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ABSTRACT

The ubiquity of smart devices, combined with a lack of information

about data garnered by them, make privacy a significant challenge

for adopting smart devices. Ensuring users can safeguard their

privacy without compromising the devices’ functionality requires

effective yet intuitive ways to manage personal privacy preferences.

Current solutions for privacy management are severely lacking

as they are ineffective in making users aware of potential privacy

risks or how to mitigate them and as they offer limited support

for interaction. As our first contribution, we develop a novel AR

privacy management interface (PARA) that uses AR visualization

to contextualize data disclosure and improve user’s perceptions

of privacy threats. Besides offering support for enhancing user’s

privacy perceptions, our interface supports privacy control on com-

patible devices through privacy-enhancing technologies. As our

second contribution, we systematically study factors affecting pri-

vacy perceptions and privacy control for two device classes (smart

camera and smart speaker) through a user study with 𝑁 = 32

participants. Our results show that PARA’s contextualization and

visualization of privacy disclosure strongly affect the participants’

privacy perceptions. For privacy control, we demonstrate that our

prototype improves the participant’s capability to identify risks and

provides an effective and easy-to-use mechanism for controlling

privacy disclosure, in contrast to existing state-of-the-art privacy

management interfaces.

CCS CONCEPTS

· Security and privacy → Usability in security and privacy; ·

Human-centered computing → Mixed / augmented reality;

Graphical user interfaces.
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1 INTRODUCTION
Increasing availability of smart devices in our everyday environ-

ments is offering opportunities for innovative new services and

applications that can facilitate our lives but also make users increas-

ingly vulnerable to intrusions of their privacy [12, 46]. Safeguarding

user privacy is essential for smart device ecosystems as otherwise

people may not adopt them or only use the devices in a limited

capacity without taking full advantage of their capabilities. What

makes safeguarding user privacy particularly difficult is the fact

that users rarely are aware of the sensors that surround them or the

privacy risks associated with them [31, 39, 43, 46]. The challenge of

this task is further exacerbated by a lack of a proper control inter-

face to manage privacy as current solutions offer limited means to

contextualize data gathered by the devices [2, 34]. Contextualization

is here understood in broad terms, referring to any factor (e.g., type

of collected data, location of the smart device) that is related to the

process of private information disclosure via smart devices. Indeed,

the few examples of management interfaces available on current

devices, e.g., large-size devices: tangible buttons, built-in LCDs, cf.

small-size devices: with companion apps on smartphones1,2, do

not contextualize the management of privacy preferences or the

information that is presented. The failure to contextualize the data

disclosure (e.g., the location-data relevance, the purpose of data

collection) can significantly impact users’ privacy perceptions and

lead to insufficient controls on user privacy [32, 37, 43].

We contribute by proposing Privacy Augmented Reality Assis-

tant (PARA), a privacy-preserving assistant driven by AR for smart

devices at home. PARA has been designed to contextualize data

1HomeKit: https://www.apple.com/hk/en/ios/home/
2SmartThings: https://www.smartthings.com/

https://doi.org/10.1145/3462244.3479885
https://doi.org/10.1145/3462244.3479885
https://www.apple.com/hk/en/ios/home/
https://www.smartthings.com/
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(a) Smart camera. (b) Smart speaker.

Figure 1: PARA for two smart devices. Users point the AR

view at a device to see what the collected data and how the

privacy filters affect the data.

disclosure and the effects of any actions to control user privacy.

PARA thus overcomes the key limitations of existing solutions,

and as will be shown, this results in significant improvements in

the user’s privacy perceptions and control. PARA integrates these

functionalities using an AR view on the top of devices. When a

user’s smartphone points at a smart device, the PARA interface

indicates the types of data being collected and enables switching

on or off data collection, offering real-time control of privacy man-

agement actions. PARA thus allows users to explore in real-time

how changes in privacy settings affect data disclosure on devices

compatible with our system.

PARA responds to the emerging interaction paradigm of AR

with smart devices at home, with the following research ques-

tions: 1) How an AR-driven privacy control differentiate from the

non-AR counterparts (traditional smartphone UIs and conversational

user interfaces)? 2) Does AR-driven user interaction motivate users

to manage the privacy settings of smart devices? PARA features a

unified interface [19] for interacting with smart devices [3]. We

implement an experimental prototype (Figure 1) that supports two

highly intrusive yet popular consumer-grade devices: smart cam-

eras (already widely adopted and market is foreseen to expand to

12 billion USD by 20263,4 and smart speakers (1 out 10 consumers

will own such device [10]). Both devices can expose users to serious

privacy leakage via audio and video channels [22, 27, 35].

We conduct a user study with 32 participants to examine the

research questions, with emphasis on 1) how different aspects of

disclosure context (location, nature of data, purpose) affect user

privacy preferences and 2) comparing the AR interface against

current privacy management interfaces. We also compare how

different configurations of privacy-enhancing technologies affect

user’s preferences about disclosed data. Our results first highlight

that PARA successfully improves the user’s perceptions of privacy

risks compared to the non-AR counterparts. Our results also show

that users with PARA become more aware to the exact location of

a device and its disclosed data, which result in increased privacy

perceptions by 18% from traditional list-based interfaces. In contrast,

the non-AR counterparts are not sufficient to motivate users to use

or even to be aware of the need for privacy protection.

Taken together, the contributions of this paper are as follows.

First, PARA is an AR-based privacy assistant that increases the

3https://www.digitalsignagetoday.com/news/facial-recognition-market-will-
reach-12b-by-2026-report-says/

4https://www.ifsecglobal.com/video-surveillance/smart-cctv-and-the-internet-
of-things-2016-trends-and-predications/

user’s privacy perceptions with a higher intention of applying

privacy protection mechanisms. Second, PARA interfaces of privacy

filtering demonstrate a higher effect on the willingness of using

privacy protection than the existing, non-AR counterparts. Third,

our experiments shed light on contextualization of data disclosure

and how it can influence the user behaviors to alleviate privacy

risks. PARA serves as an intuitive yet informative privacy assistant

for smart device ecosystems.

2 RELATED WORK

Privacymanagement in smart devices. Langheinrich [21] high-

lights that systems do not seek perfect privacy protection, and

illustrates the concept of Privacy Assistant to raise the user’s pri-

vacy awareness. Smart devices do impact on user’s perceptions,

regardless of owners and non-owners, to the smart devices [28].

Most recent interviews with consumers and experts [12] indicate

the urgent need for establishing security and privacy labels for

smart home devices. Such labels should inform the users about

the sensors, data types, and the granularity of data collection [12].

Colnago et al. [7] used a semi-structured interview to recommend

solutions about automation of privacy preferences and notification

overloads. Although automation is positively seen by participants

as a solution to manage privacy, participants are still concerned

about the sources used to generate the automation techniques and

request higher flexibility of customizing their privacy preference.

The latest work suggests that locator UIs for contextualized im-

ages can effectively enhance user’s awareness of adjacent smart

devices [43]. The authors in [8] propose a smartphone application

to manage and control the visual privacy (e.g., facial feature and

location) captured by distributed IoT devices. Nevertheless, the pri-

vacy management interfaces on smart home devices, e.g., tangible

LCD displays and UIs on smartphones, are insufficient for inform-

ing users about data collection (UDC), for instance, the location,

data type and the targeted use of the shared data [12, 46]. With-

out appropriate user affordance(s) about user privacy with smart

home devices, users could be subject to anxiety from unintended

disclosure or even become unwilling to use IoT applications [46].

Privacy threats with smart devices, including wearables, necessi-

tate informing users about their privacy decisions and how device

permissions affect the data sensed and shared by these devices.

Appropriate visualization is an effective strategy to inform users

about the device threats [13, 18]. Additionally, privacy assistant

should offer transparent tools to ensure that individual privacy

requirements are fulfilled [5]. Some hypothetical scenarios of smart

devices [32] trigger the user’s privacy reactions to the frequency

and types of data collection. PARA is a system solution that lever-

ages interactive AR visualization to inform users about the privacy

threats in the user’s first person view.

Seizing AR with smart devices. The existing works demonstrate

the feasibility of AR for the management of smart devices that pri-

marily own limited form size or (over-)simplified design (i.e. lacking

user affordance) [3, 16, 17, 29, 36]. Smarter Objects developed by

MIT Media Laboratory [16] has been considered the first working

prototype to digitally overlay graphical interface on household ob-

jects. Various dimensions of AR-IoT have been extended, including

https://www.digitalsignagetoday.com/news/facial-recognition-market-will-reach-12b-by-2026-report-says/
https://www.digitalsignagetoday.com/news/facial-recognition-market-will-reach-12b-by-2026-report-says/
https://www.ifsecglobal.com/video-surveillance/smart-cctv-and-the-internet-of-things-2016-trends-and-predications/
https://www.ifsecglobal.com/video-surveillance/smart-cctv-and-the-internet-of-things-2016-trends-and-predications/
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developing scalable spatial registration of IoT devices [17], opti-

mized user interfaces [3], searching and locating the nearby smart

devices using the AR Field of View (FOV) [36], visualizing the con-

nections and shared data among smart devices [29], analysis of

the effects of AR in privacy perceptions [13]. However, the above

works focus exclusively on the technological challenges of AR-IoT

interaction but neglect the user perception to smart devices via

AR platforms. We develop a novel AR interface for privacy man-

agement (motivated by the findings in [13]), and simultaneously

evaluate the issues with existing privacy management interfaces.

3 PARA DESIGN AND INTERFACE
In this paper, we primarily focus on the smart home scenario

between a device and a user. This section first explains the system

design of PARA5 and the privacy filters offering privacy control.

PARA contextualizes the data disclosure to users in real-time and

allows users to control their privacy preferences by using privacy

filters. Next, we describe the experimental implementation with

two smart devices: smart camera and smart speaker (Figure 1).

3.1 System overview

3.1.1 Design principle. Augmented Reality (AR) facilitates natural

interaction between users and smart devices [3, 24, 29, 29, 36, 38],

and has great potential to improve user privacy [19, 20, 36]. Pre-

vious works demonstrate that exposing the physical locations of

smart device in the user’s vicinity [1, 13, 32, 43] could enhance

user privacy. PARA builds on top of previous findings [13] but goes

one step further, contextualizing the privacy capability once such

threats from nearby smart devices appear. In general, users feel

comfortable with smart devices when the shared data is conditioned

on informed consent [1]. AR can serve as a privacy-consent inter-

face for user-device interaction [13]. Once the user’s device appears

in the camera FOV, PARA alleviates the cumbersome and often

overwhelming list of data sharing permission [36]. Therefore, we

explore the effects on privacy and compare PARA with the widely

used approaches on smart devices. In brief, PARA offers an AR

interface that enables users to explore and configure the disclosed

data in real-time. PARA also contains a software component named

privacy filters that obfuscates the sensor data before the permission

of data disclosure.

3.1.2 System design. PARA consists of three components: smart

devices, privacy filters, and a user application. First, the smart

device transmits the collected ‘privacy-protected’ data, supported

by two components: (i) privacy manager that applies the current

privacy filter configuration to the collected data, and (ii) databases

storing users’ privacy preferences as well as privacy filter statistics

(e.g., activation and deactivation time with a device). Second, the

privacy filter (PF) obfuscates the user’s personal information such

as face, eye, age, gender, and emotion, using data manipulations

such as ‘deepfake’ approaches [25, 33, 41] (Figure 1). We select these

filters following previous works [1, 45] that highlight the risks of

video analytics (e.g., emotion recognition [44]) [45] and users con-

cerns in ubiquitous environments regarding the types of collected

data [1]. Moreover, these filters are easier for the participants to

understand our prototype.

5https://solrac1986.github.io/para_smartdevices.github.io/

As shown in Figure 2, when the user enables the gender and

emotion filters to the smart camera, the system replaces the authen-

tic face by a ’generated’ one, which contains a randomly assigned

gender, different emotion [33], and similar age to the original [41].

Although there are numerous alternatives to implementing the

filters, such as physical filters [4], and middleware [9], we pick

embedded filters that reside directly on the devices [42]. Rather

than constantly moving a tremendous amount of data to the cloud

or edge devices, we perform the inference tasks in the smart de-

vice. This approach also reduces privacy threats that might appear

during the data transmission or in the cloud [42]. Finally, user

application displays user data being collected by nearby smart

devices and the currently enabled privacy filters. The application

detects nearby smart devices using object detection and Bluetooth.

Smart devices images are registered in our database. Users via AR

can interact with smart devices to alter the privacy filters’ status,

i.e. enabled/disabled data collection, and inspect how the privacy

filters affects the collected data in real-time (Figure 2). In scenarios

when devices are installed in the same room and the field of view

of the camera, the interface will only visualize the location of these

devices (motivated by Song et al. [43]). The users can select by

touching on the screen the device to configure the device and show

more related information such as privacy filters and collected data.

3.2 System prototyping and implementation

3.2.1 Prototyping. The prototype of PARA is centered around an

Android smartphone (API 14 version) that visualizes the afore-

mentioned system components. Additionally, a Raspberry Pi 3B

(Raspberry Pi OS) emulates the connection (Node.js, express 4.1,

mongodb 3.2.7, socket 2.0.4) with smart devices (i.e. smart camera

and speaker in our experimental setting). The relevant libraries

(Tensorflow 2.0, Python 3.6) and machine learning algorithms for

privacy filters ran on the emulation locally.

User-device interaction. Figure 3 depicts the PARA workflow

from the smart device detection to the privacy filter updates. We

highlight the key steps as follows.

(1,2) Client, smart device’s address detection: the application de-

tects nearby smart devices using object detection. We trained a

one-shot learning network [15] in Tensorflow 2.0 to detect the

respective smart camera and smart speaker for our study. For oc-

cluded objects, the beacon Bluetooth technique can notify the users’

device about the proximity of a smart device. We use the similitude

technique as various illumination levels and object orientation ex-

ist. The client device detects the smart device’s IP address using

Bluetooth, and it starts a https request to access the smart device

(1). If the connection is successful, the client retrieves the current

privacy preference settings from the smart device. The client also

receives the current monitored data in real-time (2).

(3, 4) Client, privacy filters and data visualization: PARA trans-

mits the privacy filter status and data visualization through REST

architecture6. Smart devices are in charge of modifying data visual-

ization and privacy filters according to their embedded sensors (3).

The client displays the device, data, and privacy filters via overlaid

Android WebView (4). The AR data visualization interfaces employ

the web standards (HTML/CSS/JavaScript).

6https://socket.io/

https://solrac1986.github.io/para_smartdevices.github.io/
https://socket.io/


ICMI ’21, October 18ś22, 2021, Montréal, QC, Canada Carlos Bermejo Fernandez, Lik Hang Lee, Petteri Nurmi, and Pan Hui

35, male

Face filter Eye filter

Age filter Gender filter

Emotion filter

(a) Disabled.

Face filter Eye filter

Age filter Gender filter

Emotion filter

35

(b) Enabled.

 male

Face filter Eye filter

Age filter Gender filter

Emotion filter

(c) Enabled.

Figure 2: Privacy filters detailed screenshot when the gender and emotion filter is disabled (2a) and enabled (2b). We can

observe the change in the individuals’ gender and emotion (smile) while keeping a similar age and displaying the face and

eyes. Figure 2c shows the changes when the privacy filter for age is enabled.

Figure 3: Privacy AR-smart device workflow.

(5) Server, smart device: the libraries on the smart device apply

privacy filters on the garnered data (3). ML-based privacy filters

in PARA perform privacy protection of images or audios of the

smart camera or speaker, respectively. The smart device processes

privacy preferences and user data through a server-side Node.js,

where the client application can respond (5).

4 DESIGN OF USER STUDY
We implemented two fully working use cases of commercial smart

devices: cameras and speakers. News media7 and studies [27, 32]

show that smart cameras and speakers raise most privacy concerns

among the device owners [22, 40]. This section first describes the

user evaluation design.

4.1 Three experimental configurations

We justify the three configurations and their characteristics, on the

basis of contextual information [1, 32] and state-of-the-art privacy

managers [8, 14]. The proposedAR privacy assistant simultaneously

visualizes the contextual information (e.g., the physical location

of the smart device) [1, 32] as well as the collected data [8, 32].

In contrast, the non-AR interaction paradigms of Graphical User

Interfaces (GUIs) and Conversational User Interfaces (CUIs) emulates

the widely adopted approaches of privacy management with smart

devices. For all the configurations, the visual icons that inform users

about the collection capabilities (including information inferring)

follow [11].

7https://www.wired.com/story/the-alexa-amazon-eavesdropping-situation/

1. Non-AR GUIs. This is analogous to the usual design patterns

on mobile and web platforms[8], via the cloud-based smart device

access in particular. As shown in Figure 4, the user with GUI privacy

assistant receives real-time visualization of the collected data and

the possible inferences by third parties [1, 21, 32].

2. Non-ARCUIs. Motivated by privacy bots [14], the user interacts

with the smart device using voice commands (Google Assistant).

In such an environment, a query-based assistant helps the user to

understand and decide their privacy preferences. Figure 4 depicts a

conversation between the user and the smart-assistant. The user

receives audios indicating each privacy filter and its status (on/off).

3. PARA. As described in the previous section, our proposed AR-

mediated privacy assistant enables the user’s situational aware-

ness [13, 43] of the smart devices, the real-time visualization of user

data (e.g., video, spoken command), and privacy filters (Figure 1).

4.2 Participants and apparatus

4.2.1 Participants. We recruited 32 volunteers (19 male and 13 fe-

male) with a mean of 32 years (SD: 8) around the university campus.

Their professions are as follow: 10 CS researchers, 7 environmental

PhD students, 2 biology researchers, 2 biotechnology researchers, 2

biotechnology PhD students, 3 CS PhD students, and the rest have

different backgrounds, such as UX designer or entrepreneur. 68.8%

of the participants have some experience with AR applications such

as gaming (e.g., Pokemon GO) and 56.2% of the participants have

no experience with smart devices.

4.2.2 Apparatus. We use an Android OnePlus 3T device to run

the client applications (i.e., through-the-screen AR application). We

built our conversational smart assistant using Google ‘Dialogflow’

and ‘Actions on Google’8. We use a Raspberry Pi 3B with Wi-Fi

capabilities to provide the Node.js server for emulating the smart

devices (Raspberry Pi OS, Tensorflow 2.0, express 4.1, mongodb

3.2.7, socket 2.0.4). We conducted our experiment in a quiet office

room inside our university campus. We used an iPhone 8 to perform

audio recording of participants’ answers during the study.

8https://developers.google.com/actions/

https://www.wired.com/story/the-alexa-amazon-eavesdropping-situation/
https://developers.google.com/actions/
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(a) GUI-camera.

IoT Privacy Settings

12:30

Age obfuscation

Gender obfuscation

Emotion obfuscation

Age: -protected- 

Gender: -protected- 

Emotion: sad

(b) GUI-speaker.

(c) CUI-camera.

12:30

Hello Participant, what can 

I do for you?

Sure I can! It is done:

Type a message

What does the gender 

filter do?

Gender filter is a privacy filter 

that de-identify peoplesʼ 

gender, so they cannot be 

identify 

Enable

Age obfuscation

Gender obfuscation

Emotion obfuscation

ON

ON

OFF

(d) CUI-speaker.

Figure 4: Experimental nterfaces for non-AR interaction

paradigm of GUI (4a where the users can control the pri-

vacy filters (using the corresponding switch button), 4b) and

CUI (4c, 4d), where users interact via solely voice-commands

with the smart-assistant (no text entry is allowed).

4.2.3 Analysis. For analysing the responses, the data satisfied the

assumptions of normality and homogeneity to apply repeated mea-

sures ANOVA. We follow Cohen’s convention for large effects

(range from 0 to 1) [6].

4.3 Task and procedure

4.3.1 Task. The participants use the above interfaces to config-

ure the privacy filters and thus configure the data disclosure. The

privacy filters show participants the risks of sharing the collected

data with third parties. During our study, the participants are not

allowed to turn the devices off or manipulate the sensors. Accord-

ingly, we analyze the participants responses for three experimental

configurations and smart devices. The participants are divided into

two groups for two experimental use cases: the camera and speaker,

in order to alleviate the possible learning effect among smart de-

vices and the corresponding visuals in privacy filters. Therefore,

we counterbalanced the assignment of participants to each smart

Table 1: Privacy filter groups.

Group Description

All all privacy filter are enabled

None no privacy filter is enabled

Partial random selected privacy filters are enabled

device in two equally sized groups (smart camera: 𝑁 = 16; smart

speaker: 𝑁 = 16). We first evaluate the effects of three configurations

on users’ privacy perceptions. We compare participants’ privacy per-

ceptions (comfort levels), following prior studies [1, 23, 32]. Then,

the participants configure their ideal privacy filters for each of the

counterbalanced assigned configurations.

4.3.2 Procedure. Participants provided informed consent to partic-

ipate in this study and be video recorded (by the smart camera). The

study was carried out following the General Data Protection Regula-

tion (GDPR) and the IRB regulations of our university. We informed

the participants that the experimental data will be de-identified,

and all recorded data will be password protected. Afterward, the

participants ran through the following procedures.

A. Privacy perceptions. With the counterbalanced order of smart

devices and privacy filters, the participants were asked to evaluate

their comfort levels according to the smart device, configuration

(Non-AR GUI or CUI or PARA), and privacy filter group.

B. Privacy control. The order of the three interaction paradigms

and privacy filters are counterbalanced among the participants. We

asked the participants to configure their ‘ideal’ privacy filter set-

tings, i.e., which filters are enabled/disabled for each configuration

to evaluate the privacy control.

C. Participants’ feedback. Next, the participants were asked a

questionnaire regarding the qualitative feedback of each configura-

tion using the technology acceptance model (TAM).

D. Privacy concerns and demographics.We evaluate the partici-

pants’ general privacy concerns in smart environments using the

mentioned Internet users’ information privacy concerns (IUIPC) [26].

Finally, we asked the participants five demographic questions: gen-

der, age, profession, whether they have had previous AR experience,

and previous experience with smart devices.

The total duration of the procedures is ranged from 30 to 40 min-

utes for every participants. Participants were rewarded with foods,

snacks, sweets, and soft drinks after completing the experiment.

4.4 Ecological validity and limitations

The study setup considers a realistic environment for studying pri-

vacy, unlike the online surveys that have been traditionally used to

explore privacy [2, 32]. According to the early adoption paradox,

consumers with the highest willingness of using IoT technologies

have the highest privacy risks in other online activities9. Neverthe-

less, our results must be considered in the context of the limited

number of participants recruited with some experience with: smart

devices (43.8% of the participants) and smart wearables, e.g., smart-

watch (28%), or users/owners of smart devices (28%).

9https://blog.f-secure.com/privacy-concerns-cooling-iot-adoption-us-europe/

https://blog.f-secure.com/privacy-concerns-cooling-iot-adoption-us-europe/
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In terms of limitations, the use of the same physical environ-

ment can result in carry-over effects and reduce the accuracy of

the privacy perceptions. At the same time, it is essential to offer a

realistic environment for interaction to ensure the users can prop-

erly contextualize the privacy risks. The study design was designed

as a balance of these two factors, and we use counterbalancing

to alleviate the carry-over effects. Online surveys used in prior

works [1, 32] cannot isolate the effects of contextual factors as they

rely on generic scenarios rather than offer a way to contextual-

ize disclosure accurately. To further enhance the level of realism,

we limit the study on the analysis of participants’ comfort levels

according to the presented scenario.

5 EVALUATION RESULTS

According to our user study with 32 participants, we systematically

evaluate how the disclosure of contextual information impacts the

user perception on both privacy perception and privacy control,

and demonstrate how PARA improves these facets compared to

existing solutions. We also collected the participants’ feedback and

their privacy concerns.

5.1 Privacy perceptions

5.1.1 Study design. A factorial study design that assesses users’

privacy perceptions according to the configuration used: 2 (between-

subjects: smart device types) × 3 (within-subjects: experimental

configurations) × 3 (within-subjects: privacy filter group: all, none,

and partial enabled filters, see Table 1) factorial design.

5.1.2 Evaluation metrics. We measure participants’ privacy per-

ceptions using their comfort levels according to the smart device,

experimental configuration, and privacy filter configuration. We

follow previous works that study privacy perceptions using comfort

levels [1, 32], where low comfort levels (5-point scale) related to

participants’ low privacy perceptions:

• Q1. How comfortable would you feel about using this smart

device? (Answer: 1. very uncomfortable - 5. very comfortable)

• Q2. Additional comments (Answer: open-ended)

The configurations of privacy filters follow these three groups:

(i) all, (ii) none, and (iii) partial, see Table 1. The participants were

instructed to enable/disable the corresponding privacy filters using

each configuration of interaction paradigms. Any change in the

privacy filter configuration is visualized in real-time. We select five

privacy filters motivated by previous works [11, 45]. In [11], the

authors describe the capabilities of smart cameras and speakers to

infer demographic characteristics of individuals (e.g., gender, age).

Moreover, individuals lack awareness regarding the capabilities of

such smart devices to infer biological states such as emotions [45].

Therefore, we selected these five privacy filters as representative

use cases for our study.

Results. AR and privacy perceptions: We first demonstrate that in-

terface type (i.e., configuration) has a significant impact on user’s

privacy perceptions with PARA having the largest overall impact.

Figure 5a depicts the participants’ average comfort levels and the

distributions of their responses for each experimental configuration.

Mixed ANOVA shows that there is a significant effect of the config-

urations on the participants’ comfort levels (𝐹 (2, 60) = 10.84, 𝑝 <
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(b) Configurations & filters.

Figure 5: Privacy perception distributions according to the

privacy filter groups: all; none; and partial; and experiment

configuration used: GUI, CUI, and PARA.We group the com-

fort levels according to the following labels: [1,3), levels be-

tween one and two; 3, participants responses with comfort

level 3 (neutral point); and (3,5], levels between 4 and 5.

.001, 𝑎𝑑 𝑗 . − 𝑟2 = 0.57; 𝑑 = 1.67), but no the interaction between

configurations and smart devices (𝐹 (1, 30) = 6.23, 𝑝 = 0.32). The

effect size (𝑑 = 1.67) was found to exceed Cohen’s convention for

a large effect (𝑑 = .80). A post-hoc Tukey evaluation shows that

the PARA (𝑝 < .05) influences participants in their perceived value

of risks compared to GUI and CUI configurations (see Table 2 for

more details), showing that the AR-based interface significantly

increases user’s perceptions of privacy risks, and consequently re-

duces their comfort about data disclosure. Our results thus show

that contextualization of data disclosure, as supported by PARA,

has a significant impact on user’s privacy perceptions regardless of

device type, whereas existing solutions have much smaller effect.

Privacy filters and privacy perceptions: In Figure 5, we can observe

the valuations of risks according to participants’ comfort levels.

Mixed ANOVA demonstrates statistical significance in the effect

of the privacy filters to the participants’ comfort levels (𝐹 (2, 60) =

96.74, 𝑝 < .001, 𝑎𝑑 𝑗 . − 𝑟2 = 0.53). A post-hoc Tukey evaluation

indicates that the enabled privacy filters influence participants

in their perceived value of risks (𝑝 < .05), where we have the

lowest perception when no filters (i.e., none) are enabled (𝑀 =

1.71, 95% : 𝐶𝐼 [1.56, 1.85]) in comparison with all (𝑀 = 3.30, 95% :

𝐶𝐼 [3.11, 3.49]) and partial (𝑀 = 2.67, 95% : 𝐶𝐼 [2.49, 2.84]). Our

results show a direct relationship between the number of enabled

privacy filters and the participants’ comfort levels.

AR versus traditional GUI: The main difference between these two

interface configurations is the lack of exact location visualization of

the smart device in GUI interface. We omit the configuration of CUI

as voice-based interaction provides limited user data contextualiza-

tion (i.e., no visualization of the collected data). The conversational

interfaces may mistakenly increase the participant’s comfort levels

due to its information representation (Figure 4c and 4d). Mixed

ANOVA shows significant effect of the contextualization of the

location on the participants’ comfort levels (𝐹 (1, 30) = 27.64, 𝑝 <

.001, 𝑎𝑑 𝑗 .−𝑟2 = 0.27; 𝑑 = 0.94), but no the interaction between con-

figurations and smart devices (𝐹 (1, 30) = 4.23, 𝑝 = 0.4). The effect

size for this analysis (𝑑 = 0.94) was found to exceed Cohen’s (1988)

convention for a large effect (𝑑 = .80). A post-hoc Tukey analysis
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Table 2: Summary of the results from privacy perceptions, privacy control, and qualitative feedback of the participants. We

mark in bold the statistically significant interaction paradigms.

Privacy perceptions Privacy control
Qualitative feedback

PU PEU IOU

Interaction Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI

GUI 2.71 [2.19, 2.98] 0.7 [0.61, 0.79] 3.34 [3.11, 3.58] 3.79 [3.60, 3.98] 3.22 [2.94, 3.49]

CUI 3.21 [2.34, 2.70] 0.62 [0.52, 0.73] 2.22 [1.80, 2.64] 2.38 [1.99, 2.76] 2.22 [1.88, 2.56]

PARA 2.29 [2.03, 2.56] 0.81 [0.67, 0.95] 4.14 [3.61, 4.67] 4.16 [3.38, 4.48] 3.92 [3.47, 4.38]

shows that the PARA visualization of the location of the smart de-

vice has lower comfort levels (𝑀 = 2.17, 95% : 𝐶𝐼 [2.00, 2.33]) than

GUI (data collected visualization) with no location visualization

(𝑀 = 2.65, 95% : 𝐶𝐼 [2.45, 2.84]). Participants lowered their comfort

levels when the location of the device is displayed in PARA.

Novelty of the use of AR: Despite the use of technologies (i.e., 43.8%

of participants see AR as an unfamiliar technology), the privacy per-

ceptions of the participants (i.e., comfort levels) are not influenced

by the use of the proposed AR system (PARA).

5.2 Privacy control

5.2.1 Study design. A factorial study design that assesses users’

privacy control according to the configuration used: 2 (between-

subjects: smart device types) × 3 (within-subjects: experimental

configurations) factorial design.

5.2.2 Evaluationmetrics. Weevaluate the privacy control by record-

ing the number of enabled/disabled privacy filters for each con-

figuration. The available configurable privacy filters in the smart

camera and smart speaker are five and three, respectively.

5.2.3 Results of privacy filter preferences. We compare participants

answers for each scenario and their ideal privacy filter settings.

Mixed ANOVA shows that there is a significant effect of the config-

uration used on the percentage of privacy filters enabled, regardless

of the smart device types (𝐹 (2, 60) = 4.66, 𝑝 < .001, 𝑎𝑑 𝑗 .−𝑟2 = 0.47).

A post-hoc Tukey evaluation shows (𝑝 < .05) that the PARA in-

terface increases the probabilities of that a participant will enable

more privacy filters in comparison with GUI and CUI (see Table 2).

Figure 6a depicts the participants’ ideal privacy filter enabled ac-

cording to the configuration. The PARA interface thus helps users

to be involved in the decision process of privacy configuration,

especially when a control channel is available. Participants will not

keep the default settings when installing a smart device, providing

better privacy management than GUIs and CUIs.

5.3 Qualitative feedback

5.3.1 Evaluation Metrics. We measure the qualitative feedback us-

ing the TAM, which includes three criteria: perceived usefulness

(PU), perceived ease of use (PEOU), and intention to use (IOU). We

follow a 5-point scale to measure the three criteria quantitatively,

with additional comments (Answer: open-answer). We use the Cron-

bach alpha to measure the internal consistency of the technology

acceptance model scale.

(a) Ideal privacy filter according

to the participants and interac-

tion paradigms.

1

2

3

4

5

PU PEOU IOU

T
A

M
 (

1
−

5
)

CUI GUI PARA

(b) TAM (perceived usefulness,

PU; perceived ease of use, PEOU;

intention of use, IOU) responses.

Figure 6: Participants’ ideal privacy filters and feedback.

5.3.2 Results. We analyze user perceptions of our AR configura-

tion and compare it against the two traditional interaction paradigms

(Cronbach’s alpha = .73), see Figure 6b and Table 2. Mixed ANOVA

shows a significant effect of PARA to the participants’ perception

of usefulness (𝐹 (2, 30) = 24.78, 𝑝 < .001, adj. − 𝑟2 = 0.50). A post-

hoc Tukey test shows that non-AR interfaces (GUI and CUI) and

PARA configurations differ significantly (𝑝 < .05). The partici-

pants perceive the usefulness of the proposed PARA configura-

tion higher than GUI and CUI. Mixed ANOVA shows a signifi-

cant effect of the configurations on the perceived easiness of use

(𝐹 (2, 30) = 31.18, 𝑝 < .001, adj. − 𝑟2 = 0.62). A post-hoc Tukey

evaluation shows that the PARA is significant higher than CUI

configuration, but there is no significant difference with the GUI.

Mixed ANOVA (𝐹 (2, 30) = 25.19, 𝑝 < .001, adj.− 𝑟2 = 0.51) shows a

significant effect of the configurations on the participants’ intention

of use. A post-hoc Tukey analysis (𝑝 < .05)) compares the statistical

difference between the PARA configuration which have statistical

significance against GUI and CUI. Accordingly, our results highlight

how our AR interface is perceived as the most useful and practical.

In contrast, the GUI and CUI (primarily text-based metaphor) are

perceived as inadequate for managing privacy preferences.

5.3.3 Participants’ experiences. The participants mentioned that

the CUI configuration is challenging to configure the privacy filters

due to the voice-command-based interactions. Some participants

were reluctant to use voice interaction, P1: ‘voice interaction opens

another channel to garner user’s information without their aware-

ness.’ Participants found the visualization of collected data by GUI

and AR are useful during their privacy decision process. Several

participants highlighted the difficulties. That is, the current system



ICMI ’21, October 18ś22, 2021, Montréal, QC, Canada Carlos Bermejo Fernandez, Lik Hang Lee, Petteri Nurmi, and Pan Hui

might have to visualize the collected data of other types of data

(e.g., from light sensors) and how the application of privacy filters

might work. Overall, the participants felt that the AR configuration

is the ‘more fun and easy-to-use’, and offers an efficient way to

visualize the collected data and device’s location.

5.4 Privacy concerns

5.4.1 Evaluation metrics. This metric corresponds with the Inter-

net users’ information privacy concerns (IUIPC) [26], which con-

tains three dimensions: collection, control, and perception. We use

the questions from [32] as our reference. We use a 5-point scale

response for the IUIPC questions.

5.4.2 Analysis and results. The participants are not fully aware

of all privacy risks, despite being tech-savvy and having privacy

attitudes resembling early adopters. Answers to the IUIPC indicated

that the participants shared a common concern that third parties

can infer their personal information from their online activities. To

analyze the IUIPC, we first performed Principal Component Analy-

sis (PCA) to verify each scale’s dimensionality. The PCA showed

the original components predicted the total variance: collection

(𝛼=0.8), control (𝛼=0.76), and awareness (𝛼=0.68). The participants’

concerns are low regarding the collection possibilities of smart de-

vices. Despite the low concerns in data collection environments, our

results show the effects of PARA on the participants’ perceptions

of privacy, where our proposed system lower their comfort levels.

6 DISCUSSION AND LIMITATION

Discussion. The proliferation and heterogeneity of smart devices

make efficient user awareness and privacymanagement challenging.

Users with traditional interfaces require a high cognitive workload

to get informed about privacy awareness and control, and simulta-

neously the traditional interfaces do not respond well in the contin-

ually shifting context of such environments [30]. Contextualization

of disclosure, i.e., collected data and location, becomes a prominent

user affordance of evaluating their privacy. Smart devices currently

do not provide fine-grained privacy management, no more than the

deletion of stored data (e.g., voice logs in Amazon Echo devices) [5].

Our results show that users move beyond the default setting when

an appropriate privacy control channel exists, potentially offering

privacy filters and thus fine-grained privacy management of smart

devices. The individuals using PARA are more sensitive about the

exact device location and the corresponding data disclosure, and

simultaneously being aware of the privacy risks and hence privacy

management. Prior works attempted to demonstrate this effect but

limited to coarse-grained indicators have failed to show this effect

due to being limited to coarse-grained indicators, such as reporting

the device’s existence in a room with a textual description of the

shared data and the management of it [1, 32].

Our evaluation compares the AR-driven privacy assistant with

two other interaction paradigms ś the graphical user interface (GUI)

and the conversational user interface (CUI). AR places intuitive and

noticeable privacy visualisations in the blurred boundary between

the physical and the digital spatial environment. In other words,

AR has been overlaid on the top of the smart devices at home. The

visuals directly connect the privacy risk with the devices in the

user’s private environment, which drives the user toward securing

their own privacy proactively. In contrast, GUIs and CUIs offers

relatively vague information reflecting the potential privacy leak-

age [3, 29]. Such visuals cannot sufficiently inform users about the

risks and benefits of the collected data and hence are unable to

assist the users in their privacy decisions. This makes users more

vulnerable to privacy intrusions and reduces the user’s trust and

comfort to the smart devices especially when intrusions occur.

Limitations. Our evaluation shows that AR results in lower com-

fort levels than the non-AR counterparts for both the smart camera

and speaker. It is worthwhile to mention that the participants show

lower comfort levels in general for all conditions to smart speakers.

Several participants reflected that the news about privacy issues

with Amazon Alexa/Echo [22, 27], did impact and bias their privacy

awareness to the smart speaker compared to the camera. This also

reflects the comfort level is influenced by the user knowledge. Mean-

while, the existing AR metaphor could create excessively visual

alerts to the participants. However, the AR design of comforting

visuals are out of the study scope in this paper. On the other hand,

the current evaluation limits to two noticeable and representative

devices. That is, users know their existence. Other studies demon-

strated that users have dynamic judgement of data collection across

devices and the user’s situations [8, 28].

7 CONCLUSION AND FUTUREWORK
This paper presents a fine-grained privacy-enhancing systemnamed

PARA, which provides precise contextualization of disclosure and

facilitates the user’s understanding of their disclosed data. PARA

also provides privacy filters to facilitate privacy control through AR.

Experimental evaluation with 32 participants sheds light on the

usage of AR for managing privacy risks associated with consumer-

grade smart devices. Information is contextualized and visualized

through PARA, providing a significant effect on privacy perceptions.

The increased privacy perceptions manifested in a higher desire to

control privacy, as evidenced by users enabling a higher number of

privacy filters with PARA than traditional interfaces.

For future work, we will extend PARA to other sensing modal-

ities, e.g., magnetometers, light sensors, while the existing scope

focuses on visual and audio surveillance through smart cameras

and speakers, Also, we will investigate the effect of various AR visu-

alization designs on privacy perceptions. Motivated by the findings

in [37], we will display the range of monitoring of different sensors

using the AR visualization to study the effects on users’ privacy

perceptions. Finally, we will consider the usage of PARA in smart

public environments, where AR privacy filters could serve multiple

users, perhaps with conflicting interests and privacy policy.
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