WSO2, IBM API Connect, TreeScale, Kong, and
ServiceMix. However, the respondents noted that despite the technologies exist,
the concept of API management is still vague in terms of what API manage-
ment should cover, and when and to what extend dedicated API management
is needed. In addition, the business models based on APIs were perceived as
immature. For instance, monetizing the APIs was not really considered by the
consultancy companies, while Vertex and F-Secure apply a subscription model
for their API for the paying customers.

As an example of technical API management, API monitoring appeared par-
ticularly mature. Both consultancy companies used designated tools for API
monitoring and logs. For example, Solita strives to use a centralized log manage-
ment system and a uniform log format. The Camel framework offers components
for sending API log data. Digia mentioned using also Splunk, Elastic, and Kibana



12 M. Raatikainen et al.

in real-time usage monitoring. As a cybersecurity company, F-Secure uses ex-
tensive API monitoring and multiple levels of logging: They have an internal
monitoring system and logging with Splunk and they use the alert system of
Amazon’s cloud. The aim is to monitor the whole flow. Vertex is not yet using
comprehensive API monitoring, but logs are used for basic access monitoring.
However, they are very interested in developing their API management system
and more detailed monitoring.

5 Discussion

Our findings show that the concept of API has become, and is getting broader
and more diverse. We identified four usage scenarios for APIs: one-to-one integra-
tion APIs, internal reuse, partner APIs, and open APIs. All of these are widely
based nowadays on the REST architectural style making web APIs prevalent
in industrial software projects for information systems. However, more tradi-
tional static APIs of SDKs, libraries, or frameworks are still used within the
code as the fifth usage scenario as evidenced by the use of various open source
and cloud technologies. Similar static APIs are also still used as a means of
intra-organizational reuse. While this presented classification is quite straight-
forwards, it is often implicit. Moreover, the classification can be refined and other
classifications from other viewpoints can be proposed. However, rather than the
classification alone, we emphasize that the diversity of API usage scenarios in
practice should be more explicitly taken into account in research since much of
the research appears to be implicit about the nature of API.

Existing tools and technologies make most of the technical tasks in API de-
velopment, deployment, and management straightforward and ensure sufficient
runtime quality of APIs. The main technological challenges are, in fact, related
to the backend systems or computing infrastructure rather than to APIs them-
selves. The major decision for APIs is the selection of the desired technology
from the existing technology stacks of multiple similar and comparable options
for which many technologies are inherited from the backend technology selec-
tions. Mature techniques might be in some cases old-fashioned and inefficient,
but on the other hand, newer fashionable technologies may suffer from immatu-
rity. Similarly, personal preferences and familiarity can favor certain technolo-
gies. However, the technologies appear to be quite comparable, and advance and
mature rapidly.

Despite being often presented as challenges in the literature (e.g., [11,13]),
API evolution and versioning were not considered to be especially technically
challenging by the practitioners. However, API evolution can be more problem-
atic to the client developers, and the companies we studied mainly provide APIs,
so the viewpoint is most likely different. API evolution is not either always vis-
ible to consultancy companies as they do not necessarily maintain the API for
longer time. Nevertheless, API evolution, even if not being a challenge, requires
considerable manual effort and rigor in order not to break the applications us-



State of the Practice in Application Programming Interfaces (APIs) 13

ing the API. A research challenge is to reduce the manual work and help with
ensuring continuity of APIs.

In contrast to evolution, documentation and usability appeared more as a
practical issue. First, API documentation appeared often to be a somewhat
under-addressed practice. Similar results were presented in [19]. Although API
endpoint specifications are constructed using OpenAPI or a similar tool, more
detailed API user guidelines are still often lacking. That is, a developer jour-
ney [21], which roughly means attracting and supporting new developers for an
API, keeping them motivated as they learn to use the API, and provide special-
ized and detailed support and tools also for experts, is not actively considered.
Second, API usability is not necessarily designed or it is treated as a part of the
product quality cursorily. API usability might sometimes need reconsideration
because the users of APIs are software developers that can be different from the
end-users. Interestingly for example at F-Secure, the same product manager was
responsible for a product and its APIs although the users of products and APIs
are quite different. Who should be responsible for APIs is a topic that deserves
further investigation.

However, it is important to take into account that even though API usability
and documentation are not always extensively addressed in industrial practice,
the rigor of addressing these disciplines depends on the API context and use
cases. API usability and documentation become more important or even rele-
vant when APIs are used in a broader context with external developers or even
unknown developers rather than only internally or for integration.

API management appeared clearly as the vaguest and most challenging con-
cept. API management was mentioned as being increasingly important for cus-
tomers of the consultancy companies. As the discussion and information on APIs
have become more widespread, some customers have become concerned about
whether they too should have an API and API management system even though
they might not have an exact idea of what an API actually is or if a full API
management system is even completely necessary for their business. Likewise, for
API development, there are several individual tools available for API monitoring
and management, and the technical aspects of the process are not as challenging
as deciding what to do and handling the received data. That is, besides using
API monitoring for the availability, performance, and functional correctness of
an API, monitoring could be used for understanding customers and API users.
Thus, the greatest challenges pertain to better understanding the needs of API
management such as what kinds of policies or models to use for API management
in different situations from the business perspective.

Overall, APIs were always considered an integral part of products (or ser-
vices) and managed as a part of the products. However, APIs have certain inher-
ent characteristics that make them different from products. For example, the user
and customer of an API can be different from that of a product. Furthermore,
as several other systems and stakeholders can rely on APIs, the APIs cannot
be developed quickly to prototype different features as in agile and DevOps
practices for product development. Therefore, it could be beneficial to consider



14 M. Raatikainen et al.

APIs at least more clearly a separate concern in the product management hav-
ing certain dedicated practices. For instance, having a dedicated API roadmap
planning could help in diminishing the technical effort required in API version-
ing. As APIs have become such a quintessential part of software systems and
services, APIs could be considered at least a more separate concern in product
management and business planning.

Finally related to APIs being a separate concern of a product, one interviewed
API expert mentioned how API design and use are not taught at educational
institutions similarly to software design in general. Therefore, all API developers
have to be taught at work, at least to some extent. Similar notions of learning on
the job were brought up by API developers interviewed in [19]. This raises ques-
tions on the need to emphasize API development and management in computer
science curricula at educational institutions. Courses covering API development
and design could help to prevent some of the API usability issues and help with
technology transfer from research to practice. This is becoming more relevant as
APIs are increasingly important in many software systems.

6 Study validity

A threat to construct validity is that only limited sources of evidence were used
relying on one or a few interviewees. However, to mitigate the threats to con-
struct validity, we let the respondents read and comment on a version of this
manuscript, and other representatives from companies co-author this paper. An-
other threat to construct validity relates to the respondents in the consultancy
companies that described practices in several projects. Their selection of exam-
ples could have been unintentionally biased or they might have done general-
izations across projects. To mitigate biases in cases, we purposefully selected
different kinds of cases that represent product- or service-oriented business and
consultancy business. We did not either initially limit our selection to four cases
but considered during data collection that we had quite saturated understanding
of the state of the practice and decided not to need additional cases.

A threat to external validity in qualitative studies pertains to the selection
of cases. This study focused on companies and projects that develop informa-
tion systems and are geographically limited. Therefore, the results may not be
generalizable especially to other technological domains, such as mobile apps or
embedded systems.

7 Conclusions

We presented a case study on four Finnish companies to characterize API de-
velopment and management state-of-the-practice in the context of information
systems. The study shows that APIs and API management are important and
prevalent practices in the software industry. We identified internal reuse, partner
APIs, one-to-one integration APIs, and open APIs as web-based complement-
ing usage scenarios to more traditional static APIs in, e.g., SDKs, libraries, or



State of the Practice in Application Programming Interfaces (APIs) 15

frameworks. While these usage scenarios identify some diversity, we argue that
the diversity in the nature of APIs — and especially web APIs — should be
better and more explicitly taken into consideration in research and practice.

API development and management are technically well supported in the prac-
tice by existing tools and technologies especially related to cloud services and
provided by cloud vendors. API usability and documentation as design problems
are most challenging to be properly addressed. The main technical challenge re-
mains to be the selection of the right technologies from the existing technology
stacks. Although API management is supported technically, the challenges in
practice include what kinds of policies or models to use for API management in
different business contexts. We suggest considering APIs more clearly at least
as a separate concern in the product management, which might require some
novel API specific practices, such as API roadmapping. In terms of future re-
search, solutions for API roadmapping could be proposed and a more extensive
empirical investigation could be carried out even by quantitative methods.

Acknowledgements

We acknowledge the financial support of Business Finland as a part of 4APIs
project.

References

1. Alshuqayran, N., Ali, N., Evans, R.: A systematic mapping study in microservice
architecture. In: IEEE International Conference on Service-Oriented Computing
and Applications. pp. 44–51 (2016)

2. Artac, M., Borovssak, T., Di Nitto, E., Guerriero, M., Tamburri, D.A.: Devops:
introducing infrastructure-as-code. In: IEEE/ACM International Conference on
Software Engineering (Companion volume). pp. 497–498 (2017)

3. dal Bianco, V., Myllärniemi, V., Komssi, M., Raatikainen, M.: The role of plat-
form boundary resources in software ecosystems: A case study. In: IEEE/IFIP
Conference on Software Architecture. pp. 11–20 (2014)

4. Bosch, J.: From software product lines to software ecosystems. In: AMC Interna-
tional Conference Software Product Lines. pp. 111–119 (2009)

5. Brito, A., Valente, M.T., Xavier, L., Hora, A.: You broke my code: understanding
the motivations for breaking changes in APIs. Empirical Software Engineering
25(2), 1458–1492 (2020)

6. Burns, C., Ferreira, J., Hellmann, T.D., Maurer, F.: Usable results from the field
of API usability: A systematic mapping and further analysis. In: IEEE Symposium
on Visual Languages and Human-Centric Computing. pp. 179–182 (2012)

7. Cummaudo, A., Vasa, R., Grundy, J.: What should I document? a preliminary
systematic mapping study into API documentation knowledge. In: ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement
(2019)

8. De, B.: Api Management. Springer (2017)



16 M. Raatikainen et al.

9. De Lima Fontao, A., Dos Santos, R., Dias-Neto, A.: Mobile software ecosystem
(MSECO): a systematic mapping study. In: International Computer Software and
Applications Conference. vol. 2, pp. 653–658 (2015)

10. Dig, D., Johnson, R.: How do APIs evolve? A story of refactoring. Journal of
software maintenance and evolution: Research and Practice 18(2), 83–107 (2006)

11. Espinha, T., Zaidman, A., Gross, H..: Web API growing pains: Loosely coupled
yet strongly tied. Journal of Systems and Software 100, 27–43 (2015)

12. Henning, M.: API design matters. ACM Queue 5(4), 24–36 (2007)
13. Hora, A., Robbes, R., Valente, M.T., Anquetil, N., Etien, A., Ducasse, S.: How do

developers react to API evolution? A large-scale empirical study. Software Quality
Journal 26(1), 161–191 (2018)

14. ISO/IEC: 25010:2011, Systems and software engineering — Systems and software
quality requirements and evaluation (SQuaRE) — system and software quality
models (2011)

15. Jezek, K., Dietrich, J., Brada, P.: How Java APIs break - an empirical study.
Information and Software Technology 65, 129–146 (2015)

16. Joutsenlahti, J., Lehtonen, T., Raatikainen, M., Kettunen, E., Mikkonen, T.: Chal-
lenges and governance solutions for data science services based on open data and
apis. In: IEEE/ACM 1st Workshop on AI Engineering - Software Engineering for
AI of International Conference on Software Engineering (2021)

17. Manikas, K.: Revisiting software ecosystems research: A longitudinal literature
study. Journal of Systems and Software 117, 84–103 (2016)

18. Murphy, L., Alliyu, T., Macvean, A., Kery, M.B., Myers, B.A.: Preliminary analysis
of REST API style guidelines. Ann Arbor 1001, 48109 (2017)

19. Murphy, L., Kery, M.B., Alliyu, O., Macvean, A., Myers, B.A.: API designers
in the field: Design practices and challenges for creating usable APIs. In: IEEE
symposium on visual languages and human-centric computing. pp. 249–258 (2018)

20. Myers, B.A., Stylos, J.: Improving API usability. Communications of the ACM
59(6), 62–69 (2016)

21. Myllärniemi, V., Kujala, S., Raatikainen, M., Sevón, P.: Development as a journey:
factors supporting the adoption and use of software frameworks. Journal of software
engineering research and development 6(1) (2018)

22. Nybom, K., Ashraf, A., Porres, I.: A systematic mapping study on API documen-
tation generation approaches. In: Euromicro Conference on Software Engineering
and Advanced Applications. pp. 462–469 (2018)

23. Raatikainen, M., Tiihonen, J., Männistö, T.: Software product lines and variability
modeling: A tertiary study. Journal of Systems and Software 149, 485–510 (2019)

24. Rauf, I., Troubitsyna, E., Porres, I.: Systematic mapping study of API usability
evaluation methods. Computer Science Review 33, 49–68 (2019)

25. Robillard, M.P.: What makes APIs hard to learn? Answers from developers. IEEE
Software 26(6), 27–34 (2009)

26. Soldani, J., Tamburri, D., Van Den Heuvel, W.J.: The pains and gains of microser-
vices: a systematic grey literature review. Journal of Systems and Software 146,
215–232 (2018)

27. Yin, R.K.: Case study research: Design and methods. Sage (2014)


	State of the Practice in Application Programming Interfaces (APIs): A Case Study

