
Proceedings of

SAT COMPETITION 2023
Solver, Benchmark and Proof Checker Descriptions

Tomáš Balyo, Marijn J. H. Heule, Markus Iser, Matti Järvisalo, and Martin Suda (editors)

University of Helsinki
Department of Computer Science
Series of Publications B
Report B-2023-1

ISSN 1458-4786
Helsinki 2023

2

PREFACE

The area of Boolean satisfiability (SAT) solving keeps on making progress. Besides new algorithms
and better heuristics, refined implementation techniques turned out to be vital for the success story
of SAT solving. To keep up the driving force in improving SAT solvers, SAT solver competitions
provide opportunities for solver developers to present their work to a broader audience and to
objectively compare the performance of their own solvers with that of other state-of-the-art solvers.

SAT Competition 2023 (SC 2023, https://satcompetition.github.io/2023/), a competitive
event for SAT solvers, was organized as a satellite event of the 26th International Conference on
Theory and Applications of Satisfiability Testing (SAT 2023). SC 2023 stands in the tradition of the
previously organized main competitive events for SAT solvers: the SAT Competitions held 2002–
2005; biannually during 2007–2013; 2014, 2016–2018, and 2020–2022; the SAT Races held in 2006,
2008, 2010, 2015, and 2019; and SAT Challenge 2012.

SC 2023 consisted of a total of three tracks: Main Track (with CaDiCaL 1.5.3 Hacks and No Limits
sub-tracks), Parallel Track and Cloud Track. There were three ways of contributing to SC 2023:
by submitting one or more solvers to participate in the competition; by submitting interesting
benchmark instances on which the submitted solvers could be evaluated in the competition; and
as a new development for 2023 by submitting an unsatisfiability proof checker. An open call for
proof checkers resulted in the choice of four proof checkers to choose from for solver developers
participating in the competition.
The rules of SC 2023 required all contributors to submit a short, 1–2 page long description as part
of their contribution. This compilation contains these non-peer-reviewed descriptions in a single
volume, providing a way of consistently citing the individual descriptions and finding out more
details on the individual solvers, proof checkers and benchmarks.

Successfully running SC 2023 would not have been possible without active support from the com-
munity at large. We would like to thank the StarExec initiative (http://www.starexec.org) for the
computing resources needed to run SC 2023. Many thanks go to Aaron Stump for his invaluable
help in setting up StarExec to accommodate for the competition’s needs. Furthermore, we thank
Amazon for providing the resources and support to develop parallel and distributed solvers on the
AWS cloud and for executing the Cloud and Parallel tracks. Finally, we would like to emphasize
that a competition does not exist without participants: we thank all those who contributed to SC
2023 by submitting either solvers or benchmarks and the related description.

Tomáš Balyo, Marijn J. H. Heule, Markus Iser, Matti Järvisalo, & Martin Suda
SAT Competition 2023 Organizers

3

4

Contents

Preface . 3

Solver Descriptions

Watch Sat and LTO for CaDiCaL
Norbert Manthey . 10

Cadical_rel_Scavel and Cadical_rel_1.5.3.Scavel
Zhihui Li, Guanfeng Wu, Yang Xu, Keming Wang, Zhiguo Long and Zhibin Yu 12

CaDiCaL_vivinst, IsaSAT, Gimsatul, Kissat, and TabularaSAT Entering the SAT Com-
petition 2023
Armin Biere, Mathias Fleury and Florian Pollitt 14

Kissat_MAB_prop in SAT Competition 2023
Yu Gao . 16

SBVA-CaDiCaL and SBVA-Kissat: Structured Bounded Variable Addition
Andrew Haberlandt and Harrison Green . 18

Kissat-INCSP: Introducing High Performing Software Prefetching Conscious Kissat-INC
Karthikeya Namoju, Kalind Karia, Supratik Chakraborty and Biswabandan
Panda . 19

SeqFROST at the SAT Competition 2023
Muhammad Osama and Anton Wijs . 21

Preprocessors PreLearn and ReEncode Entering the SAT Competition 2023
Joseph E. Reeves and Randal E. Bryant . 23

BreakID-kissat in SAT Competition 2023 (System Description)
Bart Bogaerts, Jakob Nordström, Andy Oertel and Çağrı Uluç Yıldırımoğlu . . 25

New Rephasing Strategies and Their Combinations
Jiongzhi Zheng, Mingming Jin, Kun He, Zhuo Chen and Jinghui Xue 27

kissat-hywalk-gb, kissat-hywalk-exp, kissat-hywalk-exp-gb, and malloblin Entering the
SAT Competition-2023
Md Solimul Chowdhury . 28

MapleCaDiCaL
Jonathan Chung, Sam Buss and Vijay Ganesh 30

ESA Solvers, Kissat_MAB_Binary and AMSAT in SAT Competition 2023
Shuolin Li, Chu-Min Li, Mao Luo, Jordi Coll, Mohamed Sami Cherif, Djamal
Habet and Felip Manyà . 32

Parallel by Default – MergeSat and MergeSat-Pcasso
Norbert Manthey . 34

5

hKis, uKissatInc, PaKisInc and PahKis in the SAT Competition 2023
Rodrigue Konan Tchinda and Clémentin Tayou Djamegni 37

gdrcnf – solver for SAT 2023
Luke Nuttall . 38

PRS: A new parallel/distributed framework for SAT
Zhihan Chen, Xindi Zhang, Yuhang Qian and Shaowei Cai 39

DPS-Kissat
Hidetomo Nabeshima, Tsubasa Fukiage, Yuto Obitsu and Katsumi Inoue 41

New Concurrent Painless solvers based on Kissat-MAB: P-KISSAT and P-KISSAT-STR
Vincent Vallade, Souheib Baarir and Julien Sopena 42

pKisDS: Dynamic Clause Sharing with Bandit Algorithms
Zhihui Xie, Xu Liu, Wanqian Luo, Junhua Huang, Hui-Ling Zhen, Xijun Li,
Mingxuan Yuan and Shuai Li . 44

Mallob{32,64,1600} in the SAT Competition 2023
Dominik Schreiber . 46

Benchmark Descriptions

Benchmark Compilation for SAT Competition 2023
Markus Iser . 48

The Profitable Robust Production Problem
Md Solimul Chowdhury . 50

UNSATcoin
Jonathan Chung, Sam Buss and Vijay Ganesh 52

Verifying Floating-Point Commutativity with GRS
Robin Trüby, Mathias Fleury and Armin Biere 53

Replacing RISC-V Instructions by Others
Sonja Gurtner, Lucas Klemmer, Mathias Fleury and Daniel Große 54

Matching of Properly Intersecting Intervals
Yu Gao . 55

Python Function Register Allocation Benchmarks
Andrew Haberlandt and Harrison Green . 56

A SAT-Benchmark Set from the Approximation of Trigonometric Functions for SAT-based
Verification
Kai Hiller and Alexander Weigl . 57

Benchmark Problems from Parameterized Encoding of Brent Equations over Z2

Karthikeya Namoju, Kalind Karia, Supratik Chakraborty and Biswabandan
Panda . 61

Testing the ASCON Hash Function
Manthey Norbert . 63

Symmetry Reduced SAT Encodings for the Social Golfer Problem
Shubh Jaju, Valentin Mayer-Eichberger and Abdallah Saffidine 64

SAT Encodings of Acceptance Problems in Abstract Argumentation
Andreas Niskanen . 66

Crafted Benchmark Formulas Requiring Symmetry Breaking and/or Parity Reasoning
Bart Bogaerts, Jakob Nordström, Andy Oertel and Çağrı Uluç Yıldırımoğlu . . 67

6

Subsumption Benchmarks
Luke Nuttall . 70

Verifying Hash Table Safety Properties in AWS C99 Package with CBMC
Muhammad Osama and Anton Wijs . 71

Pigeon Hole and Mutilated Chessboard with Mixed Constraint Encodings and Symmetry-
Breaking
Cayden R. Codel, Joseph E. Reeves and Randal E. Bryant 72

Simplified and Randomized Formula REGN

Shuolin Li, Chu-Min Li, Mao Luo, Jordi Coll, Mohamed Sami Cherif, Djamal
Habet and Felip Manyà . 74

Logical Equivalence Checking of Arithmetic Benchmarks
Zhihui Xie, Xu Liu, Wanqian Luo, Junhua Huang, Hui-Ling Zhen, Xijun Li,
Mingxuan Yuan and Shuai Li . 76

CNF Generation of Arithmetic Circuits
Zhihan Chen, Xindi Zhang, Yuhang Qian and Shaowei Cai 77

Encoding Reduced Simon Cipher
Zhonqyi Zhang . 78

SAT Instances based on the Set Covering Problem with Conflict
Jiongzhi Zheng, Mingming Jin, Kun He, Zhuo Chen and Jinghui Xue 80

Proof Checker Descriptions

GRAT: a formally verified (UN)SAT proof checker
Peter Lammich . 81

VeriPB and CakePB in the SAT Competition 2023
Bart Bogaerts, Ciaran McCreesh, Magnus O. Myreen, Jakob Nordström, Andy
Oertel and Yong Kiam Tan . 86

Verified LRAT and LPR Proof Checking with cake_lpr
Yong Kiam Tan, Marijn J. H. Heule and Magnus O. Myreen 89

Solver Index . 91
Benchmark Index . 92
Proof checker Index . 93
Author Index . 94

7

8

SOLVER DESCRIPTIONS

Watch Sat and LTO for CaDiCaL
Norbert Manthey

nmanthey@conp-solutions.com
Dresden, Germany

Abstract—When reading the source code of the solver CAD-
ICAL, many differences to solvers based on MINISAT 2.2 or
GLUCOSE 2.2 can be found. Porting an algorithm detail in
unit propagation from CADICAL to MERGESAT resulted in
a performance degradation. In MERGESAT, when watching a
satisfied literal during unit propagation, the clause is moved to
the watch list of that literal. In 2021, CADICAL just updated
the blocking literal of the clause and keeps the clause in the
current watch list. Since then, this change was not picked
up in CADICAL. Hence, we ported MERGESAT’s behavior
to CADICAL. Furthermore, link-time-optimization, as used in
MERGESAT, is enabled.

I. UNIT PROPAGATION IMPROVEMENTS

SAT solvers are used in many fields. Hence, some solvers
are heavily tuned to perform well for target applications. Other
research focusses on improving the overall solver performance
in general. Many heuristic and algorithmic extensions to the
core algorithm have been proposed [1]. The overall runtime
distributions among the algorithm components still did not
change significantly: unit propagation still takes a vast majority
of the overall runtime [6], [3].

A. Watching Clauses in Propagation

The modification presented in this description alters an
implementation detail of unit propagation that is different in
CADICAL when being compared to other MINISAT 2.2-based
SAT solvers that participate in competitive events. The two
watched literals scheme has been implemented first in [7]. The
next major improvement to skip processing clauses early was
to move literals, so called blocking literals, from the clause
into the watch list data structure. MINISAT 2.2 2.1 [2] started
to use a blocking literal. When propagating a clause, first
the truth value of the blocking literal is checked. In case the
blocking literal is satisfied, the related clause is known to be
satisfied. Therefore, the clause does not have to be processed
further. This technique helps to improve the performance of
SAT solvers [6].

In MINISAT 2.2, the blocking literal of a clause is typically
the other watched literal. However, any other literal of the
clause could be chosen.

B. How to Handle Satisfied Clauses

When a blocking literal is not satisfied, the clause has to be
processed. During this process, each clause of the watch list
for the current literal has to be iterated. For each clause, the
truth value of all literals has to be checked, in case we find a
conflict clause or unit clauses that force the extension of the

current truth assignment. For satisfied clauses, we only need
to process the literals until we find a satisfied clauses.

One difference between CADICAL and MINISAT 2.2 based
solvers is the way how they treat these satisfied clauses.
MINISAT 2.2 based solvers watch the satisfied literal. CAD-
ICAL skips updating watch lists. Furthermore, CADICAL
implements further extensions, like memorizing the literal in
a clause that was tested when last processing the clause [4].

a) Always Watching the Satisfied Literal: When a satis-
fied literal is detected in a clause during propagating a literal,
the clause is removed from the current watch list. As a next
step, solvers append the clauses to the watch list of the satisfied
literal. Both operations are constant time, but require accessing
the other watch list, which can lead to a cache miss [6]
and TLB miss [3]. The watch list of the other literal can be
higher in the search tree, so that the clause will be touched
less frequent in the remainder of the search. Restarts might
reduce the saving, on the other hand solver today use partial
restarts [9], chronological backtracking [8] as well as trail
saving [5]. All these technique give this saving back partially.

b) Just Updating the Blocking Literal: As an alternative,
CADICAL keeps watching the current literal, which is now
falsified, but updates the blocking literal to the satisfied literal.
While this breaks the assumption that falsified literals are only
watched for conflict clauses or unit clauses, we still know that
the clause is satisfied. Hence, breaking this assumption does
not have consequences. The positive effect is that the clause
does not have to be removed from the current watch list. This
results in no cache miss, nor a TLB miss. However, when the
search progresses, after backtracking, the same clause might
need to be processed again. In case the satisfied literal is
still satisfied, only the blocking literal has to be processed.
Otherwise, backtracking also removed the assignment for the
blocking literal, so that the whole clause needs to be processed
again.

c) Watching the Satisfied Literal in CADICAL: Prelimi-
nary testing with MERGESAT when just updating the blocking
literal of a clause resulted in a performance degradation.
Hence, removing this technique for CADICAL might result in
a performance improvement. The solver CADICAL-WATCH-
SAT implements this modification.

Not processing a satisfied clause during propagation soon
again can result in a different order of propagated literals,
as well as different conflicts, and consequently in different
heuristic updates and many different follow-up search steps
of the solver. Hence, performance differences can not only be
attributed to lower or higher compute resource utilization.

Proceedings of SAT Competition 2023: Solver and Benchmark Descriptionsvolume B-2023-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2023 .

10

II. GENERIC IMPROVEMENTS

Besides modifying the algorithm directly, other parameters
of the environment can be influenced as well. Helping the CPU
to access likely-to-be-accessed memory early with prefetch-
ing [6], as well as using (transparent) huge pages to reduce
the paging overhead of a program [3] have been discussed
already. Another area to investigate is compiler parameters.
By default, compilers optimize code per compilation unit,
which usually translates to source files. Optimizations across
source files, so called link time optimization (LTO), has to be
enabled explicitly. Besides spotting programming errors during
compile time, LTO also allows to improve the performance of
a solver slightly. LTO can be enabled by adding -flto to the
compiler invocation.

This compile time flag has been added to the build files for
CADICAL.

III. AVAILABILITY

The source of the modified CADICAL is publicly
available at https://github.com/conp-solutions/cadical/tree/
watch-sat-flto. The used version of the tool is “rel-1.5.3-3-
g598343f”. This solver has been submitted to the CADICAL
hack track.

REFERENCES

[1] A. Biere, M. Heule, H. van Maaren, and T. Walsh, Eds., Handbook of
Satisfiability. Amsterdam: IOS Press, 2009.

[2] N. Eén and N. Sörensson, “An extensible SAT-solver,” in SAT 2003, ser.
LNCS, E. Giunchiglia and A. Tacchella, Eds., vol. 2919. Heidelberg:
Springer, 2004, pp. 502–518.

[3] J. K. Fichte, N. Manthey, J. Stecklina, and A. Schidler, “Towards faster
reasoners by using transparent huge pages,” in Principles and Practice of
Constraint Programming, H. Simonis, Ed. Cham: Springer International
Publishing, 2020, pp. 304–322.

[4] I. P. Gent, “Optimal implementation of watched literals and more general
techniques,” J. Artif. Intell. Res., vol. 48, pp. 231–251, 2013. [Online].
Available: https://doi.org/10.1613/jair.4016

[5] R. Hickey and F. Bacchus, “Trail saving on backtrack,” in Theory and
Applications of Satisfiability Testing – SAT 2020, L. Pulina and M. Seidl,
Eds. Cham: Springer International Publishing, 2020, pp. 46–61.

[6] S. Hölldobler, N. Manthey, and A. Saptawijaya, “Improving resource-
unaware SAT solvers,” ser. LNCS, C. G. Fermüller and A. Voronkov,
Eds., vol. 6397. Heidelberg: Springer, 2010, pp. 519–534.

[7] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik,
“Chaff: Engineering an efficient SAT solver,” in DAC 2001. New York:
ACM, 2001, pp. 530–535.

[8] A. Nadel and V. Ryvchin, “Chronological backtracking,” in Theory and
Applications of Satisfiability Testing – SAT 2018, O. Beyersdorff and
C. M. Wintersteiger, Eds. Cham: Springer International Publishing, 2018,
pp. 111–121.

[9] P. van der Tak, A. Ramos, and M. Heule, “Reusing the assignment trail
in cdcl solvers,” JSAT, vol. 7, no. 4, pp. 133–138, 2011.

11

 Cadical_rel_Scavel and Cadical_rel_1.5.3.Scavel
1st Zhihui Li, 2nd Guanfeng Wu, 3rd Yang Xu,

4th Keming Wang, 5 th Zhiguo Long, 6thZhibin Yu

School of Mathematics

National-Local Joint Engineering Laboratory of System Credibility

Automatic Verification, Southwest Jiaotong University

Chengdu, China

lizhihui@swjtu.edu.cn, wgf1024@swjtu.edu.cn,

xuyang@swjtu.edu.cn, kmwang@swjtu.edu.cn,

zhiguolong@swjtu.edu.cn, zbyu@swjtu.edu.cn

Abstract— This document describes Cadical_rel_Scavel and

Cadical_rel_1.5.3.Scavel at the SAT Competition 2023.

I. INTRODUCTION

The base solvers we used to implement our techniques
are Cadical2022 and cadical-rel-1.5.3, obtained from the
SAT Competition 2022 [1]. Based on the very competitive
solvers, some minor changes mainly include the following
technical solutions: Loose Clause Management, Horn, and
Core First Unit Propagation by adjusting the 2-watched
scheme[3] and adjusting the program flow with the previous
centralized technology.

II. ALGORITHM AND IMPLEMENTATION DETAILS

A. Loose Clause Management

The performance of the CDCL solver is closely related to
its learned clause database management. Triggering deletion
at the right time and preserving high-quality learning clauses
as much as possible are two essential aspects of learned
clause management. The original intention of our
improvement was to keep the initial learned clause deletion
strategy and the quality evaluation standard of the learned
clause set and relax the original deletion standard
appropriately. Based on the learned clause formation process,
we define the proportion of original clauses involved in
conflict formation in an appropriate range and the empty
clauses formed by conflict formation as original clauses,
which serve as the basis for us to relax. Some of the
previously deleted learned clauses may be avoided or
delayed. According to the experimental test, the proportion
of original clauses in the formation of participating conflicts
is between 0.108 and 0.328. Suppose the empty clause
formed by the conflict is the original clause. In that case, it
can be considered that the learned clause obtained from the
corresponding conflict analysis is more relevant to the
original problem formally described by the CNF instances.

B. Horn and Core First Unit Propagation

In a typical CDCL implementation, a data structure called

the 2-watched scheme is commonly used because the main

function unit Propagation needs to detect unit clauses as

efficiently as possible. The horn clause is an essential type of

clause that plays a vital role in automatic reasoning, and the

Core clause is defined as one with a literal block distance less

than or equal to 7. [2] shows that core first unit propagation

can improves the performance of the winner of the SAT

Competition 2018, MapleLCMDistChronoBT. So we

performed this technique on the horn clause by adjusting the

2-watched scheme [3].

C. External Restart Frame

Quick restart technology is very important for solving
UNSAT incidents, and as a major technical module of the
CDCL framework, restart is triggered multiple times inside
the solver function. Before and after the restart, the values of
the variables score of the decision branch are not changed;
the 2-watched scheme usually presents one of them in order.
The clause literals order or the construction of Elements of
watches by the previous propagation forms this order.
Usually, the order in every literal 2-watches is fixed. We
adjust the program flow with an external restart frame to start
the solution process several times based on the number of
restarts that have occurred by adding an outer loop around
the solve function. Before the solve function is called, we
increase the decision branch value of an inactive variable,
manage the size of three clause sets (core, iter2, and local)
boldly and randomize the existing 2-watched Scheme for the
adverse effect of the former solution stage on the latter one is
eliminated as far as possible.

III. SOLVERS

The Cadical_rel_Scavel in this submission is a small
number of modifications of CaDiCaL2022 and cadical-rel-
1.5.3 [1] that participated in SAT competition 2022, which
implement our techniques of II. A ~C.

The cadical_rel_1.5.3.scavel solver in this submission is a
modification of cadical-rel-1.5.3 that participated in SAT
competition 2022, which only implements our techniques of
II.B.

IV. ACKNOWLEDGMENTS

The author would like to thank the developers of all
predecessors of Minisat, CaDiCaL, Kassat, and all the
authors who contributed to the modifications that have been
integrated. Their solvers are the foundation of our learning
and improvement. This work is also supported by the
National Natural Science Foundation of China (Grant No:
62106206).

REFERENCES

[1] SC 2022, https://satcompetition.github.io/2022/.

[2] Jingchao Chen:Core First Unit Propagation.CoRR abs/1907.01192

(2019)

[3] M. Moskewicz, C. Conor, Y. Zhao, L. Zhang and S. Malik, Chaff:

Engineering an efficient SAT solver, in Proc. DAC’01 (2001).

Proceedings of SAT Competition 2023: Solver and Benchmark Descriptionsvolume B-2023-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2023 .

12

13

CaDiCaL vivinst, IsaSAT, Gimsatul, Kissat, and
TabularaSAT Entering the SAT Competition 2023

Armin Biere
University Freiburg

biere@cs.uni-freiburg.de

Mathias Fleury
University Freiburg

fleury@cs.uni-freiburg.de

Florian Pollitt
University Freiburg

pollittf@cs.uni-freiburg.de

This note describes our solvers entering the SAT Com-
petition 2023. To the CaDiCaL hack track we submitted
CaDiCaL vivinst, which combines vivification and variable
instantiation. To the main track we submitted the verified
solver IsaSAT, a new improved version of Kissat, and the
new highly configurable SAT solver TabularaSAT. Our parallel
multi-threaded solver Gimsatul went through several optimiza-
tions too and was submitted to the parallel track.

I. CADICAL VIVINST

This CaDiCaL hack extends version 1.5.3 with a specific
form of variable instantiation as part of vivification [1]. It
targets removal of literals with few occurrences, which in turn
is hoped to allow more variable elimination.

During vivification clauses clauses are considered to be viv-
ified one-by-one. Each such vivification candidate is negated
and all its literal are assumed to be false, which is interleaved
with standard Boolean constraint propagation (BCP), while
ignoring the candidate. Conflict analysis is then used to
determine if the clause can be shortened.

Instantiation is another technique implemented in CaDiCaL.
It is based on variable instantiation [2] and differs only slightly
from vivification, as it also assumes the negation of the literals
of the candidate, except for one literal which is assigned to
true. If standard BCP derives a conflict, then we can shorten
the clause by removing the literal assumed to be true.

To combine both techniques, the last literal in each vivi-
fication candidate is assumed in both phases: first as being
false for vivification, then as being true for instantiation. In
both cases a conflict after propagation might allow to shrink
the clause. As our implementation of vivification sorts literals
in the candidate by decreasing number of occurrences (to
reduce the necessity for backtracking), this form of variable
instantiation tries to remove literals that appear less often.

II. ISASAT

Our verified SAT solver IsaSAT version sc2023 has been
submitted to the main track. It is verified using a refine-
ment approach: We start from PCDCL, a combination of
CDCL and various rules to enable inprocessing. Then we
refine this non-deterministic calculus down to executable
code, which is exported and then compiled by the LLVM

compiler. Similar to last year, we submitted only the exe-
cutable code and not the whole Isabelle development. The lat-
ter is available at https://bitbucket.org/isafol/isafol/src/sc2023/
Weidenbach Book/ as part of the IsaFoL development.

Compared to last year, we have only implemented and veri-
fied forward subsumption by extending PCDCL with strength-
ening through (self-)subsumption-resolution (SR). Then we
refine to check SR for certain candidates – the candidates
appear in occurrence lists, but this is only important at the
last step of our refinement.

In order to improve performance on satisfiable instances,
IsaSAT now uses two different decision heuristics: VMTF in
focused mode and ACIDS [3] in stable mode. The latter uses
internally pairing heaps: the idea is to average the score with
the current conflict count when bumping a literal. To simplify
the formalizing, we have not verified rescaling and instead
capped our conflict count at uint64 max (afterwards, it is not
incremented anymore, meaning that eventually our ACIDS
decision heuristic becomes static). We actually intended to go
to EVSIDS like most other solvers from the SAT Competition,
but the verification effort for the pairing heaps was high
enough that we went for the simpler ACIDS for this year’s
competition (EVSIDS can also use pairing heaps).

We further found and fixed one performance issue, which
was due to the (unverified) parser passing clauses to our (ver-
ified) solver in an array. Previously we forgot to properly free
this array after initializing the solver internal data structures.
Fixing this issue is not expected to improve solving speed but
might lead to fewer memory-outs.

III. GIMSATUL

Our parallel solver Gimsatul was implemented for the last
SAT Competition 2022 in a rush within two months and thus
was missing several features that might help to improve multi-
threaded solving and more importantly also was much slower
in single threaded mode than Kissat. Some of these issues have
been addressed since then in Version 1.1.1.

To improve memory locality, we replaced opaque watcher
pointers by offsets to thread-local watchers pushed on a stack.
This indexing restricts the number of watchers to 231 − 1
instead of using pointers in watch lists, but makes room for
blocking literals to speed up propagation. We further allocate
space in the watcher structure for directly storing literals of

Proceedings of SAT Competition 2023: Solver and Benchmark Descriptionsvolume B-2023-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2023 .

14

clauses of size 3 and 4, thus avoiding additional memory
dereferences for such short but non-binary clauses.

The thread-local pools for sharing clauses are now indexed
by the glue of shared clauses which makes sharing more fine
grained. Mode switching, rephasing, global simplification, as
well as local probing and restarts now all follow the same
schedule as in Kissat (and include scaling based on formula
size). The variable decision priority queue is also initialized
in the same way as in Kissat. Vivification is split into a tier1
phase and tier2 phase and has been optimized as well as clause
data-base reduction based on tier information.

We added chronological backtracking, which reduces the
number of forced backtracks during importing clauses (par-
ticularly units). Importing clauses during vivification was
improved in a similar way. Finally we eagerly jump binary
reasons during propagation to speed-up conflict analysis for
instances with man binary clauses.

IV. KISSAT

For the new version 3.1.0 (sc2023) of Kissat submitted to
the main track of the SAT Competition 2023 we added back
vivification of irredundant clauses compared to last year and
also simplified the vivification code. We fixed two heuristic
bugs, by avoiding to increase the number of conflicts during
vivification, as it is used for scheduling various procedures, as
well as initializing used flags of learned clauses correctly.

In last year’s light version we already removed hyper binary
resolution, which freed up one bit for variable indices. Without
hyper binary resolution most clauses are actually irredundant
and therefore it further did not make sense to also keep the
redundant bit in binary virtual clauses, which we dropped then
too. This raises the total number of supported variables to
230 − 1 (so more than one billion variables).

We also incorporated the ESA idea proposed in the compe-
tition last year [4] and schedule bounded variable elimination
attempts based on variables scores (EVSIDS and VMTF
stamps [3]) and refined it further by taking the difference and
not as previously the sum when falling back to the number of
positive and negative occurrences of a variable. We also went
over SAT sweeping again which improved it slightly.

Experience gained in implementing and optimizing parsing
and printing LRAT proofs in lrat-trim helped to improve
DIMACS parsing and DRAT printing time for Kissat too.

Finally we eagerly jump binary reason clauses during propa-
gation to reduce the time spent in conflict analysis substantially
and total solving time slightly for instances with many binary
clauses even though it risks missing unique implication points
in the binary implication graph.

V. TABULARASAT

As others, we have been exploring different ways to im-
plement SAT solving in a configurable way, in order to
perform experiments which are supposed to shed light on
understanding to what extend specific techniques contribute
to overall solver performance as well as to ease the process
of tuning and extending SAT solvers.

In this regard CaDiCaL (following Lingeling) uses (many)
run-time options to achieve configurability even though there
are some minor compile-time options (used in the competition)
to for instance remove all redundant statistics gathering code.
The problem with that run-time approach is that the solver
has to include at compile-time all the variability needed to
support the various options which poses the substantial risk
that features not used in a specific configuration of interest
inadvertently incur a non-negligible run-time penalty.

To avoid this risk we also explored the other extreme and
only used compile-time options in our didactic SAT solver
Satch. This allows dependencies of features to be detected
by the compiler (making heavy use of the C preprocessor).
However this compile-time approach turned out to produce
complex code and was too cumbersome to be maintained
in general, e.g., when different configurations should share
a certain part of the code, such as allowing to use VMTF
as alternative for EVSIDS, either with mode switching, or in
focused or stable mode only configurations.

As a compromise, to overcome the problems with both
approaches, we developed TabularaSAT, which was submitted
to the main track of the competition in version number 1.0.0
(sc2023). The basic idea is that we allow only a small number
of different compile-time views on the main source, such as
“default” and particularly “vanilla”. While “default” is the
version submitted to the competition and has all the code of
redundant and disabled features removed at compile-time, the
“generic” view compiles them in and allows to enable them
at run-time (which incurs a performance penalty).

The “vanilla” view tries to mimic MiniSAT, but with the
additional “baggage” of the generic (and default) view needed
to support full variability in TabularaSAT removed.

Besides these efforts to support improved configurability
TabularaSAT reimplements most features of Kissat in a cleaner
and easier to understand way (in C++), but without compro-
mising on performance. It does not make use of an embedded
SAT solver though (such as Kitten in Kissat) and thus SAT
sweeping and semantic gate extraction are missing. On the
other hand the implementation of the clause arena and its use
is faster while still being cleaner than in Kissat. Performance
of TabularaSAT and Kissat are comparable.

REFERENCES

[1] C. Li, F. Xiao, M. Luo, F. Manyà, Z. Lü, and Y. Li, “Clause vivification
by unit propagation in CDCL SAT solvers,” Artif. Intell., vol. 279, 2020.

[2] G. Andersson, P. Bjesse, B. Cook, and Z. Hanna, “A proof engine
approach to solving combinational design automation problems,” in
Proceedings of the 39th Design Automation Conference, DAC 2002,
New Orleans, LA, USA, June 10-14, 2002. ACM, 2002, pp. 725–730.
[Online]. Available: https://doi.org/10.1145/513918.514101

[3] A. Biere and A. Fröhlich, “Evaluating CDCL variable scoring schemes,”
in SAT, ser. Lecture Notes in Computer Science, vol. 9340. Springer,
2015, pp. 405–422.

[4] S. Li, J. Coll, C.-M. Li, M. Luo, D. Habet, and F. Manjà, “Solvers Cadical
ESA and Kissat MAB ESA in 2022 SAT competition,” in Proc. of SAT
Competition 2022 – Solver and Benchmark Descriptions, ser. Department
of Computer Science Series of Publications B, T. Balyo, M. Heule,
M. Iser, M. Järvisalo, and M. Suda, Eds., vol. B-2022-1. University
of Helsinki, 2022.

15

Kissat MAB prop in SAT Competition 2023
Yu Gao

Theory Lab, Central Research Institute, 2012 Labs, Huawei Technologies Co., Ltd.
Beijing, China

gaoyu99@huawei.com

Abstract—This document explains the features of our SAT
solver Kissat MAB prop.

I. INTRODUCTION

Recent research has shown that the Multi-Armed Ban-
dit (MAB) framework efficiently combines different search
heuristics for SAT solvers. However, a reward function to
estimate the performance of the branching heuristics may
prefer the better heuristic for some instances while misleading
on the others. We propose a new reward function in the solver
Kissat MAB prop.

II. REWARD FUNCTION BY PROPAGATIONS

[1] measures the performance of a heuristic by the esti-
mated fraction of search tree it explores per decision. This
naturally translates to

reward =
log2(propagations)

decidedV ars

in the context of SAT solvers. propagations and
decidedV ars denote the number of propagations and
touched variables in a run of VSIDS or CHB, respectively.
Note that we use the number of propagations instead of the
number of decisions. We also try to normalize the reward
function by time, i.e., let propagations and decidedV ars be
the number of propagations and touched variables per second
in a run.

III. PARTIAL SYMMETRY BREAKING BY RAT

[7] proposed a method to express symmetry breaking in
DRAT proofs. To break a symmetry σ where σ(xi) = pi for
1 ≤ i ≤ n, they perform the following steps.

1) Introduce a new variable x′
i of each variable xi

in the support of σ. The value of x′
i is equal to

xi if (x1, . . . , xn) is lexicographically no more than
(p1, . . . , pn). Otherwise, the value of x′

i is equal to pi.
2) For each clause c containing one or more xi or x̄i, we

add a new clause c′ that is obtained from c by replacing
the xi, x̄i respectively by x′

i, x̄
′
i. Delete c after adding

c′.
3) Prove (x′

1, . . . , x
′
n) ≤ (p′1, . . . , p

′
n). (The ≤ means

“lexicographically no more than”.)
The claim in Item 3 is true for all σ satisfying σ = σ−1.

Otherwise, we may need to apply the symmetry σ for more
than once to make sure (x′

1, . . . , x
′
n) ≤ (p′1, . . . , p

′
n). For ex-

ample, suppose the symmetry σ satisfies σ(x1) = x3, σ(x2) =

x1, σ(x3) = x2. Also suppose (x1, x2, x3) = (1, 0, 0). We
have (x1, x2, x3) > (p1, p2, p3) = (0, 1, 0). Thus, x′

i is equal
to pi. We do not have (0, 1, 0) = (x′

1, x
′
2, x

′
3) ≤ (p′1, p

′
2, p

′
3) =

(0, 0, 1).
We use bliss [5] to detect symmetry in the formula and

implement a method similar to [7] for all symmetries σ
satisfying σ = σ−1. In addition to [7], we also performs
some additional steps to transfer the lexicographical symmetry
breaker back to the original variables xi:

1) Fill in the proof for the claim (x′
1, . . . , x

′
n) ≤

(p′1, . . . , p
′
n).

2) Delete all clauses containing the auxiliary variables si.
Now xi are not contained in any clause.

3) Add clauses ¬xi ∨ x′
i and xi ∨ ¬x′

i. This means that
xi = x′

i.
4) Add the original clauses back. Clause c is redundant

because of c′ and xi = x′
i.

5) Proves the breaker, (x1, . . . , xn) ≤ (p1, . . . , pn). Each
clause in the breaker is redundant because we proved
(x′

1, . . . , x
′
n) ≤ (p′1, . . . , p

′
n) and have xi = x′

i.
6) Keep the original formula and the proof for

(x1, . . . , xn) ≤ (p1, . . . , pn). Delete the other clauses.
In general, this method cannot break all symmetries in the

formula. If two symmetries contains a common variable, the
second symmetry cannot be broken becuase xi are contained
in the breaker for the first symmetry. This falsifies the claim
in Step 2 and invalidates Step 3.

IV. IMPLEMENTATION

Our new solver is based on the Kissat Pre solver in SAT
competition 2022 [2]. The main changes we implement are
the following.

• Change the reward function to depend on number of
propagations (instead of decisions) in MAB between
VSIDS and CHB as mentioned above.

• Bump scores of related variables at the beginning of the
search [3] so that VSIDS and CHB do not cold-start.

• Preprocess the formula to generate PR clauses using the
PReLearn framework [4]. Our solver calls itself as the
inner solver. When called as the inner solver, it skips
some preprocessing steps.

• Extract hints from Fourier-Motzkin Variable Elimination
[2].

• Add pseudo-boolean proof logging for preprocessing in
[2].

Proceedings of SAT Competition 2023: Solver and Benchmark Descriptionsvolume B-2023-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2023 .

16

• Detect pigeonhole contradiction while preprocessing and
prove unsatisfiability by PR.

• Use bliss [5] to detect symmetry in the formula and
partially break the symmetries as mentioned above.

• Use 4-nary heap instead of binary heap for maintaining
variable scores.

• Add -flto for optimizations while compling.

REFERENCES

[1] A. Paparrizou, and H. Wattez. Perturbing Branching Heuristics in
Constraint Solving. In H. Simonis, editor, Principles and Practice of
Constraint Programming, pages 496-C513, Cham, 2020. Springer Inter-
national Publishing.

[2] Z. Chen, X. Zhang, S. Cai, and P. Lu. CDCL Solvers with Improved
Local Search Cooperation and Pre-processing. SAT COMPETITION
2022, pages 37-C38, 2022.

[3] M. Osama, and A. Wijs. Multiple Decision Making in Conflict-Driven
Clause Learning, in Proc. of ICTAI (Nov. 2020), Baltimore, USA. IEEE,
2020, pp. 161-C169.

[4] J. E. Reeves, M. J. H. Heule, and R. E. Bryant. Preprocessing
of Propagation Redundant Clauses. In Automated Reasoning: 11th
International Joint Conference, IJCAR 2022, Haifa, Israel, August
8–10, 2022, Proceedings. Springer-Verlag, Berlin, Heidelberg, 106–124.
https://doi.org/10.1007/978-3-031-10769-6 8

[5] T. Junttila, and P. Kaski. Engineering an efficient canonical labeling tool
for large and sparse graphs. In Proceedings of the Ninth Workshop on
Algorithm Engineering and Experiments and the Fourth Workshop on
Analytic Algorithms and Combinatorics, pages 135-C149. SIAM, 2007.

[6] R. K. Tchinda, and C. T. Djamegni. PADC MapleLCMDistChronoBT,
PADC Maple LCM Dist and PSIDS MapleLCMDistChronoBT in the
SR19, SAT RACE 2019, p. 33.

[7] M. J. H. Heule,W. Hunt, and N. Wetzler. Expressing Symmetry Breaking
in DRAT Proofs. Proc. of the 25th Int. Conference on Automated
Deduction (CADE 2015). Volume 9195 of LNCS., Cham, Springer
(2015) 591-606

17

SBVA-CADICAL and SBVA-KISSAT: Structured
Bounded Variable Addition

Andrew Haberlandt∗ and Harrison Green∗
Carnegie Mellon University

Pittsburgh, Pennsylvania, USA
{ahaberla, harrisog}@cmu.edu
∗Authors contributed equally

Abstract—We describe two submissions to the SAT Competi-
tion 2023 that use Structured Bounded Variable Addition (SBVA)
as a preprocessor to CaDiCaL (SBVA-CADICAL) and Kissat
(SBVA-KISSAT).

I. BOUNDED VARIABLE ADDITION

Bounded Variable Addition (BVA) [1] is a preprocessing
technique for re-encoding formulas by adding new auxiliary
variables and eliminating clauses. BVA is often able to sub-
stantially reduce formula size by identifying sets of clauses
which can be generated by a much smaller set resolving on a
new auxiliary variable.

BVA uses a greedy algorithm which systematically con-
structs these sets of clauses by identifying the next best literal
at each step. Once the algorithm is not able to add more clauses
to the set, a new auxiliary variable is created and the process
repeats. For some types of problems, BVA can improve solve
time by an order of magnitude, even if the formula size is not
significantly reduced.

However, the original implementation of BVA is fragile
with respect to formula randomization. Many literals may be
tied in the greedy step, and breaking these ties differently
leads to different variable additions. Since the original BVA
algorithm implicitly breaks ties using the order of variables
in the formula, it produces different auxiliary variables when
the formula is scrambled. In practice, we find that scrambling
the formula often disrupts the ability of BVA to generate large
speedups.

II. STRUCTURED BVA

Structured Bounded Variable Addition (SBVA) [2] improves
upon BVA’s greedy algorithm with a tiebreaking heuristic
based on the formula’s Variable Incidence Graph. Since this
heuristic does not consider variable order or polarity, it is
robust to formula randomization. Furthermore, we find that
the variables added by SBVA more closely reflect problem-
specific structure even in randomized formulas; in the packing
k-coloring problem, for example, SBVA can generate auxiliary
variables which cluster nearby variables in the 2D grid space
of the problem.

AH is supported by NSF Graduate Research Fellowship Grant No. DGE-
2140739.

We applied BVA and SBVA as preprocessors to CaDiCaL
in a large scale benchmark and found that even though these
preprocessors incur a runtime overhead, the total runtime
(preprocessor time + solve time) was reduced on average
compared to running the original formulas directly in CaD-
iCaL. Additionally, the variant with SBVA as a preprocessor
was able to solve the most formulas across every category of
the benchmark even though it was provided with randomized
instances.

III. IMPLEMENTATION

Our submission to the 2023 SAT competition augments
existing solvers CADICAL (version 1.5.3) and KISSAT (ver-
sion 3.0.0) [3] with SBVA as a pre-processing step. In both
configurations, we use SBVA to generate a reduced CNF
formula which is then passed directly to CaDiCaL/Kissat.
Our implementation of SBVA is capable of producing DRAT
proofs for the preprocessing step which we concatenate with
the solver’s proof to generate a full proof for UNSAT in-
stances.

In some cases, SBVA can impose a large overhead on
instances which can be solved quickly without reduction.
In a large-scale benchmark performed on more than 29 000
formulas from previous SAT competitions, we found it was
effective to impose a timeout policy on SBVA [2]. Specifically,
in these configurations we allow SBVA to run for 200 seconds.
Upon reaching this timeout, the current formula (with any
partial reductions that have been performed so far) is passed to
the solver. In our benchmark, we found that SBVA terminates
within 200 seconds on approximately 95% of problems.

REFERENCES

[1] N. Manthey, M. J. Heule, and A. Biere, “Automated reencoding of
boolean formulas,” in Hardware and Software: Verification and Testing:
8th International Haifa Verification Conference, HVC 2012, Haifa, Israel,
November 6-8, 2012. Revised Selected Papers 8. Springer, 2013, pp.
102–117.

[2] A. Haberlandt, H. Green, and M. J. Heule, “Effective auxiliary variables
via structured reencoding,” in-review at SAT 2023.

[3] A. Biere, K. Fazekas, M. Fleury, and M. Heisinger, “CaDiCaL, Kissat,
Paracooba, Plingeling and Treengeling entering the SAT Competition
2020,” in Proc. of SAT Competition 2020 – Solver and Benchmark
Descriptions, ser. Department of Computer Science Report Series B,
T. Balyo, N. Froleyks, M. Heule, M. Iser, M. Järvisalo, and M. Suda,
Eds., vol. B-2020-1. University of Helsinki, 2020, pp. 51–53.

Proceedings of SAT Competition 2023: Solver and Benchmark Descriptionsvolume B-2023-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2023 .

18

Kissat-INCSP: Introducing High Performing
Software Prefetching Conscious Kissat-INC

Karthikeya Namoju1, Kalind Karia2, Supratik Chakraborty3, Biswabandan Panda4

1,3,4Department of Computer Science and Engineering, 2Department of Electrical Engineering
Indian Institute of Technology, Bombay

karthikeyaiitb@gmail.com1, kalind1610@gmail.com2, {supratik3, biswa4}@cse.iitb.ac.in

I. INTRODUCTION

Kissat-inc [1] is one of the fastest SAT solvers as per
SAT competition 2022. However, we find the performance
of kissat-inc can further be improved by making it conscious
of some of the optimizations (like better memory layout and
software prefetching) from the computer architecture world.
In the pursuit of achieving better performance in runtime, we
profile kissat-inc with some of the benchmarks provided with
SAT 2022. Based on the profiling of a few benchmarks, we
find that a certain portions of kissat-inc is memory-intensive,
which means most of the time the data required for the data
structures used in kissat-inc are not available at a multi-level
cache hierarchy, which is ubiquitous in modern processors.
This memory bottleneck causes the processor to stall for long
affecting the overall runtime of the SAT solver. In section II
we discuss two major hotspots of the solver and in section
III we present our solutions which are based on software
prefetching and cache conscious programming. We haven’t
made any algorithmic changes to the solver. And in section
IV we present the results of our experiments. Finally we end
this report with section V Conclusion, which highlights some
of the algorithmic suggestions we have.

II. THE HOTSPOTS

PROPAGATE_LITERAL() is the top hotspot for most
of the benchmarks. The solver spends most of its execution
time in this function. Main purpose of it is to traverse the
watch list of a literal to find a conflicting clause1. Accessing
first entry of the watchlist and all the non-binary clauses it
encounters while traversing the list are the two major memory
bottlenecks. A significant fraction of execution pipeline slots
could be stalled due to these demand memory loads.

kissat_next_decision_variable() is the next
top hotspot for a few benchmarks. The algorithm maintains
a queue for a set of variables (Each literal corresponds to
two variables, lit and not_lit). The queue is stored in a
linked-list links. Say only two variables v1 and v2 are in
the queue then the following holds :

links[v1].next = v2;
links[v2].prev = v1;

1We only talk about the functionality that is relevant to the bottleneck.

When solver->stable is set to false, this function
fetches the last enqueued unassigned variable by traversing the
links data structure in the queue order. In each iteration, it
accesses the entry in links and values corresponding to a
particular variable. Since both the data structures are indexed
by variables, there is no spatial locality or a systematic pattern
in these accesses hence the architecture couldn’t really predict
its next access and prefetch it into the cache beforehand.
Essentially in every iteration, it has to fetch an entry of this
huge list from the main memory, which is proved to be costly
[2].

III. ENCHANCEMENTS

A. Cache friendly queue

First, we present our solution to the 2nd hotspot by using an
auxiliary data structure. Just for the purpose of this function,
we maintain a list of struct exp_queue to store the queue
explicitly i.e in the queue order. The algorithm is implemented
in such a way that this list is always in sync with links.

struct exp_queue
{ unsigned variable_idx, prev, next; }

dequeue() operation introduces some garbage entries in
this list, hence we still need the fields prev and next.
We dynamically grow this list on-demand and is compacted
whenever its size is increased. Now we can traverse the queue
efficiently as they are arranged contiguously in the memory.
But we still have to deal with accesses of entries in values.
For this, we have used software prefetching to prefetch the
value required in the next iteration. There’s some room for
improvement here, you can store a copy of the variable’s value
in the exp_queue itself. But this implementation requires
more understanding of the code, hence we didn’t do it.

With this we were able to get a massive 600 secs improve-
ment on a benchmark2.

B. Software prefetching

Now we present our solution to the first hotspot. The core
idea is to use software prefetching to make watchlist entries
available in the cache by the time the program accesses them.
One of the challenges in software prefetching is to prefetch

2Its name is ncc none 7047 6 3 3 0 0 420.cnf. It was used in SAT2022
competition.

Proceedings of SAT Competition 2023: Solver and Benchmark Descriptionsvolume B-2023-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2023 .

19

the data not too late or not too early, meaning the prefetched
data should still be in the cache when it’s actually accessed.
Also, the memory address of the required data should be
accessible while prefetching. We prefetch the head of the
watchlist corresponding to the next PROPAGATE_LITERAL
function call in the caller as this is the first location in the
whole code where we can access its address. Here we make
an important observation on the size of watchlists that we
encounter in PROPAGATE_LITERAL().

We have taken 266 benchmarks from 2022 SAT competition
and plotted watchlist size distribution across these in Fig.1. We

Fig. 1. Histogram of the sizes of watchlists encountered

have observed that 86% of the time, watchlist size is less than
50, which means the loop in PROPAGATE_LITERAL() will
last around 50 iterations. Since each iteration is not memory
intensive, it is likely that prefetched data will still be at some
cache level when it’s actually accessed. Note that there’s no
point in prefetching watchlist entries corresponding to the
next iteration in PROPAGATE_LITERAL() as the watchlist
is contiguous. Here we could also prefetch conditionally based
on size of the watchlist. We tried prefetching only when size
(watches->size) is greater than 0, 2 and 4. But we have
observed that this is degrading the performance, most likely
because it might have to go to memory to fetch the size value.

Instead of aggressive prefetching (i.e prefetching all the
time), we have tried a heuristic that divides the whole ex-
ecution process into several phases. We used luby sequence
to decide the start point of every phase. Every phase can
be divided into 2 sub-phases, Exploration and Exploitation
phases. In the exploration phase we compute the average
load latency to fetch the head of the watchlist and if it is
greater than an empirically determined threshold, then we
prefetch in the exploitation phase. But we weren’t able to get
promising results with this because of the overhead incurred
by the heuristic (overhead because of all the additional data
accesses introduced). This also proves the fact that the hostpot
function, PROPAGATE_LITERAL is highly sensitive to load
instructions. Moreover, we tried switching off the prefetching
for the whole run and keeping all the code corresponding to

the heuristic inplace. We observed that there was a substantial
degradation in performance with respect to the case where we
do prefetching based on exploration phase. This means the
heuristic is working as expected but the overhead is masking
all the improvement we got.

IV. EXPERIMENTS

We ran kissat-incsp on the starexec cluster against 266
benchmarks that were used in SAT 2022 competition. We
were able to get a total of 4196 seconds improvement over
kissat-inc. All these 266 benchmarks did not timeout in SAT
2022 competition. We have sorted benchmarks based on the
improvement we got with respect to kissat-inc and plotted it
for the top 50 benchmarks in Fig. 2.

Fig. 2. Enchancement of top 50 benchmarks (top with respect
to the total decrease in execution time wrt kissat-inc).

V. CONCLUSION

There’s still a lot of scope for improvement from computer
architecture point of view. We were able to get a substantial
enhancement with just aggressive prefetching, so we expect
certain algorithmic changes can bring in a huge improvement.
One of them could be traversing non-binary and binary clauses
in two separate phases instead of one and maintaining spatial
locality for non-binary clauses in the main memory (in the or-
der of accesses in PROPAGATE_LITERAL). Since accessing
non-binary clauses is one of the major hotspots, we expect
the solver to perform better if all the clauses are accessed in
a contiguous fashion.

REFERENCES

[1] Z. Chen, X. Zhang, S. Cai, and P. Lu. CDCL Solvers with Improved
Local Search Cooperation and Pre-processing. Proceedings of SAT
competition 2022, pages 37–38. University of Helsinki, 2022.

[2] Armin Biere, Katalin Fazekas, Mathias Fleury, and Maximillian
Heisinger. CaDiCaL, Kissat, Paracooba, Plingeling and Treengeling
Entering the SAT Competition 2020. Proceedings of SAT competition
2020, pages 50–53. University of Helsinki, 2020.

20

SEQFROST at the SAT Competition 2023
Muhammad Osama and Anton Wijs

Department of Mathematics and Computer Science
Eindhoven University of Technology, Eindhoven, The Netherlands

{o.m.m.muhammad, a.j.wijs}@tue.nl

I. INTRODUCTION

This paper presents a brief description of our solver SE-
QFROST which stands for Sequential Formal ReasOning
about SaTisfiability in 3 different configurations. SEQFROST
was a new solver first introduced in our last year submission
[1] with efficient data structures and many code optimizations.
In this year submission, we updated our sorting strategies
and overhauled most of the data structure names to improve
readability. We also fixed a slight bug in SEQFROST parser
that caused empty clauses in the input formula to be skipped.
Further, as in instead of resetting the number of target assign-
ments, we decay by some factor. The core of SEQFROST
heuristics and its simplifications that are based on our work
in [2]–[5] remains unchanged.

II. DECISION MAKING

The decision-making step in SEQFROST switches periodi-
cally from the standard single-decision procedure as originally
introduced in CDCL search to our MDM procedure previously
presented in [6]. Both single and multiple decisions are
chosen according to VSIDS, VMTF, and CHB [7] branching
heuristics. Last year, we added the latter to our solver decision
heuristics to improve the quality of the picked decisions in
MDM. SEQFROST decides whether to use VSIDS or CHB
based on MAB restarts [8]. The decision phases of multiple
decisions are still improved via local search but only once at
the initial MDM call.

III. VARIABLE ELIMINATION

In gate-equivalence reasoning, we substitute eliminated vari-
ables with deduced logical equivalent expressions. Combining
gate equivalence reasoning with the resolution rule tends to
result in smaller formulas compared to only applying the
resolution rule [2]–[5], [9]. Let Gℓ be the gate clauses having ℓ
as the gate output and Hℓ the non-gate clauses, i.e., clauses not
contributing to the gate itself. For regular gates (e.g. AND),
substitution can be performed by resolving non-gate with gate
clauses as follows: Rx = {{Gx ⊗ H¬x}, {G¬x ⊗ Hx}},
omitting the tautological and the redundant parts {Gx⊗G¬x}
and {Hx ⊗H¬x}, respectively [10].

In this submission, we focus on finding definitions for
irregular gates by checking the unsatisfiability of the co-factors
formula {Sx|¬x ∪ S¬x|x}, that is, the formula obtained by
removing all occurrences of x from Sx and ¬x from S¬x.
In [11], a BDD-based approach is used to solve the co-factors.
In our recent work [5], we replace the BDD structure with a

function table (bit-vector) encoding the clausal core of the co-
factors. The clausal core is mapped back to the original gate
clauses Gx and G¬x by adding back x and ¬x, respectively.
Then, the set of resolvents Rx = Sx ⊗ S¬x is reduced to
{{Gx ⊗ G¬x}, {Gx ⊗ H¬x}, {G¬x ⊗ Hx}}, dropping the
redundant part {Hx ⊗H¬x}. In contrast to gate substitution,
the resolvents {Gx ⊗ G¬x} are not necessarily tautological.
Function tables are implemented and enabled by default in
SEQFROST.

IV. EAGER REDUNDANCY ELIMINATION

ERE was designed originally to target and remove re-
dundant equivalences after a resolution step. It repeats the
following until a fixpoint has been reached: for a given
formula S and clauses C1 ∈ S, C2 ∈ S with x ∈ C1

and x̄ ∈ C2 for some variable x, if there exists a clause
C ∈ S for which C ≡ C1 ⊗x C2, then let S := S \ {C}
iff (C is learnt ∨ (C1 is original ∧ C2 is original)). The
clause C in this case is called a redundancy and can be
removed without altering the original satisfiability. In addition
to the redundancies removal, we observed that if the resolvent
C1⊗x C2 is not equivalent to any clause, it can still subsume
many others in S. However, to preserve correctness, subsumed
clauses are only strengthened via the generated resolvents.
Suppose that C = (C ′∪C ′′). Extended-ERE (i.e. as we call it
in SEQFROST) may strengthen C by removing the redundant
literals C ′ (resp. C ′′) if C ′′ = C1⊗xC2 (resp. C ′ = C1⊗xC2).

V. CODE OPTIMIZATIONS

As mention earlier in the introduction section, all pointers
of vector-type variables are prefetched to save the time spent
in calling the overloaded indexing operator []. Additionally,
all functions repeatedly called in unit propagation and conflict
analysis are replaced with macros as inlining is not always
guaranteed by the compiler. Lastly, the bytes generated by
DRAT proof are now stored in a 1-MB buffer. Once, the
buffer is full, the data is written to the output file via a single
call to fwrite (i.e. writes data in burst mode). Compared to
previous submissions and other solvers, putc_unlock was
being called to write on disk byte by byte which, of course,
adds unnessary overhead to the proof generation.

VI. SUBMISSIONS

Similar to 2022’s submission [1], the solver instance SE-
QFROST comprises all configurations described in the previ-
ous sections, in which MDM with local search, CHB decision

Proceedings of SAT Competition 2023: Solver and Benchmark Descriptionsvolume B-2023-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2023 .

21

heuristic, and all simplifications are enabled with Extended
ERE to strengthen original clauses only (e.g. the option
redundancyextend=1 is set). The second configuration
SEQFROST-ERE-ALL extends ERE with both original and
learnt clause strengthening (e.g. redundancyextend=2).
The third configuration SEQFROST-NO-EXTEND disables
Extended ERE (e.g. redundancyextend=0). The initial
settings of the SEQFROST have been tuned and tested on
TU/e HPC.

REFERENCES

[1] M. Osama and A. Wijs, “SeqFROST at the SAT Race 2022,” in Proc. of
SC (2022), ser. Report Series B, vol. B-2022-1. University of Helsinki,
2022, pp. 32–34.

[2] M. Osama, A. Wijs, and A. Biere, “SAT Solving with GPU Accelerated
Inprocessing,” in Proc. of TACAS (Mar. 2021), Luxembourg, ser. LNCS,
vol. 12651. Springer, 2021, pp. 133–151.

[3] M. Osama and A. Wijs, “Parallel SAT Simplification on GPU Archi-
tectures,” in Proc. of TACAS (Apr. 2019), Prague, Czech Republic, ser.
LNCS, vol. 11427. Springer, 2019, pp. 21–40.

[4] ——, “SIGmA: GPU Accelerated Simplification of SAT Formulas,” in
Proc. of IFM (Dec. 2019), Bergen, Norway, ser. LNCS, vol. 11918.
Springer, 2019, pp. 514–522.

[5] M. Osama, A. Wijs, and A. Biere, “Certified SAT Solving with GPU
Accelerated Inprocessing,” Formal Methods in System Design, Springer,
2023, accepted.

[6] M. Osama and A. Wijs, “Multiple Decision Making in Conflict-Driven
Clause Learning,” in Proc. of ICTAI (Nov. 2020), Baltimore, USA. IEEE,
2020, pp. 161–169.

[7] J. H. Liang, V. Ganesh, P. Poupart, and K. Czarnecki, “Exponential
recency weighted average branching heuristic for sat solvers,” in Pro-
ceedings of the Thirtieth AAAI Conference on Artificial Intelligence, ser.
AAAI’16. AAAI Press, 2016, p. 3434–3440.

[8] M. S. Cherif, D. Habet, and C. Terrioux, “Combining VSIDS and
CHB Using Restarts in SAT,” in 27th International Conference on
Principles and Practice of Constraint Programming (CP 2021), ser.
Leibniz International Proceedings in Informatics (LIPIcs), L. D. Michel,
Ed., vol. 210. Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2021, pp. 20:1–20:19.

[9] M. Osama and A. Wijs, “GPU Acceleration of Bounded Model Checking
with ParaFROST,” in Proc. of CAV (Jul. 2021), USA, ser. LNCS, vol.
12760. Springer, 2021, pp. 447–460.

[10] M. Järvisalo, M. Heule, and A. Biere, “Inprocessing Rules,” in Proc. of
IJCAR (Jun. 2012), Manchester, UK, ser. LNCS, vol. 7364. Springer,
2012, pp. 355–370.

[11] A. Biere, “Lingeling, Plingeling and Treengeling Entering the Sat
Competition 2013,” in Proc. of SC (2013), ser. Report Series B,
vol. B-2013-1. University of Helsinki, 2013, pp. 51–52. [Online].
Available: http://hdl.handle.net/10138/40026

[12] H. E. Bal, D. H. J. Epema, C. de Laat, R. van Nieuwpoort, J. W. Romein,
F. J. Seinstra, C. Snoek, and H. A. G. Wijshoff, “A Medium-Scale
Distributed System for Computer Science Research: Infrastructure for
the Long Term,” Computer, vol. 49, no. 5, pp. 54–63, 2016.

22

Preprocessors PRELEARN and REENCODE
Entering the SAT Competition 2023

Joseph E. Reeves and Randal E. Bryant
Carnegie Mellon University, Pittsburgh, United States

Abstract—This system description presents two preprocessors,
and four total solving configurations. Two of the configurations
use the preprocessor PRELEARN that adds short PR clauses
to a formula. The derivation produced by PRELEARN requires
a PR checker. The other two configurations rely on a pre-
processor that extracts cardinality constraints from a formula.
Then REENCODE rewrites the cardinality constraints with the
commander encoding. A DRAT derivation of the rewritten
constraints is generated and appended to a SAT solver’s proof.
After preprocessing, the new formula is passed to the unmodified
version 3.0.0 of KISSAT for solving.

PRELEARN

PRELEARN is a preprocessor that detects short PR (prop-
agation redundant) [1] clauses in a formula. These clauses
are added to the formula, and then the formula is passed to
the SAT solver KISSAT [2]. Short PR clauses can resemble
symmetry-breaking used to make exponentially hard problems
for resolution easier to solver [3].

PRELEARN is built on top of the SAT solver SADICAL.
The tool iterates over candidate clauses, and for each it
generates and solves the positive reduct. If the positive reduct
is satisfiable, the candidate clause is a PR clause and can
be added to the formula. Further, the satisfying assignment
for the positive reduct is the witness for the PR clause,
and is added to the PR proof generated by PRELEARN.
There are additional heuristics used for generating candidate
PR clauses. We generate only binary candidate PR clauses
with the heuristics described in the corresponding paper for
PRELEARN [4].

After PR clauses are added to the formula, the new formula
is passed to the SAT solver KISSAT. If the formula is sat-
isfiable, the assignment produced by KISSAT will satisfy the
original formula. If the formula is unsatisfiable, the DRAT
proof produced by KISSAT is appended to the PR proof
produced by PRELEARN. Together these form a complete
DPR proof for the original formula.

In one configuration, we run PRELEARN for a 100 second
timeout, with the default configuration form the paper. In the
other configuration ”-tern”, we run PRELEARN for a 300
second timeout and additionally learn ternary PR clauses with
an increased depth parameter testing more candidates. We do
not run the preprocessor on formulas with more than 500,000
variables or 1 million clauses. PRELEARN can be found at
https://github.com/jreeves3/PReLearn.

CARDINALITY CONSTRAINT EXTRACTION

A cardinality constraint on Boolean variables has the form
`1 + `2 · · · + `s ≥ k and is satisfied by a partial assignment
if the sum of the assigned literals is at least k. A commonly
occurring cardinality constraint in SAT problems is the at-
most-one (AMO) constraint, where at most a single literal
in the constraint can be true. There are several ways to
encode AMO constraints into conjunctive normal form (CNF),
including the pairwise encoding, the Sinz encoding [5], and
the commander encoding [6].

We built a tool that detects AMO constraints. For pairwise
AMO constraints, the tool greedily expands cliques formed
by binary clauses. For non-pairwise AMO constraints the
tool guesses problem variables (variables occurring in the
constraint) and auxiliary variables (new variables used to
encode the constraint) and a set of clauses, then uses a BDD to
verify these guesses represent an actual cardinality constraint.
In practice, the tool works well at finding Sinz and commander
AMO constraints.

Once the constraints are extracted, we use a reencoding
scheme. REENCODE takes the detected AMO constraints
and reencodes them with the commander encoding. This is
effective for formulas with large AMO constraints using the
pairwise encoding, since the commander encoding introduces
auxiliary variables that often improve solver performance. The
reencoded formula is passed to KISSAT. The DRAT proof
produced by KISSAT is appended to a DRAT derivation of
the reencoded constraints, forming a complete proof for the
original formula. If the formula is satisfiable, the satisfying
assignment produced by KISSAT must be extended to account
for any auxiliary variables that were removed from the original
formula during the reencoding procedure.

In the first configuration, we run the cardinality extractor for
300 seconds for pairwise AMO constraints and 300 seconds
for non-pairwise AMO constraints, with additional heuristics
for terminating early when few constraints are being detected.
In the second configuration ’-pair’, we run a version of the
cardinality extractor optimized for extracting pairwise encod-
ings only for 300 seconds. Cardinality extraction tools and
CARDINALITY-CADICAL can be found at
https://github.com/jreeves3/Cardinality-CDCL.

REFERENCES

[1] M. J. H. Heule, B. Kiesl, M. Seidl, and A. Biere, “PRuning through
satisfaction,” in Haifa Verification Conference (HVC), ser. LNCS, vol.

Proceedings of SAT Competition 2023: Solver and Benchmark Descriptionsvolume B-2023-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2023 .

23

10629, 2017, pp. 179–194.
[2] A. Biere, K. Fazekas, M. Fleury, and M. Heisinger, “CaDiCaL, Kissat,

Paracooba, Plingeling and Treengeling entering the SAT competition
2020,” 2020, unpublished.

[3] M. J. H. Heule, B. Kiesl, and A. Biere, “Short proofs without new
variables,” in Conference on Automated Deduction (CADE), ser. LNCS,
vol. 10395. Cham: Springer, 2017, pp. 130–147.

[4] J. E. Reeves, M. J. H. Heule, and R. E. Bryant, Preprocessing of
Propagation Redundant Clauses. Berlin, Heidelberg: Springer-Verlag,
2022, p. 106–124.

[5] C. Sinz, “Towards an optimal CNF encoding of Boolean cardinality
constraints,” in Principles and Practice of Constraint Programming (CP),
ser. LNCS, vol. 3709, 2005, pp. 827–831.

[6] W. Klieber and G. Kwon, “Efficient cnf encoding for selecting 1 from n
objects,” in Constraints in Formal Verification (CFV), 2007, p. 39.

24

BREAKID-KISSAT in SAT Competition 2023
(System Description)

Bart Bogaerts
Vrije Universiteit Brussel

Brussels, Belgium
ORCID: 0000-0003-3460-4251

Jakob Nordström
University of Copenhagen

Copenhagen, Denmark
and Lund University

Lund, Sweden
ORCID: 0000-0002-2700-4285

Andy Oertel
Lund University

Lund, Sweden
ORCID: 0000-0001-9783-6768

Çağrı Uluç Yıldırımoğlu
Vrije Universiteit Brussel

Brussels, Belgium
e-mail:

cagri.uluc.yildirimoglu@vub.be

Abstract—BREAKID-KISSAT combines the symmetry breaking
preprocessor BREAKID with the SAT solver KISSAT.

I. INTRODUCTION

For several years, participation in the main tracks of the
SAT competition has required solvers to output proofs in the
DRAT format [12]. For a long time, this meant that several
state-of-the-art solving techniques are de facto excluded from
participation in these tracks. One prime example of such a
technique is symmetry breaking: while for limited types of
symmetries, breaking constraints can be derived in DRAT [9],
for the general case, no techniques are known.

In 2023, for the first time, verification in other proof formats
is also allowed, thereby allowing also other solving methods
into the competition. Our solver is a combination of the
symmetry breaker BREAKID [4] and the SAT solver KISSAT
[11]. BREAKID-KISSAT outputs produces UNSAT certificates
in the VERIPB format and can be verified the VERIPB-
CAKEPB pipeline [2].

VERIPB [5]–[8] was originally designed as a proof checker
for pseudo-Boolean satisfiability and was recently extended to
pseudo-Boolean optimization [1], making it not just a viable
candidate for certification of SAT techniques, but also for
MaxSAT. The underlying proof format is a strict generalization
of DRAT. Moreover, since it is based on the cutting planes
proof system [3], it also naturally facilitates proof logging for
advanced techniques such as XOR and cardinality reasoning
[8].

II. MAIN TECHNIQUES

The workflow of our solver is as follows:
• First, the instance to a colored graph in such a way

that syntactic symmetries of the problem correspond to
automorphisms of the graph.

• Next, BREAKID uses SAUCY [10] to detect automor-
phisms of the constructed graph.

• Next, BREAKID optimizes the set of detected symmetries
to ensure complete breaking of certain subgroups. For
each of the resulting symmetries, it creates symmetry
breaking clauses.

• Subsequently, the original instance, together with the
symmetries is passed to KISSAT, which solves the re-
sulting instance.

BREAKID and KISSAT each produce a part of the resulting
proof.

III. AVAILABILITY

The source code of BREAKID is available at https://
bitbucket.org/krr/breakid/src. Our modified version of KISSAT
to output proofs in the VERIPB format rather than DRAT is
available at https://gitlab.ai.vub.ac.be/cagri/kissat3-pb2.

IV. ACKNOWLEDGEMENT

We would like to thank everyone who contributed to
SAUCY, BREAKID, and KISSAT for their efforts and for
making their tools publicly available.

REFERENCES

[1] Bart Bogaerts, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström.
Certified symmetry and dominance breaking for combinatorial optimi-
sation. In Proceedings of AAAI, 2022. accepted.

[2] Bart Bogaerts, Ciaran McCreesh, Magnus O. Myreen, Jakob Nord-
ström, Andy Oertel, and Yong Kiam Tan. Documentation of VeriPB
and CakePB for the SAT competition 2023. Available at https://
satcompetition.github.io/2023/checkers.html, March 2023.

[3] William J. Cook, Collette R. Coullard, and György Turán. On the
complexity of cutting-plane proofs. Discrete Applied Mathematics,
18(1):25–38, 1987.

[4] Jo Devriendt, Bart Bogaerts, Maurice Bruynooghe, and Marc Denecker.
Improved static symmetry breaking for SAT. In Nadia Creignou and
Daniel Le Berre, editors, Theory and Applications of Satisfiability
Testing - SAT 2016 - 19th International Conference, Bordeaux, France,
July 5-8, 2016, Proceedings, volume 9710 of Lecture Notes in Computer
Science, pages 104–122. Springer, 2016.

[5] Jan Elffers, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström.
Justifying all differences using pseudo-Boolean reasoning. In Proceed-
ings of the 34th AAAI Conference on Artificial Intelligence (AAAI ’20),
pages 1486–1494, February 2020.

[6] Stephan Gocht, Ross McBride, Ciaran McCreesh, Jakob Nordström,
Patrick Prosser, and James Trimble. Certifying solvers for clique and
maximum common (connected) subgraph problems. In Proceedings
of the 26th International Conference on Principles and Practice of
Constraint Programming (CP ’20), volume 12333 of Lecture Notes in
Computer Science, pages 338–357. Springer, September 2020.

[7] Stephan Gocht, Ciaran McCreesh, and Jakob Nordström. Subgraph
isomorphism meets cutting planes: Solving with certified solutions. In
Proceedings of the 29th International Joint Conference on Artificial
Intelligence (IJCAI ’20), pages 1134–1140, July 2020.

Proceedings of SAT Competition 2023: Solver and Benchmark Descriptionsvolume B-2023-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2023 .

25

[8] Stephan Gocht and Jakob Nordström. Certifying parity reasoning effi-
ciently using pseudo-Boolean proofs. In Proceedings of the 35th AAAI
Conference on Artificial Intelligence (AAAI ’21), pages 3768–3777,
February 2021.

[9] Marijn J. H. Heule, Warren A. Hunt Jr., and Nathan Wetzler. Expressing
symmetry breaking in DRAT proofs. In Proceedings of the 25th
International Conference on Automated Deduction (CADE-25), volume
9195 of Lecture Notes in Computer Science, pages 591–606. Springer,
August 2015.

[10] Hadi Katebi, Karem A. Sakallah, and Igor L. Markov. Symmetry and
satisfiability: An update. In Ofer Strichman and Stefan Szeider, editors,
SAT, volume 6175 of LNCS, pages 113–127. Springer, 2010.

[11] Kissat SAT solver. http://fmv.jku.at/kissat/.
[12] Nathan Wetzler, Marijn J. H. Heule, and Warren A. Hunt Jr. DRAT-

trim: Efficient checking and trimming using expressive clausal proofs.
In Proceedings of the 17th Internatjuional Conference on Theory and
Applications of Satisfiability Testing (SAT ’14), volume 8561 of Lecture
Notes in Computer Science, pages 422–429. Springer, July 2014.

26

New Rephasing Strategies and Their Combinations
Jiongzhi Zheng1,2 Mingming Jin1,2 Kun He1,2 Zhuo Chen1,2 Jinghui Xue1,2

1School of Computer Science and Technology, Huazhong University of Science and Technology, China
2Hopcroft Center on Computing Science, Huazhong University of Science and Technology, China

{jzzheng,mingmingk,brooklet60,ciaozer,jh xue}@hust.edu.cn

Abstract—This document describes our four SAT
solvers, Kissat MAB Conflict, Kissat MAB Conflict+,
Kissat MAB DeepWalk+, and Kissat MAB Rephases,
submitted to the main track of SAT Competition 2023.

I. INTRODUCTION

After selecting the branching variable, modern CDCL SAT
solvers usually need to decide the phase of the variable, i.e.,
assigning it 1 or 0. Deciding phases is very important, which
directly and significantly influences the solvers’ performance.
Maintaining saved phases to decide variables’ phases is a
popular and effective method. Kissat designs six rephasing
strategies to reset the saved phases [1] as follows.

• Original (O), which sets all saved phases to 1.
• Inverted (I), which sets all saved phases to 0.
• Best (B), which sets saved phases to best phases if any,

otherwise keeps the saved phases.
• Walk (W), which changes saved phases according to

local search results.
• Random (#), which randomly decides the saved phases.
• Flipped (F), which flips each saved phases.
In Kissat, the default rephasing policy is

{OI(BWOBWIBW#BWF)ω} (Original, Inverted;
then Best, Walk, Original, Best, Walk, Inverted, Best, Walk,
Random, Best, Walk, Flipped is repeated). We propose two
new rephasing strategies, Conflict (C) and DeepWalk (D),
and combine them with the existing strategies to obtain three
new rephasing policies. We replace the rephasing policy
in solver Kissat MAB [2] with the three new rephasing
policies and obtain three solvers, Kissat MAB Conflict,
Kissat MAB Conflict+, and Kissat MAB DeepWalk+, and
finally combine several rephasing policies to obtain solver
Kissat MAB Rephases.

II. NEW Rephasing STRATEGIES

• Conflict (C)
We maintain a conflict phase for each variable. Once a
conflict clause is found, the phases of the variables in
the conflict clause will be used to update these variables’
conflict phases. The Conflict strategy sets saved phases to
conflict phases if any, otherwise keeps the saved phases.
The conflict phases may lead the solvers to detect more
unsat cores and learn more clauses.

• DeepWalk (D)

- The first three authors contribute equally.

Inspired by solver Kissat MAB-HyWalk [3], we design
a DeepWalk strategy that sets the number of local search
rounds to 5 times the default one.

III. KISSAT MAB CONFLICT

Kissat MAB Conflict replaces the rephasing policy of
Kissat MAB with {OI(BWOBWIBW#BWFC)ω}.

IV. KISSAT MAB CONFLICT+

We find that in Kissat, there is a local optima escaping
strategy before each Best strategy, i.e., Original, Inverted,
Random, and Flipped. We believe that combining the walk-
ing phases and the best phases in the saved phases may
help the solvers find models of SAT instances faster. There-
fore, Kissat MAB Conflict+ replaces the rephasing policy of
Kissat MAB with {OI(BWBOBWBIBWB#BWFC)ω}.

V. KISSAT MAB DEEPWALK+

Kissat MAB DeepWalk+ replaces the rephasing policy of
Kissat MAB with {OI(BWBOBWBIBWB#BDBF)ω}.

VI. KISSAT MAB REPHASES

Kissat MAB Rephases combines the rephasing
policies in Kissat MAB, Kissat MAB Conflict,
Kissat MAB Conflict+, Kissat MAB DeepWalk+, and
{OI(BWBOBWIBW#BWFC)ω}.

REFERENCES

[1] A. Biere, M. Fleury, “Chasing Target Phases,” Workshop on the Prag-
matics of SAT, 2020.

[2] M. S. Cherif, D. Habet, C. Terrioux, “Kissat MAB: Combining VSIDS
and CHB through Multi-Armed Bandit,” SAT COMPETITION 2021,
2021: 15.

[3] J. Zheng, K. He, Z Chen, J. Zhou, C. M. Li, “Combining Hybrid
Walking Strategy with Kissat MAB, CaDiCaL, and LStech-Maple,” SAT
COMPETITION 2022, 2022: 20.

Proceedings of SAT Competition 2023: Solver and Benchmark Descriptionsvolume B-2023-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2023 .

27

kissat-hywalk-gb, kissat-hywalk-exp,
kissat-hywalk-exp-gb, and malloblin

Entering the SAT Competition-2023
Md Solimul Chowdhury

School of Computer Science
Carnegie Mellon University

Pittsburgh, Pennsylvania, USA
mdsolimc@cs.cmu.edu

Abstract—This document describes 4 SAT
solvers: kissat-hywalk-exp kissat-hywalk-gb,
kissat-hywalk-exp-gb, and malloblin, which are
entering to the SAT Competition-2023. The first three solvers
are submitted to the maintrack of the competition and based
on the following 2 ideas: 1) Bounded randomized exploration
amid conflict depression phases and 2) Activity score bumping
of variables that appear in the glue clauses. malloblin is
a portfolio-based distributed SAT solver that includes a new
stochastic local search (SLS) solver yallin in its employable
solvers collection.

I. BOUNDED EXPLORATION AMID A CD PHASE

This approach is based on our observation that search
in Conflict Directed Clause Learning (CDCL) entails clear
patterns of bursts of conflicts followed by longer phases
of conflict depression (CD) [1]. During a CD phase, for a
consecutive number of decisions, a CDCL solver is unable
to generate conflicts, from which the search could learn
clauses to prune the search space. To correct the course of
such a search, we propose to use random exploration to
combat conflict depression. In this approach, when the search
enters into a substantially long CD phase, instead of using
the currently active decision heuristic, we employ a uniform
random strategy for selecting decision variables. The goal of
this random exploration is to find conflicts amid a substantially
long CD phase, in which the currently active decision heuristic
is unable to find a conflict. This random selection continues,
until the search finds a conflict or takes a maximum of s > 0
random steps. We call this approach depth bounded (DB)
exploration.

Fig. 1 shows how this approach works.

II. GLUE VARIABLE BUMPING

Let a CDCL SAT solver M is running a given SAT instance
F and the current state of the search is S. We call the variables
that appeared in at least one glue clause up to the current state
S Glue Variables. We design a structure-aware variable score
bumping method named Glue Bumping (GB) [2], based on
the notion of glue centrality (gc) of glue variables. Given a
glue variable vg , glue centrality of vg dynamically measures
the fraction of the glue clauses in which vg appears, until the

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

13

14

14

15

15

16

16

17

17

18

18

19

19

heu heu heu heu heu heu heu heu heu heu heu heu heu rand randrand rand rand heu heu heu

Fig. 1: Assume that a CDCL solver is running a given instance.
This figure shows 20 consecutive decisions taken by that
solver. The top row shows decision indexes which starts at
0 and ends at 19. In the second row, the grey cells depict
decisions with no conflict and green cells depict decisions with
non-zero conflicts. For a decision, the text inside a colored
cell of the bottom row denotes type of decision strategy
(heu: heuristic decision, rand: random decision) used at that
decision. In this search snapshot, a long CD phase starts at the
5th decision. Amid this long CD phase, the search decides to
perform random decisions from decision 13. At decision 16,
with a random decision the search finds a conflict. This results
in the end of the current CD phase.

current state of the search. Mathematically, the glue centrality
of vg , gc(vg) is defined as follows:

gc(vg)←
gl(vg)

ng

, where ng is the total number of glue clauses generated by
the search so far. gl(vg) is the glue level of vg , a count of
glue clauses in which vg appears, with gl(vg) ≤ ng.

A. The GB Method

The GB method modifies a CDCL SAT solver M by adding
two procedures to it, named Increase Glue Level and Bump
Glue Variable, which are called at different states of the search.
We denote by Mgb the GB extension of the solver M .
Bump Glue Variable: This procedure bumps a glue variable
vg , which has just been unassigned by backtracking. First a
bumping factor (bf) is computed as follows:

bf ← activity(vg) ∗ gc(vg)
, where activity(vg) is the current activity score of the variable
vg and gc(vg) is the glue centrality of vg . Finally, the activity
score of vg , activity(vg) is bumped as follows:

activity(vg)← activity(vg) + bf

Proceedings of SAT Competition 2023: Solver and Benchmark Descriptionsvolume B-2023-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2023 .

28

III. A LINEAR WEIGHT TRANSFERRING ALGORITHM FOR
SLS

The weight transferring algorithm Divide and Distribute
Fixed Weights (DDFW) algorithm [6] transfers fixed amount
of wights from satisfied clauses to falsified clauses at a
local minima, as an escape measure from local minimas. We
conjectured that the fixed weight transfer in DDFW is a contrived
design choice, and a dynamic weight transfer rule would be
more natural, and be helpful for faster escape from local
minimas. Therefore, our new SLS solver yallin [4] (built
on top the SLS solver yalsat [3]) introduces a linear weight
transfer rule, which transfers a dynamic amount of weights
from satisfied clauses to the falsified clauses, whenever the
search encounters a local minima. For a given falsified clause
Cf and satisfied clauses Cs, this new weight transfer rule
transfers

a ∗W (Cs) + c

amounts of weights to Cf , where W [Cs] is the current weight
of the clause Cs, 0 ≤ a ≤ 1 is a floating-point constant,
and c ≥ 1 is an integer constant. Our initial experiments
showed that yallin improves over yalsat, on top of which
yallin is built on.

IV. SOLVERS DESCRIPTION

We have submitted three CDCL SAT solvers to the main-
track of the SAT Competition-2023, which are based on
combinations of the two approaches described in the section
I and II. The fourth solver is a portfolio-based distributed
solver that uses the technique presented in section III. In the
following, we describe our solvers:

a) kissat-hywalk-gb: This solver implements the GB
method on top of kissat MAB HyWalk [7], the winner of the
main-track of SAT Competition-2023. kissat MAB HyWalk
employs three branching heuristics: VSIDS, CHB and VMTF.
In kissat-hywalk-gb, the GB scheme is kept active only
when VSIDS and CHB are active.

b) kissat-hywalk-exp: The solver
kissat-hywalk-exp implements the DB strategy on
top of kissat MAB HyWalk, only when VSIDS and CHB
are active.

c) kissat-hywalk-exp-gb: This solver implements both
DB and GB technique on top of kissat MAB HyWalk, only
when VSIDS and CHB are active.

d) malloblin: In malloblin, we have replaced
yalsat with yallin in mallob[5], the winner in the
cloud-track of the SAT Competition-2022.

REFERENCES

[1] Md Solimul Chowdhury and Martin Müller and Jia You, Guiding CDCL
SAT Search via Random Exploration amid Conflict Depression. In
Proceedings of AAAI-2020:1428-1435.

[2] Md. Solimul Chowdhury, Martin Müller, Jia-Huai You, Exploiting Glue
Clauses to Design Effective CDCL Branching Heuristics. In Proceedings
of CP 2019: 126-143.

[3] yalsat, https://fmv.jku.at/yalsat/, access date: 15-April-2023.
[4] yallin, , https://github.com/solimul/yal-lin, access date: 15-April-2023.
[5] mallob, , https://github.com/domschrei/mallob, access date: 15-April-

2023.

[6] Abdelraouf Ishtaiwi, John Thornton, Abdul Sattar, Duc Nghia Pham:
Neighbourhood Clause Weight Redistribution in Local Search for SAT.
CP 2005: 772-776

[7] Jiongzhi Zheng, Kun He1 Zhuo Chen, Jianrong Zhou, and Chu-Min Li.
Combining Hybrid Walking Strategy with Kissat MAB, CaDiCaL, and
LStech-Maple. Proceedings of SAT Competition-2022:20-21.

2

29

MapleCaDiCaL
Jonathan Chung

University of Waterloo
Waterloo, Canada

ORCID: 0000-0001-5378-1136

Sam Buss
UC San Diego

La Jolla, United States of America
ORCID: 0000-0003-3837-334X

Vijay Ganesh
University of Waterloo

Waterloo, Canada
ORCID: 0000-0002-6029-2047

Abstract—The MapleCaDiCaL solvers combine the CaDiCaL
SAT solver with the idea of priority-based Boolean Constraint
Propagation (BCP). MapleCaDiCaL implements both the Imme-
diate BCP and Delayed BCP modes, and uses a Multi-Armed
Bandit (MAB) framework with Thompson sampling to switch
adaptively between them. We submit four different configurations
of the solver.

Index Terms—Boolean Constraint Propagation, Multi-Armed
Bandit, Thompson Sampling

I. PRIORITY-BASED BCP

Priority-based BCP [3] modifies the orders in which vari-
ables are assigned and propagated during unit propagation in
a CDCL SAT solver. This affects the conflicts detected by the
BCP algorithm, which changes the clauses learnt by the solver
for a given conflicting partial assignment. Since Delayed BCP
empirically outperforms Out-of-Order BCP [3], we choose to
implement Delayed BCP and not Out-of-Order BCP.

An algorithmic view of the main Delayed BCP procedure
is presented as Algorithm 1. The Delayed BCP algorithm
modifies the traditional BCP algorithm to respect a priority
order by delaying the assignment of a variable until the
point at which BCP processes that variable (delayed variable
assignment), propagating variables in the order that they are
assigned. This choice delays the detection of conflicts that
would otherwise have been found under immediate variable
assignment, but ensures that the propagation order is still a
topological order with respect to the implication graph. It is
only after a variable has been assigned a value that it can
contribute to unit propagation.

Since variable assignment is postponed, Delayed BCP must
check the propagation queue when searching for conflicts and
before adding a variable to the queue. Additionally, when a
variable occurs with one polarity in the propagation queue, but
is queued with the opposite polarity by some other propaga-
tion, the conflicting literal must first be assigned and placed
on the assignment trail before the BCP algorithm reports a
conflict. This is necessary to maintain the invariant on the
assignment trail expected by the conflict analysis procedure.

To minimize the introduction of additional overheads, we
choose to use the variable ordering given by the decision
variable selection heuristic already present in the solver as
the priority ordering for Delayed BCP. In particular, we use
EVSIDS as the priority ordering.

Algorithm 1: Delayed BCP
Input: Propagation queue (priority queue) pq.
Output: A falsified clause if one exists.
while pq.size() > 0 do

p← pq.pop();
assign(p);
foreach clause c rendered unit by p, resulting in

unit literal l do
if c is falsified then

pq.clear();
return c;

else if pq.contains(−l) then
assign(−l);
pq.clear();
return c;

else if not pq.contains(l) then
reason[var(l)]← c;
pq.push(l);

end
end

end
return no conflict;

II. COMBINING BCP MODES THROUGH MAB
To reap the benefits of both Immediate BCP and Delayed

BCP, we choose to use Reinforcement Learning (RL) methods
to switch adaptively between the two BCP modes. Specifically,
we represent the problem of choosing between the BCP modes
as a MAB problem. We consider two different reward schemes
for the RL agent, and implement them as the MAPLECADI-
CAL LBD and MAPLECADICAL PPD solvers:

1) Literal Block Distance (LBD) [1] – this is a measure
of learnt clause quality. We compute the average LBD
since the last restart, and compare it to the historical
average.

2) Propagations per Decision (PPD) – this is the propaga-
tion rate, computed as the number of propagations since
the last restart divided by the number of decisions since
the last restart.

using learnt clause quality – measured using the average
Literal Block Distance (LBD) [1] – as a reward function
for the RL agent. To isolate the performance of the chosen
BCP strategy when computing rewards, we choose to switch

Proceedings of SAT Competition 2023: Solver and Benchmark Descriptionsvolume B-2023-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2023 .

30

Solver α and β decay Score decay
MAPLECADICAL LBD 990 275 0.990 0.275
MAPLECADICAL LBD 990 500 0.990 0.500
MAPLECADICAL PPD 500 500 0.500 0.500
MAPLECADICAL PPD 950 950 0.950 0.950

TABLE I
SELECTED EXPONENTIAL DECAY HYPERPARAMETER VALUES

between BCP modes only upon solver restarts. This ensures
that the structure of the implication graph relies solely on the
selected BCP mode. We use a Thompson sampling approach
augmented with exponential averaging as the MAB decision
agent for selecting between BCP strategies.

A. Thompson Sampling

Thompson sampling [5], [6] is a stochastic approach to the
MAB problem which encourages exploration at the beginning
of the search, and which focuses on exploitation of the best
known option as the search progresses. The method associates
a beta-distributed random variable with each “arm” of the
bandit, and samples a value from each distribution each time
the solver restarts. The BCP variant with the largest associated
sampled value is selected for the next portion of the search.

B. Exponential Moving Averages

The behaviour of BCP in a CDCL SAT solver depends
heavily on the clauses present in the solver in the current state.
Since the clause database evolves significantly as the solver
learns and deletes clauses, it is intuitively beneficial to place a
greater emphasis on the recent performance of the MAB agent
than on historical performance from much earlier in the search.
We address this issue in our implementation by applying
exponential decays to the α and β values which parameterize
the beta-distributions used by Thompson sampling, and by
using an exponential moving average to represent the historical
performance of the MAB agent.

These decays are applied upon every solver restart. When
the score for the previous round exceeds the historical score,
the trial is counted as a success, and the α value for the
corresponding beta distribution is incremented by 1. Other-
wise, the trial is considered to be a failure, and the β value is
incremented by 1. This means that for a decay 0 < d < 1, the
maximum α and β values are bounded by 1

1−d , whereas the
score values are bounded by the maximum LBD.

III. IMPLEMENTATION AND SOLVER DESCRIPTIONS

The CADICAL solver [2] has a few similar implementations
of Immediate BCP which are used in various places throughout
the solver. Since the Priority BCP method is largely concerned
with the types of clauses learnt by the solver, we only modify
the implementation of BCP associated with the solver’s main
search loop and do not change the propagation implementa-
tions used during failed literal probing or clause vivification.

Our MAPLECADICAL solvers implement Delayed BCP
alongside the existing implementation of Immediate BCP and
uses RL to switch between them. We use the C++ Boost
library’s implementation of beta-distributions [4] to implement

Thompson sampling. We submit our solver with four different
configurations (see Table I).

REFERENCES

[1] Gilles Audemard and Laurent Simon. Predicting learnt clauses quality
in modern sat solvers. In Proceedings of the 21st International Joint
Conference on Artificial Intelligence, IJCAI’09, page 399–404, San
Francisco, CA, USA, 2009. Morgan Kaufmann Publishers Inc.

[2] Armin Biere. CaDiCaL, Lingeling, Plingeling, Treengeling, YalSAT
Entering the SAT Competition 2017. In Tomáš Balyo, Marijn Heule,
and Matti Järvisalo, editors, Proc. of SAT Competition 2017 – Solver and
Benchmark Descriptions, volume B-2017-1 of Department of Computer
Science Series of Publications B, pages 14–15. University of Helsinki,
2017.

[3] Jonathan Chung, Sam Buss, and Vijay Ganesh. Priority-based algorithms
for boolean constraint propagation. unpublished, 2023.

[4] Nikhar Agrawal et al. Boost math statistical distributions and functions
1.81.0.

[5] William R. Thompson. On the likelihood that one unknown probability
exceeds another in view of the evidence of two samples. Biometrika,
25(3/4):285–294, 1933.

[6] William R. Thompson. On the theory of apportionment. American
Journal of Mathematics, 57(2):450–456, 1935.

31

ESA Solvers, Kissat MAB Binary and AMSAT in
SAT Competition 2023

Shuolin Li1, Chu-Min Li12, Mao Luo3, Jordi Coll4, Mohamed Sami Cherif1, Djamal Habet1 and Felip Manyà4
1Aix Marseille Univ, Université de Toulon

CNRS, LIS, Marseille, France
shuolin.li, mohamedsami.cherif, djamal.habet@lis-lab.fr

2Université de Picardie Jules Verne
Amiens, France

chu-min.li@u-picardie.fr

3School of Computer Science,
Hubei University of Technology

Wuhan, China
luomao@hbut.edu.cn

4Artificial Intelligence Research Institute
CSIC, Bellaterra, Spain
jcoll, felip@iiia.csic.es

Abstract—This document describes the solvers Cadical ESA,
Kissat MAB ESA, Kissat Inc ESA, Kissat MAB Binary and
AMSAT submitted to the 2023 SAT Competition.

CADICAL ESA, KISSAT MAB ESA AND
KISSAT INC ESA

Based on Kissat MAB [1], the winner of the SAT Com-
petition 2021, Kissat MAB ESA tries to eliminate those
unimportant variables first in inprocessing bounded variable
elimination, the name ESA standing for variable Elimination
Scheduled by Activity. For more details, please check our
solver description in SAT Competition 2022 [2] and the paper
[3]. In addition to Kissat MAB, we also implemented ESA in
Cadical [4] and Kissat Inc [5], resulting in two new solvers
Cadical ESA and Kissat Inc ESA.

KISSAT MAB BINARY

In the inprocessing bounded variable elimination progress,
Kissat [4] and other Kissat-based solvers only keep the re-
solvents of original clauses (or irredundant clauses in Kissat)
containing literal x or ¬x when they eliminate variable x.
As for those learnt clauses (or redundant clauses in Kissat)
containing x or ¬x, they just delete them directly, which
results in a loss of information contained in those learnt
clauses.

After eliminating x, clauses containing it cannot be used any
more in the subsequent search, so we can’t keep those learnt
clauses directly, but keeping the resolvents of those learnt
clauses seems a good way to preserve those learnt information.
However, the number of learned clauses containing x may be
several orders of magnitude larger than the number of original
clauses containing x, so that keeping all the resolvents will
have a huge memory cost and the benefits are far outweighed
by the performance loss.

Because learnt clauses are redundant, it’s not necessary for
us to keep all their resolvents, but those with high quality. A
clause with small lbd or size is often considered a high-quality
clause. In Kissat MAB Binary we only keep the resolvents of
binary clauses containing those eliminated variables.

AMSAT

The solver AMSAT (Amiens Marseille SAT solver) is based
on lstech maple [6], which is based on MiniSAT [7] and
is the best MiniSAT based solver in SAT competition 2021.
We added the following improvements, essentially based on
variable activity and inspired by ESA (variable Elimination
Scheduled by Activity) [3].

∗ Failed literal detection, implied literal detection and
equivalent literal detection.
If literal p is satisfied and unit propagation derives a
conflict, p is a failed literal and must be falsified. If
no matter the assignment of p is true or false, unit
propagation satisfies a literal q, then q is an implied literal
and can be satisfied. If p is satisfied, unit propagation
satisfies q, and if p is falsified, unit propagation falsifies
q, then p and q are equivalent literals.
At level 0, the detected failed, implied, and equivalent
literals are global and do not depend on any partial
assignment. In other words, if p is failed, then ¬p is
satisfied directly. An implied literal q is satisfied directly.
The equivalent literals are not substituted immediately,
because AMSAT does not maintain a variable-to-clause
structure permanently. Each equivalent literal will be
substituted by an arbitrarily chosen literal in its equivalent
class later upon a call to the local search solver CCAnr,
together with clause subsumption to facilitate the work
of CCAnr.
Since equivalent literals are not substituted immediately,
we have to deal with the non-symmetric property of unit
propagation when there are clauses containing more than
2 literals. Namely, when unit propagation deduces q from
p, it does not necessarily deduce ¬p from ¬q, although
p → q is equivalent to ¬q → ¬p. For two equivalent
literals p and q, a binary clause ¬p∨¬q is added if unit
propagation fails to deduce q from p. Note that these
added binary clauses are removed when equivalent literals
are substituted.

Proceedings of SAT Competition 2023: Solver and Benchmark Descriptionsvolume B-2023-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2023 .

32

At levels other than 0, the detected failed, implied and
equivalent literals depend on a partial assignment. For
simplicity reason, AMSAT only detects failed and implied
literals at levels other than 0, and learns an asserting
clause for each failed literal and each implied literal. It
is easy to derive an asserting clause for a failed literal
using the usual conflict analysis. For an implied literal
q, let p → q and ¬p → q, a clause C1 ∨ ¬p ∨ q
(C2 ∨ p ∨ q) can be derived from the reason clause of
q in the implication graph propagating p (¬p), where C1
and C2 are sub-clauses contains literals falsified before
p or ¬p and having a path to q in the implication graph.
Then, the resolvent C1∨C2∨q of the two clauses asserts
q.
AMSAT selects the variables in the decreasing order of
their current activity (VSIDS or LRB) and detects x and
¬x respectively. Let limit be a parameter fixed to 100
at level 0, and 10 at other levels. the detection stops if
no failed, implied or equivalent literal is found for limit
variables since the last failed, implied or equivalent literal
is found. In order to further limit the overhead, these
detections are only executed at levels 0, 1 and 2. At level
0, failed, implied and equivalent literal detection is also
executed in addition before each clause vivification.

∗ Inprocessing bounded variable elimination. During solv-
ing, when 2% of variables are fixed, eliminated or sub-
stituted at level 0, the inprocessing bounded variable
elimination is executed. A limited part of resolvents of
learnt clauses with small LBD and size containing the
eliminated variables is also kept after variable elimina-
tion. All obtained resolvents from variable elimination
are vivified.

∗ Variable mapping and space compression. In SAT solv-
ing, if a variable becomes inactive (fixed at level 0,
eliminated, etc.), we no longer need the data related to it.
And if the number of inactive variables is large, there are
many holes in the array used to record variable/literal
data, resulting in increased traversal costs. MiniSAT-
based solvers do not deal with this problem. AMSAT
compresses the space by removing the holes using vari-
able mapping. Note that the final solution generation for
satisfiable instances and the unsat proof generation for
unsatisfiable instances should be adapted accordingly.

∗ Deleting learnt clauses by variable activity. In MiniSAT-
based solvers, the indicator for deleting learnt clauses
is their activity, which roughly reflects the frequencies
of these learnt clauses being involved in conflicts. Let
LOCAL be the subset containing clauses with LBD
greater than 6 or not involved in any conflict since 30000
conflicts. The half of lower activity learnt clauses in
LOCAL is removed every 15000 conflicts. AMSAT does
not use learnt clause activity but variable activity to select
the clauses to remove. Concretely, let act1 and act2 be
the smallest and the second smallest variable activities
in a learnt clause, AMSAT sort the clauses in LOCAL in
the increasing of their (act1×w+act2)/(LBD∗LBD),

where w is a parameter fixed to 1000. The first half is
removed every 15000 conflicts.

REFERENCES

[1] M. S. Cherif, D. Habet, and C. Terrioux, “Kissat MAB: Combining
VSIDS and CHB through Multi-Armed Bandit,” SAT COMPETITION,
vol. 2021, pp. 15–16, 2021.

[2] S. Li, J. Coll, C.-M. Li, M. Luo, D. Habet, and F. Manyà, “Solvers
Cadical ESA and Kissat MAB ESA in 2022 SAT competition,” SAT
COMPETITION, vol. 2022, pp. 33–34, 2022.

[3] S. Li, C.-M. Li, M. Luo, J. Coll, D. Habet, and F. Manyà, “A new variable
ordering for in-processing bounded variable elimination in sat solvers.”
2023, to appear in proceedings of IJCAI’2023.

[4] A. Biere, K. Fazekas, M. Fleury, and M. Heisinger, “CaDiCaL, Kissat,
Paracooba, Plingeling and Treengeling entering the SAT Competition
2020,” in Proc. of SAT Competition 2020 – Solver and Benchmark
Descriptions, ser. Department of Computer Science Report Series B,
T. Balyo, N. Froleyks, M. Heule, M. Iser, M. Järvisalo, and M. Suda,
Eds., vol. B-2020-1. University of Helsinki, 2020, pp. 51–53.

[5] Z. Chen, X. Zhang, S. Cai, and P. Lu, “CDCL Solvers with Improved
Local Search Cooperation and Pre-processing,” SAT COMPETITION, vol.
2022, pp. 37–38, 2022.

[6] X. Zhang, S. Cai, and Z. Chen, “Improving cdcl via local search,” SAT
COMPETITION 2021, p. 42, 2021.

[7] N. Eén and N. Sörensson, “An extensible sat-solver,” in Theory and
Applications of Satisfiability Testing: 6th International Conference, SAT
2003, Santa Margherita Ligure, Italy, May 5-8, 2003, Selected Revised
Papers 6. Springer, 2004, pp. 502–518.

33

Parallel by Default – MergeSat and
MergeSat-Pcasso

Norbert Manthey
nmanthey@conp-solutions.com

Dresden, Germany

Abstract—The sequential SAT solver MERGESAT is a fork of
the 2018 SAT competition winner, and adds known as well as
novel improvements. MERGESAT is setup to simplify merging
solver contributions into one solver. By default, MERGESAT uses
parallel deterministic solving with two threads and clause sharing
– also in incremental mode. For stability as well as incremental
solving, an interface very close to the MINISAT 2.2 interface, as
well as the IPASIR interface, are supported. The solver is not
tuned towards a specific application, nor a previous competition
benchmark. However, the solver supports configuration of most
parameters, even in incremental mode. MERGESAT-PCASSO is
an unfinished solver variant that is highly based on the ideas
of the 2014 solver PCASSO, and hence uses partitioning the
formula when starting solving the formula, and slowly evolves to
a portfolio solver.

I. INTRODUCTION

The CDCL solver MERGESAT is based on the competition
winner of 2018, MAPLE LCM DIST CHRONOBT [13], and
adds several known techniques, fixes, and some novel ideas
around reasoning as well as parallel solving. MERGESAT uses
git to combine changes, and comes with continuous integration
to simplify extending the solver further.

II. DEVELOPMENT TENETS

When given a sequential compute resource, the CDCL
algorithm [14] is assumed to be the most efficient way to solve
SAT. To avoid duplicating implementation effort, MERGESAT
is setup to easily incorporate modifications to other solvers.
This setup allows to keep up with the state-of-the-art and
research. Automated testing as well as extended internal
checks and proof validation help to spot merge issues early.

For parallel computing resources, portfolio solvers are as-
sumed to be limited with respect to scalability in proof gener-
ation [9]. MERGESAT’s parallel variant allows to use search
space partitioning in an experimental mode. Partitioning is
currently handled via assumption literals, similarly to the cube-
and-conquer [4] approach. The key difference is that MERGE-
SAT dynamically and recursively re-partitions the search
space again if compute resources become available again [6],
[7], [12]. The heuristic is to keep the sequential algorithm
running as long as possible on the largest possible portion
of the search space. Thanks to using assumption literals, the
used base-solver does not need to implement dependency-
tracking [10], as done in PCASSO [8]. Learnt clauses can be
shared across all solver instances, and unsatisfiability proofs
can be generated as done in parallel portfolio solvers [5].

MERGESAT is not tuned for a specific application or
benchmark. Solver additions try to stay as close to the original
behavior as possible, and can be enabled by configuration.
Behavior-changing modifications are automatically detected.

Most algorithms in MERGESAT can be configured. The
parameter specification can be printed to a file, to be used
by tools to automatically configure the solver. Furthermore,
when using MERGESAT as a library, the parameters can be
configured – and tuned – via environment variables.

To improve solver maintenance, the solver is implemented
in a deterministic way. Algorithms are limited or switched
based on step counters instead of measured run time, as the
later is highly platform specific. The parallel execution is based
on barriers similar to MANYSAT [2], to obtain a deterministic
parallel solver execution. Cross-platform determinism is work
in progress: MERGESAT already replaces some of the math-
library functions like exp, to become independent of the
implementation differences for different platforms.

While CDCL, as well as variable elimination [1], use res-
olution as the main reasoning, other simplification techniques
exist that do not follow the obvious resolution pattern. Learnt
Clause Minimization [11] is such an example. Similarly,
MERGESAT implements look-ahead [3], which can be used
to create search decisions, as well as to partition the formula.
The implemented look-ahead uses double-look ahead for the
second assessed polarity, as ternary clauses are collected after
propagating the first polarity.

The sequential and parallel MERGESAT can emit unsatis-
fiability proofs in the DRAT format [15]. In both modes, the
generation of the proof can be verified during runtime.

The sequential solver supports incremental solving with
assumption literals. Incremental solving is not yet compatible
with the search space partitioning, so that the parallel solver
falls back to portfolio mode with sharing.

III. IMPROVEMENTS SINCE COMPETITION 2022 VERSION

The major change to MergeSat is the default setting of
using two threads by default. The formula simplification has
been moved from the common initialization phase towards the
thread-local execution. Hence, a thread configuration that skips
simplification can start search right away. For formulas with
a high simplification time, this combination allows a smaller
solving time.

With the jump in GLUCOSE 2.2 from the SATELITE
formula simplification to the built-in simplification, the used

Proceedings of SAT Competition 2023: Solver and Benchmark Descriptionsvolume B-2023-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2023 .

34

variable elimination did not use gate-detection anymore. To
close this gap, syntactic AND-gate detection has been added
back to MERGESAT. Furthermore, a brief semantic search is
supported to also search for gates. In contrast to KISSAT, this
search is implemented directly into the main solver object.

The 2022 parallel solver used docker images that have not
been based on the default images from AWS, because those
images did not contain a recent-enough glibc that supports
using transparent huge pages for the parallel solver. To reduce
the difference between solvers, the 2023 images are based on
the default images; and the scripts to setup this infrastructure
are shipped as part of the MERGESAT repository. However,
the used solver binary is still built in a huge-page enabled
container, and hence, can still benefit from enabled huge pages.

The major difference in the parallel solver is the ability
to solve with partitioning enabled. This feature is disabled
in the parallel MERGESAT, but enabled in MERGESAT-
PCASSO. We believe that parallel solvers scale better when
using partitioning, as this way we can help diversify the search
better in the search space. Similarly to portfolio solving, we
can still consume all shared learned clauses, as we partition via
assumption literals. We use one-sided double-look-ahead for
partitioning, and attempt to create 8 partitions per node, using
3 literals each time. All solvers except the initial solver solve
partitions, as well as dynamically re-partition them to create
more work items – but also keeping the original partition. This
way, we create a tree of partitions. In contrast to PCASSO, we
use unit clauses for the partitioning constraints, partitioning
can be done via assumptions – and no specialization has to be
applied to the used sequential solver; drastically simplifying
future updates to the sequential solver. While this does not
allow us to simplify the partitions, we can instead still generate
proofs, as well as share all learned clauses. From a proof-
complexity point of view there is still an open question
whether using only unit clauses for partitioning might result
in less powerful behavior: by proving all partitions except one
unsatisfiable, we can conclude that the partition clauses from
the remaining partition follow from the original formulas. With
PCASSO’s partitioning approach, this would have allowed to
also add larger clauses to the proof.

Note, from PCASSO we did not port the only-child approach,
which un-assigns a solver in case two nodes in the tree are
found to be equivalent by evaluating all siblings of a node
to false. Consequently, the parallel solver will currently turn
from a parallel solver into a portfolio solver, as in the worst
case, on each level of the recursive partition tree exactly one
child nodes is left unevaluated – in which case all nodes are
equivalent and represent the same part of the search space. For
n parallel solvers, this situation will be reached after creating,
or cutting-off, 2(n − 1) search partitions. As solving hard
formulas might still benefit from recursive partitioning, this
is one of the outstanding features to be ported from PCASSO.

Changes to the solver are tracked in a CHANGELOG file.
Updates to this file are enforced via automated checks.

IV. SUBMITTED SOLVERS

A. Sequential Solvers

MERGESAT is submitted in four different configurations.
These configurations allow to measure the performance dif-
ference of using sequential vs parallel solving. The used
sequential configuration is the “best known” sequential config-
uration (based on previous competition results). Furthermore,
the remaining submitted configurations allow to asses the
power of gate extraction during variable elimination for the
current implementation. Note: no execution limits or similar
mechanisms to prevent the detection to consume too much
time are used in the current version.

1) Default Configuration - MERGESAT 2THREADS: This
configuration uses the setup as described above, most impor-
tantly two threads are used. The second configuration does not
use simplification.

2) MERGESAT THREAD1: This configuration uses the
same configuration as the default, but only uses a single thread.
This thread is using the default configuration of MERGESAT;
which is pretty close to the configuration used in 2021.

3) MERGESAT BVE GATES: This configuration is the
same configuration as MERGESAT THREAD1, except that
bounded variable elimination attempts to extract AND-gates
syntactically. For variable eliminations with detected gates,
only the reduced resolvents are generated.ad the memory
subsystem with avoidable memory accesses.

4) MERGESAT BVE SEMGATES: This configuration is the
same configuration as MERGESAT BVE GATES, except that
bounded variable elimination attempts to extract gates seman-
tically before the syntactic extraction.

B. Parallel Solvers

MERGESAT participates in the parallel track. The only
difference to the solver submitted to the main track is the
number of used cores. The solver will analyze the number N
of cores available, and then automatically chooses N

2 as the
number of threads to use. The used infrastructure is based on
the default infrastructure of AWS. While we set the relevant
environment variable to use transparent huge pages as part of
glibc, we do not enforce using the relevant glibc version to
actually make use of this improvement.

MERGESAT-PCASSO also participates in the parallel track.
All solvers within this solver are configured similar to
MERGESAT. Furthermore, the same amount of solvers is used.

V. AVAILABILITY

The source of MERGESAT is publicly available under
the MIT license at https://github.com/conp-solutions/mergesat.
The version with the git tag “v4.0-rc4” is used for all MERGE-
SAT-related submissions. The submitted starexec package can
be reproduced by running “./scripts/make-starexec.sh” on this
commit. The parallel variant MERGESAT-PCASSO is available
at the tag “v4.0-rc4-pcasso”.

The parallel variant of MERGESAT has a few open issues:
tuning the default configuration, improving handling of special
cases like lazily initializing and synchronizing parallel solvers

35

during incremental solving, as well as combining incremental
solving with search space partitioning and proof generation.
Furthermore, tuning the different configurations of the differ-
ent threads for the benchmarks of a specific application, or
previous competitions, has not been done.

ACKNOWLEDGMENT

The author would like to thank the developers of all prede-
cessors of MERGESAT, and all the authors who contributed
the modifications that have been integrated. Furthermore, we
thank the ZIH of TU Dresden for making compute resources
available that have been used to develop earlier versions
of MERGESAT. Adhemerval Zanella made transparent huge
pages easily accessible via his modifications to glibc.

REFERENCES

[1] N. Eén and A. Biere, “Effective preprocessing in SAT through variable
and clause elimination,” in SAT 2005, ser. LNCS, F. Bacchus and
T. Walsh, Eds., vol. 3569. Heidelberg: Springer, 2005, pp. 61–75.

[2] Y. Hamadi, S. Jabbour, and L. Sais, “ManySAT: a parallel SAT solver,”
JSAT, vol. 6, no. 4, pp. 245–262, 2009.

[3] M. Heule and H. van Maaren, “Look-ahead based SAT solvers,” in
Handbook of Satisfiability, A. Biere, M. Heule, H. van Maaren, and
T. Walsh, Eds. Amsterdam: IOS Press, 2009, pp. 155–184.

[4] M. J. H. Heule, O. Kullmann, S. Wieringa, and A. Biere, “Cube
and conquer: Guiding cdcl sat solvers by lookaheads,” in Proceedings
of the 7th International Haifa Verification Conference on Hardware
and Software: Verification and Testing, ser. HVC’11. Berlin,
Heidelberg: Springer-Verlag, 2011, p. 50–65. [Online]. Available:
https://doi.org/10.1007/978-3-642-34188-5 8

[5] M. J. H. Heule, N. Manthey, and T. Philipp, “Validating unsatisfiability
results from clause sharing parallel sat solvers,” 2014, submitted.

[6] A. Hyvärinen, T. Junttila, and I. Niemelä, “A distribution method for
solving SAT in grids,” in SAT 2006, ser. LNCS, A. Biere and C. P.
Gomes, Eds., vol. 4121. Springer, 2006, pp. 430–435.

[7] A. E. Hyvärinen and N. Manthey, “Designing scalable parallel SAT
solvers,” in Theory and Applications of Satisfiability Testing – SAT 2012,
ser. Lecture Notes in Computer Science, A. Cimatti and R. Sebastiani,
Eds., vol. 7317. Springer Berlin Heidelberg, 2012, pp. 214–227.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-31612-8 17

[8] A. Irfan, D. Lanti, and N. Manthey, “PCASSO – a parallel cooperative
SAT solver,” 2014.

[9] G. Katsirelos, A. Sabharwal, H. Samulowitz, and L. Simon, “Resolution
and parallelizability: Barriers to the efficient parallelization of SAT
solvers,” in Proceedings of the Twenty-Seventh AAAI Conference
on Artificial Intelligence, July 14-18, 2013, Bellevue, Washington,
USA, M. desJardins and M. L. Littman, Eds. AAAI Press, 2013.
[Online]. Available: http://www.aaai.org/ocs/index.php/AAAI/AAAI13/
paper/view/6421

[10] D. Lanti and N. Manthey, “Sharing information in parallel search
with search space partitioning,” in Proceedings of the 7th International
Conference on Learning and Intelligent Optimization (LION 7), ser.
LNCS, G. Nicosia and P. Pardalos, Eds., vol. 7997, 2013.

[11] M. Luo, C.-M. Li, F. Xiao, F. Manyà, and Z. Lü, “An effective learnt
clause minimization approach for cdcl sat solvers,” in Proceedings
of the Twenty-Sixth International Joint Conference on Artificial
Intelligence, IJCAI-17, 2017, pp. 703–711. [Online]. Available:
https://doi.org/10.24963/ijcai.2017/98

[12] N. Manthey, “Towards next generation sequential and parallel SAT
solvers,” Ph.D. dissertation, TU Dresden, 2014.

[13] V. Ryvchin and A. Nadel, “Maple LCM Dist ChronoBT: Featuring
Chronological Backtracking,” in Proceedings of SAT Competition 2018,
2018. [Online]. Available: http://hdl.handle.net/10138/237063

[14] J. P. M. Silva and K. A. Sakallah, “GRASP - a new search algorithm for
satisfiability,” in ICCAD 1996. Washington: IEEE Computer Society,
1996, pp. 220–227.

[15] N. Wetzler, M. Heule, and W. A. H. Jr., “Drat-trim: Efficient checking
and trimming using expressive clausal proof,” in SAT, 2014, accepted.

36

HKIS, UKISSATINC, PAKISINC and PAHKIS in the
SAT Competition 2023

Rodrigue Konan Tchinda1,2, Clémentin Tayou Djamegni1
1University of Dschang, Dschang, Cameroon
2University of Bamenda, Bamenda, Cameroon
{rodriguekonanktr, dtayou}@gmail.com

Abstract—This document provides a description of the sequen-
tial solvers HKIS and UKISSATINC as well as the parallel solvers
PAKISINC and PAHKIS submitted to the SAT Competition 2023.

I. HKIS AND UKISSATINC

The solvers HKIS [1] is an implementation of the PSIDS
heuristic on top of KISSAT [2], [3]. The PSIDS heuristic
is used for selecting polarities of branching variables. This
heuristic has been integrated in numerous top-performing SAT
solvers and the results of the recent SAT competitions and
SAT Race (since 2019) show a remarkable increase in their
performance especially in solving unsatisfiable instances. The
most recent example is the 2022 SAT competition where
PSIDS implemented on top of KISSAT won a gold medal in
Main Sequential Track UNSAT. For the 2023 SAT Competi-
tion, HKIS is submitted to the main track with the following
configurations:

.
• psids where the options are: --unsat and
--psids=true;

• sat_psids where the options are --sat,
--phase=false and --psids=true;

• unsat where the options are --target=1
--walkinitially=true and --chrono=true.

During our empirical experiments, we noticed that the
--unsat configuration applied on the original KISSAT-INC
[5] performed very well on unsatisfiable instances of our
testing set. We submitted this configuration to the 2023 SAT
Competition and renamed the solver UKISSATINC.

II. PAKISINC AND PAHKIS

PAKISINC and PAHKIS are two parallel SAT solvers built
with the PAINLESS Framework [4]. PAKISINC uses as worker
one of the top-performing sequential SAT solvers of the
2022 SAT Competition namely KISSAT-INC [5]. As far as
PAHKIS is concerned, it uses HKIS as worker. This year we
added clauses sharing and allowed exchange of clauses with
maximum LBD of 2. To participate in the Parallel Track of
the 2023 SAT Competition, each of the above solvers were
configured to launch 12 workers for solving formulas.

III. ACKNOWLEDGMENTS

We would like to thank the developers of PAINLESS [4],
KISSAT [2], KISSAT-INC [5] and KISSAT MAB [6].

REFERENCES

[1] R. K. Tchinda and C. T. Djamegni, “HKIS, HCAD, PAKIS and PAIN-
LESS ExMapleLCMDistChronoBT in the SC21,” SAT COMPETITION
2021, p. 26, 2021.

[2] A. Biere, K. Fazekas, M. Fleury, and M. Heisinger, “CaDiCaL, Kissat,
Paracooba, Plingeling and Treengeling entering the SAT Competition
2020,” in Proc. of SAT Competition 2020 – Solver and Benchmark
Descriptions, ser. Department of Computer Science Report Series B,
T. Balyo, N. Froleyks, M. Heule, M. Iser, M. Järvisalo, and M. Suda,
Eds., vol. B-2020-1. University of Helsinki, 2020, pp. 51–53.

[3] A. Biere, “CaDiCaL at the SAT Race 2019,” in Proc. of SAT Race
2019 – Solver and Benchmark Descriptions, ser. Department of Computer
Science Report Series B, M. Heule, M. Järvisalo, and M. Suda, Eds., vol.
B-2019-1. University of Helsinki, 2019, pp. 8–9.

[4] L. Le Frioux, S. Baarir, J. Sopena, and F. Kordon, “Painless: a framework
for parallel sat solving,” in International Conference on Theory and
Applications of Satisfiability Testing. Springer, 2017, pp. 233–250.

[5] X. Z. S. C. Chen, Zhihan and P. Lu., “CDCL Solvers with Improved
Local Search Cooperation and Pre-processing.” SAT COMPETITION
2022, p. 37, 2022.

[6] M. S. Cherif, D. Habet, and C. Terrioux, “Kissat MAB: Combining
VSIDS and CHB through Multi-Armed Bandit,” SAT COMPETITION
2021, p. 15, 2021.

Proceedings of SAT Competition 2023: Solver and Benchmark Descriptionsvolume B-2023-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2023 .

37

gdrcnf – solver for SAT 2023

Luke Nuttall
Independent

Yantai, China
lukerossnuttall@gmail.com

Abstract— This article describes the techniques used by the
contest submission. Mainly clause division, developing a
groebner basis and randomly guessing a solution.

Keywords—groebner, CDCL, resolution, subsumption,
garbage collection

I. INTRODUCTION

This SAT solver runs with 4 types of coroutines;
Developing a groebner basis by making clause resolutions,
subsuming clauses to eliminate redundancy, constructing
random guesses of solutions, and garbage collection.

II. GROEBNER CONSTRUCTION

A (partial) groebner basis is built for the solution set by
developing resolutions of clauses as the syzygy. A ‘minimal
set’ approach is taken to clause selection, making two
distinct sets during operation; the combined and uncombined
sets. The next lowest clause is taken from the uncombined set
and combined with all other clauses previously combined
before becoming its newest member.

The clause ordering chosen is a dynamic, entropy-based
one. Lower degrees are counted first, then the average level
of entropy(based on the number and length of clauses which
would implicate that variable) calculated for each variable is
considered, and finally a lexical ordering if the entropy is
somehow equal.

III. CLAUSE SUBSUMPTION

Another coroutine will attempt to perform self-subsuming
resolution on every clause. The clauses are kept in a balanced
binary search tree, with a lead-degree-lexical ordering to
speed up the process of testing for divisions. A companion
set of benchmarks is made for this technique.

A. Clause subsumption

Given a problem instance with the two CNF clauses;
{a,b,c & a,b} the first clause is redundant of the second
clause. Any solution which satisfies the second clause
implies that the first is also satisfied (it doesn’t matter what c
is). The second clause subsumes the first clause, which can
be removed from the instance without changing the solution
set.

B. Self-subsuming resolution

Given a problem instance with the two CNF clauses;
{a,b,c & a,-c} neither clause subsumes the other, but the
resolution of the two clauses a,b subsumes the first.

Self-subsuming resolution is the technique of replacing the
clause a,b,c with a,b when it would not change the solution
set (ie in light of the clause a,-c). This simplifies an
applicable problem instance.

IV. RANDOM GUESSING

Another coroutine will attempt to construct a solution to
the problem by testing (for each variable in turn) if any
clauses with that variable as lead will implicate the variable
or its negation, based on the previous choices. If not, a coin is
flipped. If both are implicated, a resolution of the two clauses
is made and a resolution is made with every forcing clause
until only guessed variables remain in a new clause to be
added. This is equivalent to CDCL.

V. GARBAGE COLLECTION

The last coroutine will periodically delete the empty
space of divided clauses and amotize sorting clauses into the
orders needed by the other coroutines.

Proceedings of SAT Competition 2023: Solver and Benchmark Descriptionsvolume B-2023-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2023 .

38

PRS: A new parallel/distributed framework for SAT

Zhihan Chen, Xindi Zhang, Yuhang Qian, Shaowei Cai*

State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China
School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing, China

{chenzh,zhangxd}@ios.ac.cn,i@yuhangq.com,caisw@ios.ac.cn

I. Introduction Of Solvers Submitted to SC23
This document introduces a new lightweight parallel

framework PRS, which can be seen as an improved version
of ParKissat-RS [8]. PRS enters both the parallel track
and cloud track, which is developed mainly based on
Kissat-Inc [2], and uses many pre-processing techniques
of Kissat-Pre [2]. Meanwhile, we submit a sequential
SAT solver, Kissat-Pre-sc23, which is an improved ver-
sion of Kissat-Pre integrating the same pre-processing
techniques of PRS into Kissat-Inc [2]. The solvers sub-
mitted to SC23 are summarized in Table I.

TABLE I: Solvers Submitted to SC23
Track Solver Key Techniques
No-Limits Kissat-Pre-sc23 Pre-processing before Kissat-Inc
Parallel PRS-sc23 Pre-processing, Random Shuffle

PRS-nopre-sc23 Random Shuffle with clause sharing
Cloud PRS-distributed-sc23 Distributed PRS

II. Kissat-Pre-sc23
Kissat-Inc improves Kissat-MAB by employing the

phase management strategy of LSTech-Maple [7] to
the target phase. Kissat-Pre-sc23 extends the pre-
processing techniques of Kissat-Inc with RC, Fourier-
Motzkin Variable Elimination (FME) [3] and Probabilistic
Simulation.

• Resolution Checking (RC): We use s(l) denote the
clauses set that literal l shows. For each variable
x, if |s(x)| × |s(¬x)| ≤ |s(x)| + |s(¬x)|, we will do
resolution between the two clause sets s(x) and s(¬x),
and checking whether all resulting clauses are always
true. If so, the clauses related to variable x can be
removed. The neighbor variables of success-resolved
variables are set to be checked again in the next turn.
RC is a variant of the Bounded Variable Elimination,
with stricter conditions.

• Probabilistic Simulation: We found that the CDCL
solvers perform poorly in some circuit instances, such
as multiplier instances and cryptography instances.
So we try to identify the circuit structure in the
CNF formula and solve it through a Probabilistic
Simulation algorithm [6].

This work is supported by the Strategic Priority Research Program
of the Chinese Academy of Sciences, Grant No. XDA0320000 and
XDA0320300, and NSFC Grant 62122078.

III. PRS
PRS is a simple, efficient, and generic parallel SAT

framework. PRS is a parallel portfolio framework that
supports pre-processing, clause sharing, and many other
popular parallel techniques. The diversity for each thread
mainly comes from randomly shuffling (RS) [8] the initial
branching order. On the base of PRS framework, we
developed the following three versions for the parallel track
and the cloud track.

A. PRS-sc23
PRS-sc23 is built upon Kissat-Inc, whose clause shar-

ing strategy is the same as HordeSat [1]. PRS uses many
pre-processing techniques, which can be found in [8]. RS
is used in default to introduce diversity for each thread.
In detail, PRS-sc23 set up a circular queue that stores
all the variables in the order of their internal indices in
Kissat-Inc, and the circular queue is equally divided into
n blocks, B1, ..., Bn. For the i-th thread, the initial variable
branching order begins from Bi and ends with Bi−1. Note
that n is the number of threads, the next block of Bn is
B1, and Bi−1 is Bn when i = 0.

B. PRS-nopre-sc23
PRS-nopre-sc23 disables the pre-processing tech-

niques of PRS-sc23.

C. PRS-distributed-sc23
PRS-distributed-sc23 is built upon PRS-sc23. Be-

sides Kissat-Inc, PRS-distributed-sc23 integrates
Maple-COMSPS [4] as another base solver. For each
computer node, PRS-distributed-sc23 runs an instance
of PRS-sc23 with 16 threads. There are 4 types of nodes:
SAT mode group, UNSAT mode group, DEFAULT mode
group, and MAPLE group. Table II shows the configura-
tions for each group.

In the parallel version, the learnt clauses of one thread
are broadcasted directly to all the other threads. In the
distributed version, the clauses sharing method between
the threads in the same computer node is the same as
in the parallel version; but the clause-sharing method be-
tween computer nodes is quite different, the learnt clauses
from node Ni can only be sent to the node Ni+1, where
the next node of the last node is the first node.

Proceedings of SAT Competition 2023: Solver and Benchmark Descriptionsvolume B-2023-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2023 .

39

TABLE II: Configurations for each computer node group.
For each type of node group (Group), the base solver (Base
Solver) and options (Option) are given, and the percent
of the number of nodes in the specified mode to the total
number of nodes is given in the ‘Percent’ column. We also
give the maximum number of shared literals in the ‘Limits’
Column, and whether using the diversification method as
pakis [5] in the ‘Diversity’ Column.

Group Base Solver Option Limits Diversity Percent
SAT Kissat-Inc –sat 1500 Enabled 1/8
UNSAT Kissat-Inc –unsat 3000 Disabled 2/8
DEFAULT Kissat-Inc –default 1500 Enabled 1/2
MAPLE Maple-COMSPS 3000 Disabled 1/8

References
[1] T. Balyo, P. Sanders, and C. Sinz. Hordesat: A massively parallel

portfolio sat solver. In SAT 2015, pages 156–172, 2015.
[2] Z. Chen, X. Zhang, S. Cai, and P. Lu. Cdcl solvers with improved

local search cooperation and pre-processing. SAT COMPETI-
TION 2022, page 37.

[3] G. B. Dantzig and B. C. Eaves. Fourier-motzkin elimination and
its dual. J. Comb. Theory, Ser. A, 14(3):288–297, 1973.

[4] J. H. Liang, C. Oh, V. Ganesh, K. Czarnecki, and P. Poupart.
Maple-comsps, maplecomsps lrb, maplecomsps chb. Proceedings
of SAT Competition, 2016, 2016.

[5] R. K. Tchinda and C. T. Djamegni. Hkis, hcad, pakis and painless
exmaplelcmdistchronobt in the sc21. SAT COMPETITION
2021, page 26.

[6] S. Wu, C. Wang, and Y. Chen. Novel probabilistic combinational
equivalence checking. IEEE Trans. Very Large Scale Integr. Syst.,
16(4):365–375, 2008.

[7] X. Zhang, S. Cai, and Z. Chen. Improving cdcl via local search.
SAT COMPETITION 2021, page 42, 2021.

[8] X. Zhang, Z. Chen, and S. Cai. Parkissat: Random shuffle based
and pre-processing extended parallel solvers with clause sharing.
SAT COMPETITION 2022, page 51.

40

DPS-Kissat
Hidetomo Nabeshima Tsubasa Fukiage Yuto Obitsu

University of Yamanashi
Yamanashi, JAPAN

nabesima@yamanashi.ac.jp

Katsumi Inoue
National Institute of Informatics

Tokyo, JAPAN
inoue@nii.ac.jp

Abstract—DPS is a framework for easily constructing
efficient deterministic parallel SAT solvers, providing
the delayed clause exchange technique introduced in
ManyGlucose. We applied DPS to Kissat to construct
a portfolio parallel SAT solver DPS-Kissat.

I. Introduction

DPS is a framework for easily implementing determinis-
tic portfolio parallel SAT solvers for shared memory multi-
core environment, that guarantee reproducible behavior.
Reproducibility means that the execution result (the run-
ning time and a found model if satisfiable) does not
change across runs. DPS is a successor to the deterministic
parallel SAT solver ManyGlucose [1], from which it ex-
tracts and generalizes the mechanisms necessary to achieve
reproducible behavior. We applied DPS to Kissat [2], one
of the state-of-the-art sequential SAT solvers, to construct
a portfolio parallel SAT solver DPS-Kissat. The version
submitted to SAT Competition 2023 is essentially the
same as that of SAT Competition 2022, but the PaKis [3]
parameters on portfolio strategies has been disabled.

II. Delayed Clause Exchange

In parallel SAT solvers, reproducibility is lost when
learnt clauses are exchanged asynchronously. Synchronous
clause exchange ensures reproducibile behavior, but in-
creases latency. The delayed clause exchange introduced
in ManyGlucose allows a certain delay in the timing of
clause exchanges, thereby absorbing fluctuations in the ex-
change interval and can reduce reducing the waiting time.
However, implementing delayed clause exchange requires
expert knowledge of concurrent programming, so intro-
ducing it into existing sequential SAT solvers is a time-
consuming task. We have extracted the delayed clause
exchange method from ManyGlucose and developed a
framework DPS with a generic interface to facilitate its
integration into existing sequential solvers.

DPS-Kissat is a deterministic parallel SAT solver that
applies the delayed clause exchange provided by our frame-
work to Kissat.

III. Portfolio Strategy

The diversity strategy of DPS-Kissat consists of the
following three elements:

1) random variable selection until the first conflict oc-
curs except for the first thread. The random seeds
use different values for each thread.

2) disabled elimination in half of threads.
The first strategy was introduced in ManySAT 2.0 [4], the
first deterministic parallel SAT solver. Clause exchange in
non-deterministic parallel SAT solvers is one of the causes
of search diversity due to its asynchronous nature, but this
is not expected in deterministic solvers, so strategies such
as random decision are necessary to ensure diversity. The
second strategy was introduced because there were some
instances where a lot of time was spent on in-processing.

IV. Implementation
DPS-Kissat parallelizes Kissat-SC2021 [5], which re-

quired about 400 lines of modification to Kissat and
about 400 lines for the wrapper class to incorporate
Kissat into DPS. The version submitted to SAT Compe-
tition 2023 launches 32 threads. The results are guaranteed
to be reproducible. DPS supports non-deterministic mode,
which is also entered in the competition as NPS-Kissat.

Acknowledgment
This work was supported by JSPS KAKENHI Grant

Numbers JP20H05963, JP20K11934, JP23K11214. In this
research work we used the supercomputer of ACCMS,
Kyoto University.

References
[1] H. Nabeshima and K. Inoue, “Reproducible efficient parallel SAT

solving,” in Proceedings of the 23rd International Conference on
Theory and Applications of Satisfiability Testing (SAT 2020),
LNCS 12178, 2020, pp. 123–138.

[2] A. Biere, K. Fazekas, M. Fleury, and M. Heisinger, “CaDiCaL,
Kissat, Paracooba, Plingeling and Treengeling entering the
SAT competition 2020,” http://hdl.handle.net/10138/318450,
2020, SAT Competition 2020 Solver Description.

[3] R. K. Tchinda and C. T. Djamegni, “hKis, hCaD, PaKis and
PaInleSS_ExMapleLCMDistChronoBT in the SC21,” http:
//hdl.handle.net/10138/333647, 2021, SAT Competition 2021
Solver Description.

[4] Y. Hamadi, S. Jabbour, C. Piette, and L. Sais, “Deterministic
parallel DPLL,” Journal on Satisfiability, Boolean Modeling and
Computation, vol. 7, no. 4, pp. 127–132, 2011.

[5] A. Biere, M. Fleury, and M. Heisinger, “CaDiCaL, Kissat,
Paracooba entering the SAT competition 2021,” http://hdl.
handle.net/10138/333647, 2021, SAT Competition 2021 Solver
Description.

Proceedings of SAT Competition 2023: Solver and Benchmark Descriptionsvolume B-2023-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2023 .

41

New Concurrent Painless solvers based on
Kissat-MAB: P-KISSAT and P-KISSAT-STR

Vincent Vallade∗, Souheib Baarir‡∗, Julien Sopena∗†,
∗Sorbonne Université, LIP6, CNRS, UMR 7606, Paris, France

†INRIA, Delys Team, Paris, France
‡ EPITA, France

Abstract—This paper describes the solvers P-KISSAT and
P-KISSAT-STR submitted to the parallel track of the SAT
Competition 2023.

I. INTRODUCTION

P-KISSAT and P-KISSAT-STR are concurrent portfolio-
based [1] solvers built using the Painless framework [2]. These
solvers modify the sharing strategy of parkissat-rs, a
parallel solver submitted in the 2022 SAT competition [3] and
bring asynchronous strengthening of learnt clauses.

II. P-KISSAT

A. parkissat-rs

We present here what has not changed from
parkissat-rs. It is a parallel solver based on
Kissat-MAB [4]. We did not change the underlying
implementation of Kissat-MAB, nor the diversification
mechanism used by the parallel solver, for which we note the
following:

• The solver first simplifies the formula using Equivalent
Literal Substitution and Resolution Checking, methods
described in [5].

• Diversify Kissat-MAB by giving different values for
the following parameters: stable, target and phase and
have one of the solver of the portfolio augmented by
CCAnr [6], a stochastic local search algorithm, to set the
phase of its variables.

• Randomly shuffle the initial branching order for each
underlying solver.

In addition, parkissat-rs uses a shared-memory based
sharing mechanism inherited from Painless. Each solver has
an import buffer and an export buffer, implemented in the
form of a lock-free list. Every time a solver learns a clause, it
puts it in the export buffer and every time the solver restarts
it can retrieve the clauses from its import buffer. A thread,
called Sharer, is dedicated to retrieving the clauses from all
export buffers and distributing them to the import buffers of all
solvers. Every 0.5 seconds, the Sharer select 1500 literals
(the sum of the size of the shared clauses) from each producer
and dispatch them to consumers. The use of buffers and a
dedicated thread allows to perform the sharing asynchronously
and to avoid lock contention. Indeed, each buffer is accessed
by only two threads: the thread that shared the clauses and the
Sharer.

We will define more precisely the sharing policy used in
our solver P-KISSAT in the following subsection.

B. Sharing Policy

We have added two mechanisms to parkissat-rs’s
sharing policy. First, we added a dynamic filter for sharing
clauses. In parkissat-rs, only the clauses with a LBD
<= 2 are shared [7]. We use the mechanism defined in
hordesat [8], which can dynamically raise and lower the
LBD threshold depending on whether the solver has been
determined to produce too little or too much.

Second, we replace a thread dedicated to solving the for-
mula with a second Sharer thread. We then split the solvers
into two groups, P1 and P2, so that the Sharer S1 (or S2)
has P1 (or P2) as a producer and all the solvers in the portfolio
as consumers. The result is that all solvers receive all export
clauses as in the previous implementation, but the bandwidth
is potentially increased by adding a second Sharer thread.

Figure 1 presents the architecture of our solver. The SWs for
SequentialWorker represent the threads that execute the
execute the Sequential Engines (here Kissat-MAB).
We show two sharers who are responsible for distributing
clauses to all solvers, but only for retrieving clauses from their
producers (double-headed arrows). We define in the next sec-
tion the special Sequential Engines named Reducer.

III. P-KISSAT-STR

P-KISSAT-STR has the same architecture as above, but
we add two instances of a component called Reducer, one

SharingParallelization

SW

SW

SW

SW

SW

SW

...

PF

Control Flow

Control Flow

Sharer 1

Sharer 2

Sequential
Engines

Kissat

Kissat

Kissat

Kissat

...

Reducer

Reducer

...

...

Fig. 1. Architecture of P-KISSAT-STR

Proceedings of SAT Competition 2023: Solver and Benchmark Descriptionsvolume B-2023-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2023 .

42

for each group of producers. This component implements the
algorithm introduced in [9] to minimize the size of the learnt
clause it receives. This algorithm relies on a CDCL engine, in
this case a MapleCOMSPS [10] solver. Adding a Reducer
as a producer of a group allows the addition of a stream of
minimized learnt clauses. We take advantage of the sharing
architecture to make this minimizing of clauses asynchronous.
Since a strengthened clause subsumes the original clause, it
is likely that the solvers will forget the original clause over
time. The Reducer is able to infer the empty clauses and
thus give the UNSAT answer, but it cannot find a solution.

REFERENCES

[1] Y. Hamadi, S. Jabbour, and L. Sais, “Manysat: a parallel sat solver,”
Journal on Satisfiability, Boolean Modeling and Computation, vol. 6,
pp. 245–262, 2009.

[2] L. Le Frioux, S. Baarir, J. Sopena, and F. Kordon, “Painless: a framework
for parallel sat solving,” in Proceedings of the 20th International
Conference on Theory and Applications of Satisfiability Testing (SAT),
pp. 233–250, Springer, 2017.

[3] X. Zhang, Z. Chen, and S. Cai, “Parkissat: Random shuffle based and
pre-processing extended parallel solvers with clause sharing,” in Pro-
ceedings of SAT Competition 2022: Solver and Benchmark Descriptions,
p. 51, Department of Computer Science, University of Helsinki, Finland,
2022.

[4] M. Sami Cherif, D. Habet, and C. Terrioux, “Un bandit manchot pour
combiner CHB et VSIDS,” in Actes des 16èmes Journées Francophones
de Programmation par Contraintes (JFPC), (Nice, France), June 2021.

[5] Z. Chen, X. Zhang, S. Cai, and P. Lu, “Cdcl solvers with improved local
search cooperation and pre-processing,” in Proceedings of SAT Compe-
tition 2022: Solver and Benchmark Descriptions, p. 51, Department of
Computer Science, University of Helsinki, Finland, 2022.

[6] S. Cai, C. Luo, and K. Su, “Ccanr: A configuration checking based local
search solver for non-random satisfiability,” in Theory and Applications
of Satisfiability Testing – SAT 2015 (M. Heule and S. Weaver, eds.),
(Cham), pp. 1–8, Springer International Publishing, 2015.

[7] G. Audemard and L. Simon, “Predicting learnt clauses quality in modern
sat solvers.,” in IJCAI, vol. 9, pp. 399–404, 2009.

[8] T. Balyo, P. Sanders, and C. Sinz, “Hordesat: A massively parallel
portfolio sat solver,” in Proceedings of the 18th International Conference
on Theory and Applications of Satisfiability Testing (SAT), pp. 156–172,
Springer, 2015.

[9] S. Wieringa and K. Heljanko, “Concurrent clause strengthening,” in
Proceedings of the 16th International Conference on Theory and Ap-
plications of Satisfiability Testing (SAT), pp. 116–132, Springer, 2013.

[10] J. H. Liang, C. Oh, V. Ganesh, K. Czarnecki, and P. Poupart, “Maple-
comsps lrb vsids, and maplecomsps chb vsids,” pp. 20–21, 2017.

43

pKisDS: Dynamic Clause Sharing with Bandit
Algorithms

Zhihui Xie‡, Xu Liu‡, Wanqian Luo†, Junhua Huang†, Hui-Ling Zhen†,
Xijun Li†, Mingxuan Yuan† and Shuai Li‡

†Huawei Noah’s Ark Lab
‡Shanghai Jiao Tong University

{luowanqian1, huangjunhua15, zhenhuiling2, xijun.li, Yuan.Mingxuan}@huawei.com
{fffffarmer, liu skywalker, shuaili8}@sjtu.edu.cn

Abstract—In this paper, we present two parallel solvers that
incorporate selective clause sharing into the parallel framework.
These solvers build upon the idea of selectively sharing learned
clauses of the solvers to balance learning and efficiency. To
explicitly model this trade-off, we utilize bandit algorithms to
select which workers to share with, allowing the workers to
dynamically change their sharing strategy after each restart.

I. THE TRADE-OFF BEHIND CLAUSE SHARING

Modern SAT solvers heavily rely on the technique of
conflict-driven clause learning (CDCL). For CDCL solvers,
there are mainly two assets learned during the solving process:
heuristic scores and clauses. In the context of parallel SAT
solving, learned clauses have been widely used to enhance
cooperation by sharing among the solvers. However, learned
clauses result in a trade-off between sufficient learning and
efficiency [1], [2]. Specifically, learning more lemmas is
advantageous for diverse reasons, but too many clauses lead to
propagation inefficiency. Besides, the roles of learned clauses
differ between SAT and UNSAT instances [2]: while learned
clauses are useful to accumulate to prove unsatisfiability, they
tend to play insignificant roles on SAT instances.

For parallel solvers, a natural question is how to dynam-
ically adjust the clause sharing strategy when solving an
instance. This consists of two factors [3]: which clauses to
share and which workers to be shared with. In this work, we
consider the second problem and design an adaptive strategy
that allows the receiver cores to choose their emitter cores
when solving an instance. We design a bandit-based method
that leverages information acquired between restarts as an
indication of quality of shared clauses. Our approach bears
resemblance to previous work [1], [4], which also consider
controlled clause sharing.

II. SOLVER SUBMISSION

Our approach builds upon ParKissat-RS [5], a portfolio-
based parallel solver that won first place in the 2022 SAT
Competition. Each thread runs a Kissat-MAB solver [6] and
shares no more than 1500 literals every 0.5s, from clauses
with LBD smaller or equal to 2. The same diversification and
pre-processing methods of ParKissat-RS are applied.

To dynamically adjust the sharing strategy, we formulate the
problem of which workers to share with as a combinatorial

bandit problem [7]. Let N be the total number of workers
(or threads) and K < N be the number of emitter workers
from which each worker receives clauses. We fix K = 0.75N ,
suggesting that each worker receives learned clauses from 75%
of the other workers. This selection process is controlled by an
individual combinatorial bandit model attached to each worker.
At each time the model selects a subset of K arms (i.e.,
emitters) to play, based on information obtained throughout
the solving.

Since our desire is to select the clauses that can best
accelerate solving, we need to estimate the efficiency of each
worker. We consider the explored sub-tree measure [6], [8] as
the reward function that estimates the efficiency of the shared
clauses between restarts. Each worker at each restart updates
its accompanied bandit model by assigning the same reward to
all the selected arms, and then adjusts its selection accordingly.

We name our solver pKisDS and propose two variants for
SAT Competition 2023.

A. pKisDS

The base pKisDS model uses the asymptotic optimal UCB
algorithm [9] to ranks arms according to the following value:

AsymUCB(a) = r̂t(a) +

√
2 log f(t)

Tt(a)
,

f(t) = 1 + t log2(t),

where r̂t(a) is the empirical mean of the rewards received by
arm a before restart t and Tt(a) is the number of received
rewards by arm a before restart t.

B. pKisDS-step

pKisDS-step differs from pKisDS slightly in that, at each
restart, each worker only reschedule one of its emitters instead
of all. This could empirically lead to more stable learning
process and final performance [4].

REFERENCES

[1] Y. Hamadi, S. Jabbour, and J. Sais, “Control-based clause sharing in
parallel sat solving,” Autonomous Search, pp. 245–267, 2012.

[2] C. Oh, “Between sat and unsat: the fundamental difference in cdcl
sat,” in Theory and Applications of Satisfiability Testing–SAT 2015:
18th International Conference, Austin, TX, USA, September 24-27, 2015,
Proceedings 18. Springer, 2015, pp. 307–323.

Proceedings of SAT Competition 2023: Solver and Benchmark Descriptionsvolume B-2023-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2023 .

44

[3] L. Le Frioux, S. Baarir, J. Sopena, and F. Kordon, “Painless: a framework
for parallel sat solving,” in Theory and Applications of Satisfiability
Testing–SAT 2017: 20th International Conference, Melbourne, VIC, Aus-
tralia, August 28–September 1, 2017, Proceedings 20. Springer, 2017,
pp. 233–250.

[4] N. Lazaar, Y. Hamadi, S. Jabbour, and M. Sebag, “Cooperation control in
parallel sat solving: a multi-armed bandit approach,” Ph.D. dissertation,
INRIA, 2012.

[5] X. Zhang, Z. Chen, and S. Cai, “Parkissat: Random shuffle based
and pre-processing extended parallel solvers with clause sharing,” SAT
COMPETITION 2022, p. 51.

[6] M. S. Cherif, D. Habet, and C. Terrioux, “Combining vsids and chb
using restarts in sat,” in 27th International Conference on Principles
and Practice of Constraint Programming (CP 2021). Schloss Dagstuhl-
Leibniz-Zentrum für Informatik, 2021.

[7] W. Chen, Y. Wang, and Y. Yuan, “Combinatorial multi-armed bandit:
General framework and applications,” in International conference on
machine learning. PMLR, 2013, pp. 151–159.

[8] A. Paparrizou and H. Wattez, “Perturbing branching heuristics in con-
straint solving,” in Principles and Practice of Constraint Programming:
26th International Conference, CP 2020, Louvain-la-Neuve, Belgium,
September 7–11, 2020, Proceedings 26. Springer, 2020, pp. 496–513.

[9] T. Lattimore and C. Szepesvári, Bandit algorithms. Cambridge Univer-
sity Press, 2020.

45

Mallob{32,64,1600} in the SAT Competition 2023
Dominik Schreiber

Institute of Theoretical Informatics
Karlsruhe Institute of Technology

Karlsruhe, Germany
dominik.schreiber@kit.edu

Abstract—We describe our submissions of Mallob to the
parallel and cloud tracks of the SAT Competition 2023. Our
changes mostly aim at reducing (computational and memory)
overhead and at reducing turnaround times of shared clauses in
order to reduce redundant work performed.

Index Terms—Parallel SAT solving, distributed SAT solving

I. INTRODUCTION

In this report we describe the configurations of our schedul-
ing and SAT solving system Mallob [1], [2] which we submit
to this year’s International SAT Competition. As in prior years
[3]–[5] we configure our system to immediately schedule a
single instance (i.e., the problem input) with full demand of
resources and to quit after its processing. While this mode of
operation now supports producing UNSAT proofs [6], we are
not using this functionality since it adds overhead and limits
the set of usable solvers.

II. OVERVIEW AND SETUP

In contrast to previous submissions [3]–[5] where we spawn
one MPI process for each group of four hardware threads
— a heritage from Mallob’s precursor HordeSat [7] — we
now spawn only one MPI process for each physical machine.
This change reduces overhead in terms of run time and
memory usage.1 It also allows running Mallob as a shared-
memory parallel solver without MPI on a single large machine.
However, the increased degree of concurrency within each
process also uncovered issues in some of our concurrent data
structures that were previously “good enough” when only
using four threads. For this reason we rewrote large portions
of Mallob’s data structures for handling produced clauses (see
Section III-C). As last year [5], we run solver threads within
a separate sub-process that is forked from the respective MPI
process. Since restarting a solver process that orchestrates
dozens of solvers leads to significant loss of progress, we
also adjusted our memory panic mechanism [5] to gracefully
terminate and clean up individual solvers in a solver process.
For cases where an out-of-memory situation occurs despite our
precautions, each subprocess now adjusts its out-of-memory
score (oom_score_adj) in such a way that it is the first
process to be killed by the operating system. Killing a SAT
subprocess is always preferrable to killing an MPI process,
since the latter crashes the distributed program.

1In particular, each MPI process keeps a copy of the problem input and
additionally writes a copy to a shared-memory segment.

We submit two parallel versions and one distributed
(“cloud”) version of Mallob. We employ 32 (64) Kissat
instances2 in the parallel configuration Mallob32 (Mallob64)
and employ a mix of 800 Kissats, 533 CaDiCaLs, and 267
Lingelings in the distributed configuration Mallob1600. Com-
pared to last year we omit Glucose, which might be slightly
detrimental to overall performance but simplifies our setup and
also renders all parts of our submission Free Software.

Inspired by recent work that involved modifications to
CaDiCaL [6], we enhanced the clause export implementation
of our Kissat backend: Instead of exporting clauses at conflict
analysis, we now export any new redundant clause that is
created (and any unit that is fixed). As such, solvers can
now also share insights gained from inprocessing techniques
such as probing, vivification, or hyper-ternary resolution. In
addition, we now allow Kissat to import incoming clauses
whenever at decision level zero without waiting for a certain
number of conflicts to occur in between (500 conflicts in our
previous submissions), which can reduce turnaround times of
shared clauses (see Section III-B). We also added some minor
improvements to Kissat’s clause import code and extended its
portfolio to a total of 15 distinct configurations.

III. CLAUSE SHARING

Regarding Mallob’s clause sharing, we introduce a change
in handling LBD scores; an increase of the frequency at which
all-to-all clause sharing is performed; and improvements to
Mallob’s clause filtering and buffering data structures.

A. Handling LBD Scores

We have integrated a technique that was already featured
in TopoSAT 2 [8]: If a solver imports a clause, the clause’s
LBD value is reset to the clause’s length, contrary to our
(HordeSat’s) earlier approach of importing each clause with
its original LBD. The TopoSAT 2 approach takes into account
that LBD is a local metric that depends on the solver state
and therefore may not be meaningful for all solvers globally.
Note that the HordeSat approach may force solvers to keep an
unsustainable number of low-LBD clauses over time while the
TopoSAT 2 approach rather results in solvers discarding many
incoming clauses after a few conflicts.

2In last year’s competition, a misconfiguration lead to our submission
“Mallob-Ki” to use Lingeling instead of Kissat as a solver backend. See
http://algo2.iti.kit.edu/schreiber/downloads/mallob-ki-mallob-li.pdf

Proceedings of SAT Competition 2023: Solver and Benchmark Descriptionsvolume B-2023-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2023 .

46

B. Sharing Frequency

Since clause sharing may be considered a kind of distributed
pruning of search space, we suspect that it is beneficial to
minimize the latency between a clause’s production by solver
S and its import by a solver S′. Intuitively, lowering this
“turnaround time” of a clause c may reduce the chance that
S′ enters a sub-space which S already reported as pruned
via c. Therefore, more frequent clause sharing may decrease
the amount of redundant work performed. We increased the
frequency at which all-to-all clause sharing is performed from
1/s to 0.33/s. Accordingly, we scaled down the buffer limit for
each sharing by a factor of three.

C. Clause Filtering and Buffering

We added some improvements and bugfixes to Mallob’s
exact distributed clause filtering mechanism [5]. For instance,
we now use the clause metadata in hash table H to keep
track of the last epoch where a local solver produced a
clause and successfully wrote it into clause buffer B, and
we added a periodic garbage collection which erases clauses
from H whose last sharing and production both range back
beyond the user-defined resharing interval. We also use this
additional information to more reliably block clauses from
being imported by a solver which recently produced them.

In our 2022 implementation of adaptive clause buffers B
[5], each slot l for clauses of length l is guarded by a mutex.
Inserting a clause c of length l in B requires locking slot l
as well as potentially all slots l′ > l in succession in order to
erase “worse” clauses and then use the freed budget to insert
c to l. This is acceptable with just four solver threads but
may not scale to our new setup. Rather than actually erasing
clauses from a worse slot l′, we now just mark a deletion
by manipulating an atomic clause counter of slot l′, hence
we only need to lock slot l. The actual deletion takes place
the next time a lock for slot l′ is held. If B is close to full
before flushing, then we also determine the minimum l̂ such
that ≥ 95% of all clauses in B had length l̂ or below. If a
produced clause c is larger than l̂, then it is highly unlikely
that c is ever exported from B before it is deleted3 and we
discard c without attempting its insertion.

Solvers may occasionally produce large bursts (hundreds of
thousands) of unit clauses, which overburdens B and results
in discarding most produced clauses. For this reason, we now
allow the buffers to store an unlimited number of unit clauses
while keeping the shared budget for all other slots.

Lastly, we have noticed a shortcoming in the merge of
clause buffers during our distributed aggregation [1]. If the
set of available clauses exceeds the current aggregated buffer
limit, then the buffer is truncated, returning excess clauses to
the local solver process. Since clauses are sorted alphanumer-
ically, this may introduce a slight bias to our sharing. We now
randomly select the clauses from the buffer’s “worst” bucket
which make the cut and return the remaining clauses.

3The budget of B is set to 10× the export limit per flush.

IV. INPUT PERMUTATION

Permuting the input before handing it to a solver can be used
as an additional source of diversification. We experimented
with this kind of diversification in 2021 [4] but did not include
it in 2022 since its implementation incurred too much overhead
to be worthwhile. The formula is present as a chunk of shared
memory that is parsed by many solvers concurrently, so direct
manipulations of the formula should be avoided.

This year we reintroduce input permutation for all but the
first ten solvers. In our new implementation, we select up
to k = 128 input clauses to which we store a pointer. The
first clause in the input is always selected while the remaining
k − 1 clauses are selected at random. Each of the k pointers
represents a chunk of the input beginning at the referenced
clause. These k pointers are then permuted and the input
chunks are read in the corresponding order. This procedure
is cache-friendly and features a non-zero probability for any
pair of clauses (c1, c2) to be read in reverse order. In addition,
the order of literals in each clause is shuffled using a single
clause buffer for each solver thread.

ACKNOWLEDGMENT

The author thanks Armin Biere
for providing the solvers Kissat,
CaDiCaL, and Lingeling which
our solving system is built upon.
The author gratefully acknowl-
edges the Gauss Centre for Supercomputing e.V. (www.gauss-
centre.eu) for funding this project by providing computing
time on the GCS Supercomputer SuperMUC-NG at Leibniz
Supercomputing Centre (www.lrz.de). Some preparation for
this work was performed on the HoreKa supercomputer funded
by the Ministry of Science, Research and the Arts Baden-
Württemberg and by the Federal Ministry of Education and
Research. This project has received funding from the European
Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement
No. 882500).

REFERENCES

[1] D. Schreiber and P. Sanders, “Scalable SAT solving in the cloud,” in
Proc. SAT, pp. 518–534, Springer, 2021.

[2] P. Sanders and D. Schreiber, “Decentralized online scheduling of mal-
leable NP-hard jobs,” in Proc. Euro-Par, pp. 119–135, Springer, 2022.

[3] D. Schreiber, “Engineering HordeSat towards malleability: mallob-mono
in the SAT 2020 cloud track,” in Proc. of SAT Competition, pp. 45–46,
2020.

[4] D. Schreiber, “Mallob in the SAT competition 2021,” in Proc. of SAT
Competition 2021, p. 38.

[5] D. Schreiber, “Mallob in the SAT competition 2022,” in Proc. of SAT
Competition 2022, pp. 46–47.

[6] D. Michaelson, D. Schreiber, M. J. Heule, B. Kiesl-Reiter, and M. W.
Whalen, “Unsatisfiability proofs for distributed clause-sharing SAT
solvers,” in Proc. TACAS, pp. 348–366, Springer, 2023.

[7] T. Balyo, P. Sanders, and C. Sinz, “Hordesat: A massively parallel portfo-
lio SAT solver,” in International Conference on Theory and Applications
of Satisfiability Testing, pp. 156–172, Springer, 2015.

[8] T. Ehlers and D. Nowotka, “Tuning parallel SAT solvers,” Proceedings
of Pragmatics of SAT, vol. 59, pp. 127–143, 2019.

47

BENCHMARK DESCRIPTIONS

Benchmark Compilation for SAT Competition 2023
Markus Iser

HIIT, Department of Computer Science, University of Helsinki
Helsinki, Finland

markus.iser@helsinki.fi

Abstract—The compilation of a new set of benchmarks is one of
the most important tasks in the run-up to the SAT competition. In
this document, we provide detailed information about the process
and the criteria that were important in compiling the benchmark
set for the 2023 SAT competition.

Index Terms—benchmark compilation

I. INTRODUCTION

The compilation of benchmarks is an essential part of
the SAT competition. The benchmarks for the 2023 SAT
competition have been compiled to provide a fair assessment
of the state of the art in SAT solving.

The ”Bring your own benchmarks” (BYOB) rule reinforces
the community-oriented nature of the SAT competition by
allowing participants to submit their own instances. This also
leads to a larger share of novel benchmark instances and a
greater diversity of instance domains, which is desirable.

Thanks to the strong participation, we were able to draw a
sample from a large set of new benchmarks. From the subset
of new instances that were not found to be too simple or
isomorphic to each other, we drew a random sample stratified
by author. We also included a random set of benchmarks
from the Anniversary Track of the 2022 SAT competition to
balance the determined numbers of satisfiable and unsatisfiable
instances in the benchmark.

II. BENCHMARK COMPILATION

In this competition, 19 authors submitted a total of 654
benchmark instance files, among which we identified 636 as
unique benchmark instances. We further filtered this set of
instances as described below to ensure instance hardness and
diversity.

To ensure hardness of the instances, we ran Minisat with
a time limit of one minute on a laptop with an AMD Ryzen
7 PRO 3700U CPU and 16 GB RAM and filtered out 39
instances that could be solved by Minisat within the time limit.

To ensure diversity, we filtered out isomorphic instances. To
this end, we projected the set of instances onto an equivalence
class identifier formed from the hash sum of the sorted degree
sequence of the weighted literal incidence graph.

This filtering gave us a set of 527 instances that were
neither too simple nor isomorphic to each other. From this
set, we drew 306 instances by randomly selecting a maximum
of 20 instances from each author. Table I contains detailed
information about the instance domains and the numbers of
submitted, filtered and selected instances for each author.

TABLE I
BENCHMARK SELECTION BY CORRESPONDING AUTHOR.

Submitter Domain Unique Filtered Selected
Chowdhury Production 20 20 20
Chung UNSATcoin 20 15 15
Fleury GRS, RISC-V 94 94 20
Gao Interval Matching 23 23 20
Green Register Allocation 20 20 20
Hiller Software Verification 6 4 4
Karia Brent Equations 20 19 19
Manthey Cryptography 26 26 20
Mayer-Eichberger Social Golfer 26 21 20
Niskanen Argumentation 138 136 20
Nuttall Subsumption Test 19 5 5
Osama Hashtable Safety 21 21 20
Reeves Mutilated Chessboard, PHP 20 18 18
Shuolin Li REGN Formulas 32 5 5
Tchinda Scheduling 20 19 19
Xindi Miter 20 4 4
Yldirimoglu RPHP, XOR, Tseitin, Coloring 40 40 20
Zhang Cryptography 51 17 17
Zheng Set Covering 20 20 20
Total 636 527 306

TABLE II
A PRIORI KNOWN SAT / UNSAT BALANCE.

SAT UNSAT UNKNOWN Sum
New Benchmarks 82 70 154 306
Old Benchmarks 41 53 0 94
Total 123 123 154 400

Finally, we randomly sampled a set of 94 benchmarks from
the Anniversary track of the 2022 SAT competition to balance
the numbers of known satisfiable and unsatisfiable instances in
the benchmark. Table II shows detailed information about the a
priori known numbers of satisfiable, unsatisfiable and unknown
instances in the benchmark. The instances are available for
download at https://benchmark-database.de?track=main 2023.

III. REPRODUCIBILITY

The script and dataset which we used for compiling the
set of benchmark instances can be downloaded from the SAT
competition website https://satcompetition.github.io/2023/. To
run the script, the package https://pypi.org/project/gbd-tools/
must be installed [1].

REFERENCES

[1] M. Iser, C. Sinz, “A Problem Meta-Data Library for Research in SAT.”
Proceedings of Pragmatics of SAT 2018, Oxford, UK, July 7, 2018

Proceedings of SAT Competition 2023: Solver and Benchmark Descriptionsvolume B-2023-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2023 .

49

The Profitable Robust Production Problem
Md Solimul Chowdhury

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA, USA.
mdsolimc@cs.cmu.edu

Abstract—This document describes a crafted SAT benchmark
that provides a solution for a production plan for an imaginary
business organization. To meet increasing demands, the business
plan must ensure a non-decreasing number of products over a
span of D ≥ 1 days. The business plan must ensure that the
cost of production each day must be lower than the expected
net sales on that day- thus making the business potentially a
profitable one.

We call this problem Profitable Robust Production (PRP) Prob-
lem. We formulate PRP as a SAT problem. We have submitted
20 instances of PRP to the SAT Competition-2023.

I. THE PRP PROBLEM

With the past success of solving the Graceful Production
Problem [2], the manager at the FantasyElectronics corpora-
tion is now challenged with making the business of producing
the iImagine product with the following requirements: (i) the
business must be profitable: each day, the expected net sales
of iImagines must exceed the cost for producing them, (ii) the
production must be (a) steady: the total number of product
produced in a given day must not be lower than the number
of produced in the previous day, and (b) robust: the minimum
number of product produced (over all its production units) in
a given day must be higher than the number of produced in
the previous day. First, the manager needs to make sure a
production plan exists, which respects these requirements.

The company has one production factory with u ≥ 1
production units.

1 Each unit produces 0 or more gadgets each day, some
of which may have manufacturing defects and are not
functioning.

2 The capacity of each unit limits a maximum of m ≥ 0
functioning gadgets each day.

Let eij , cij , and sij be the number product produced at unit
i at day j, cost of producing a product at unit i at day j,
and expected sale price of each product produced from unit
i at day j, where, 1 ≤ i ≤ u and cmin ≤ cij ≤ cmax, and
smin ≤ sij ≤ smax, and 1 ≤ j ≤ D. The production venture
of iImagine needs to fulfill the following requirements:

• profit At day j, tcj =
∑

i eij ∗ cij the total cost of
running unit i must be lower than tpj =

∑
i eij ∗ sij , the

expected profit for that day.
• steady The total number of functioning iImagaine

produced in a day needs to be higher or equal to its
previous day’s total, and

• robust For any given day, for these u units, the
minimum number of gadgets produced must be greater
than the minimum number of products produced in the
previous day.

Is it possible for these units to run for D ≥ 2 days, while
satisfying these requirements? The manager needs to find
answer of this new question.

II. SAT ENCODING OF THE PRP PROBLEM

A. PRP as a SAT Benchmark

Here, we encode the PRP problem as a SAT benchmark.
Given a PRP problem, we encode it as a SAT formula Fprp as
follows

Fprp = Fprofit ∪ Fsteady ∪ Frobust ∪ Fends

, where, Fprofit, Fsteady, Frobust, and Fends are defined as
follows:

Fproft :
D∧

j=1

u∑

i=1

ei,j ∗ ci,j <
u∑

j=1

ei,j ∗ si,j

Fsteady :
D−1∧

j=1

u∑

i=1

ei,j+1 >
u∑

i=1

ei,j

Frobust :
D−1∧

j=1

min (e1,j . . . eu,j) < min (e1,j+1 . . . eu,j+1)

Fends :

D∧

d=1

¬e0,j ∧ ¬en+1,j

Over D days,

• Fprofit encodes the profit constraint.
• Fsteady encodes the steady constraint.
• Frobust encodes the robust constraint.
• Fends encodes the assertion that left unit (resp. right

unit) of the leftmost (resp. rightmost) always produces
0 gadgets, which marks the horizon of the factory.

FPRP is SATISFIABLE, if the factory can run for D days
by conforming to the profit, steady, robust, and ends
constraints, otherwise, it is UNSATISFIABLE.

Proceedings of SAT Competition 2023: Solver and Benchmark Descriptionsvolume B-2023-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2023 .

50

III. PROBLEM MODELING AND INSTANCE GENERATION
FOR THE PRP BENCHMARKS

A. Problem Modeling

picat [1] is a CSP solver, which accepts a CSP problem
and converts it to a SAT CNF formula, which is inturn solved
by a SAT solver hosted by picat. Before solving the converted
CNF formula, picat outputs the CNF formula.

To generate instances for the PRP benchmark, we use this
CNF generation feature of picat. First, we modelled the PRP

problem in a picat program picatPRP. Then, for a given set of
parameter values for (D,u, [cmin, cmax], [smin, smax]) for
a PRP problem, we use this picatPRP model to generate CNF
FPRP by exploiting the CNF generation functionality of picat.

B. Instance Generation

We have generated a set of FPRP instances with the picatPRP
by varying the parameters D and u, while setting m (max-
imum production limit of an unit per day) to a fixed value
of 1,000, cmin and smin to 0, cmax and smax to 100.
From this set of instances, we have submitted 20 instances for
SAT competition-2022 (CNF file has the the following format
PRP D u).

REFERENCES

[1] Picat, http://picat-lang.org/resources.html, Accessed: 2020-04-09
[2] Md Solimul Chowdhury. The Graceful Production Problem. Proceedings

of SAT Competition-2022:61-62

2

51

UNSATcoin
Jonathan Chung

University of Waterloo
Waterloo, Canada

ORCID: 0000-0001-5378-1136

Sam Buss
UC San Diego

La Jolla, United States of America
ORCID: 0000-0003-3837-334X

Vijay Ganesh
University of Waterloo

Waterloo, Canada
ORCID: 0000-0002-6029-2047

Abstract—This benchmark suite consists of unsatisfiable vari-
ants of Bitcoin mining problems. The satisfiable variants of this
problem were submitted as the SATcoin benchmark for the SAT
competition in 2018 by [4]. We use their problem encoding and
instance generator to generate the instances for this benchmark.

I. INTRODUCTION

We refer the reader to the original SATcoin benchmark
description document [4] for an overview of the problem
and the encoding. The code for generating the instances is
available at https://github.com/jheusser/satcoin, and a more
detailed explanation of the encoding is presented in their main
document [3].

As a brief introduction, the Bitcoin mining problem searches
for a nonce value such that the hash for an input message
is smaller than some target value. This search is encoded
as a computer program, which a bounded model checker
then encodes into a SAT problem. When the input message
is known to have a single nonce value satisfying the target
value, the problem can be made definitely SAT or UNSAT
by restricting the search space for the nonce. This is done
by setting minimum and maximum values for the nonce
and setting them to contain or exclude the known “correct”
nonce value. The difficulty of the problem can be scaled by
changing the size of the search space (i.e., increasing the
distance between the minimum and maximum bounds on the
nonce) [4].

The problems in this benchmark suite are parameterized by
a value k, where (for a known nonce value v) the minimum
and maximum bounds are set to v+1 and v+2k respectively.

II. INSTANCE SELECTION

The SATcoin instances submitted to SAT Competition 2018
are now quickly solvable by strong SAT solvers like CADI-
CAL [2]. These instances used very small values of k (from
3 to 10), as well as powers of 2 from 4 up to 8192.

To select more interesting and difficult instances for this
competition, we generated instances ranging k from 5000 to
20000, with a step size of 20 for k ∈ [5000, 10000] and a step
size of 100 for k ∈ [10000, 20000].

We ran the CADICAL SAT solver on Intel E5-2683 v4
Broadwell 2.1 GHz CPUs [5] with 10 GB of RAM and a
time limit of 5000 seconds to identify difficult problems, and
selected a sample of instances from each range of k. To ensure
that our sample of problems is “interesting” as defined by the

competition guidelines [1], and to ensure a variety of problem
difficulties, we selected a mix containing some of the most
difficult instances (unsolved by CADICAL) as well as some
easier – but not trivial – instances (solved by CADICAL).

The k values of the selected instances and the associated
solving times for CADICAL are presented in Table I.

k SOLVING TIME (S)
5920 timeout
6120 timeout
7200 timeout
7720 1018.8
8120 timeout
9080 timeout
9880 timeout
10600 timeout
11100 1431.87
11400 timeout

(a)

k SOLVING TIME (S)
11900 1738.95
12300 timeout
17400 timeout
17800 2158.33
18200 timeout
18400 2418.61
18600 timeout
18800 timeout
19500 2400.43
19800 3826.57

(b)

TABLE I: CADICAL solving times for selected instances.

REFERENCES

[1] SAT Competition 2023. SAT Competition 2023 - Benchmarks.
https://satcompetition.github.io/2023/benchmarks.html, 2023.

[2] Armin Biere. CaDiCaL, Lingeling, Plingeling, Treengeling, YalSAT
Entering the SAT Competition 2017. In Tomáš Balyo, Marijn Heule,
and Matti Järvisalo, editors, Proc. of SAT Competition 2017 – Solver and
Benchmark Descriptions, volume B-2017-1 of Department of Computer
Science Series of Publications B, pages 14–15. University of Helsinki,
2017.

[3] Jonathan Heusser. Sat solving - an alternative to brute force bitcoin
mining. https://jheusser.github.io/2013/02/03/satcoin.html, 2013.

[4] Norbert Manthey and Jonathan Heusser. Satcoin – bitcoin mining via sat.
In Marijn Heule, Matti Järvisalo, and Martin Suda, editors, Proc. of SAT
Competition 2018: Solver and Benchmark Descriptions, volume B-2018-
1 of Department of Computer Science Series of Publications B, page 67.
University of Helsinki, 2018.

[5] Digital Research Alliance of Canada. Graham - CC doc.
https://docs.alliancecan.ca/wiki/Graham.

Proceedings of SAT Competition 2023: Solver and Benchmark Descriptionsvolume B-2023-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2023 .

52

Verifying Floating-Point Commutativity with GRS
Robin Trüby

University Freiburg
Freiburg, Germany

robin.trueby@web.de

Mathias Fleury
University Freiburg
Freiburg, Germany

fleury@cs.uni-freiburg.de

Armin Biere
University Freiburg
Freiburg, Germany

biere@cs.uni-freiburg.de

I. GRS DESCRIPTION

GRS are a technique to operate on floating operations
efficiently following the IEEE 754 norm [1]. It is used inside
CPUs for efficiency. It is possible to prove that only 3
additional digits, called guard (G), round (R), and sticky (S).
This is sufficient to keep the results correct. This is more
efficient for double than converting the numbers to 80-bit
floating points and then rounding back. In his Bachelor project,
the first author created a webpage [2] in German to illustrate
the use of GRS bits.

GRS must be paired with a rounding technique for ties.
We use round to even, which is better to keep precision than
always rounding down or always rounding up.

The benchmark we are interested correspond to proving that
a+b=b+a. We know that such encoding for integer addition
is very easy to solve for SAT solvers, while becoming hard
for multipliers. To simplify the encoding, we first generated
word-level SMT benchmarks. We have submitted some of the
(smaller) benchmarks to the SMT Competition directly.

To validate the correctness of our encoding [3], we com-
pared the results of our encoding to the floating point theory
of SMT solvers and found no difference.

The idea of addition is that our two numbers a and b are
binary encoding from:

a =(−1)sa(1 +ma)2
na

b =(−1)sb(1 +mb)2
nb

Then we align the exponents

a+ b =
(
(−1)sa(1 +ma)2

na−max(na,nb)+

= (−1)sb(1 +mb)2
nb−max(na,nb)

)
2max(na,nb)

Finally, we have to implement the operations. For this, we
used a word-level representation in our SMT encoding. Finally,
we have handle various special cases, including realigning
numbers, changing the exponents, handling denormal num-
bers, and handling overflows (like NaN or infinity). Finally
we can produce the final binary result.

Due to the encoding, we know that all problems are UNSAT.
Also we have not found a simple way to generate satisfiable
hard benchmarks with GRS.

II. BENCHMARK GENERATION

To generate the benchmarks we have written a custom C
program (available online [4]) that writes the SMT file. Then
we use Bitwuzla [5] to convert the SMT files to DIMACS files
without any specific options.

During experimentation, we found out that encoding as (if
a then x=s else x=t) makes the problem very easy for
SMT solver and we generate benchmarks using x = (if a
then s else t).

The naming convention for our benchmarks is
grs-<mantissa-size>-<exponent-size>.cnf.

REFERENCES

[1] IEEE Committee, “IEEE standard for floating-point arith-
metic,” IEEE Computer Society, New York, NY, USA,
Standard IEEE Std 754-2008, Aug. 2008. [Online].
Available: https://web.archive.org/web/20160806053349/http://www.csee.
umbc.edu/∼tsimo1/CMSC455/IEEE-754-2008.pdf

[2] R. Trüby. (2023) Floating-point arithmetic. Bachelor Project at
University Freiburg, in German. [Online]. Available: https://cca.
informatik.uni-freiburg.de/teaching/grs-bits/home.html

[3] ——, “Generating word-level floating-point benchmarks,” 2023, bachelor
Thesis at University Freiburg, Submitted.

[4] ——. (2023) Bachelorarbeit. Accessed April 2023. [Online]. Available:
https://github.com/Robin060500/Bachelorarbeit

[5] A. Niemetz and M. Preiner, “Bitwuzla at the SMT-COMP 2020,”
CoRR, vol. abs/2006.01621, 2020. [Online]. Available: https://arxiv.org/
abs/2006.01621

Proceedings of SAT Competition 2023: Solver and Benchmark Descriptionsvolume B-2023-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2023 .

53

Replacing RISC-V Instructions by Others
Sonja Gurtner

Johannes-Kepler-University Linz
Linz, Austria

sonja.gurtner@gmail.com

Lucas Klemmer
Johannes-Kepler-University Linz

Linz, Austria
lucas.klemmer@jku.at

Mathias Fleury
University Freiburg
Freiburg, Germany

fleury@cs.uni-freiburg.de

Daniel Große
Johannes-Kepler-University Linz

Linz, Austria
daniel.grosse@jku.at

The RISC-V ISA is becoming increasingly popular in
industry and teaching. To realize the ultimate goal of having a
really “reduced” instruction set, it is possible to remove even
more instructions than the ones remaining in the default RISC-
V integer architecture (compared to CISC).

We are here interested in two different variants of instruction
removal:

a) Golcrest-VP [1], [2].: The idea is that we consider
our CPU with an internal sub-CPU that is able to execute
only a single instruction, SUBLEQ (subtract and branch if
less than or equal). The subsystem is properly initialized (with
constants like 1, 4, or 32) when called by the CPU and has
extra registers, that do not need to be restored.

For example, the addition of a and b into c would be:

SUBLEQ r, ZERO, import_b; r := -b
SUBLEQ export_register, import_a, r
; dest := a - r

This very simple example does not feature any jump, but it
is needed when doing bitwise operations.

b) Subtraction-RV [3].: Here we use subtraction and
branching as two separate instructions from the CPU and re-
sults areend. The verification comes in two flavors: verification
of one instruction and then assuming that all other occurrences
of this instruction are correct (and therefore using the simpler
one, e.g. directly use an addition instead of two subtractions)
and the nested version, where the replacement program uses
only subtraction and jumping instructions.

For example, addition of a and b would be:

<save the registers a, b, and c>
sub b, zero, b ; b := -b
sub c, a, b ; c := a - b
<save the register c>
<restore all registers>
<finally restore c>

In the second version, it is important to be careful that
operations like add a, a, a are correctly implemented
including when a is a temporary register that is used to store
value (refer to the Master thesis [3] for more details).

Both works were verified using the solver-aided framework
Rosette [4], which translates constraints from a Racket-like
language to SMT-LIB and automatically calls a SMT solver.
It already does some bitblasting in order to share terms, but
the resulting SMT file still contains (some) words.

In order to generate the benchmarks we used Rosette to
generate SMT files and converted them to SAT files using
Bitwuzla [5]. Remark that some of the smaller files have
already been submitted to the SMT competition, but due to the
low timeout there are few overlaps. The naming convention
of the files is oisc-goldcrest-<bitsize>.cnf or
oisc-subrv-<operator>-[-nested]-<bitsize>-
[-pc].cnf. We have added one source of counterexamples,
not excluding the program counter from the source or des-
tination registers. Problems with -pc are satisfiable (the pc
is increased during the replacement, hence changing its value
when reading it), the others are unsatisfiable.

In terms of solving we know that
oisc-subrv-and-nested-32.cnf is solvable by
Kissat in 10 hours (with some non-default options).
Therefore, we included problems only up to bit size 28.
For oisc-goldcrest-xor-16.cnf, Kissat should be
able to solve them in slightly more than 5000 s on a recent
computer. However, those benchmarks seem to be easier for
CaDiCaL than Kissat.

REFERENCES

[1] L. Klemmer and D. Große, “An exploration platform for microcoded
RISC-V cores leveraging the one instruction set computer principle,”
in IEEE Computer Society Annual Symposium on VLSI, ISVLSI 2022,
Nicosia, Cyprus, July 4-6, 2022. IEEE, 2022, pp. 38–43. [Online].
Available: https://doi.org/10.1109/ISVLSI54635.2022.00020

[2] L. Klemmer, S. Gurtner, and D. Große, “Formal verification of
SUBLEQ microcode implementing the RV32I ISA,” in Forum
on Specification & Design Languages, FDL 2022, Linz, Austria,
September 14-16, 2022. IEEE, 2022, pp. 1–8. [Online]. Available:
https://doi.org/10.1109/FDL56239.2022.9925662

[3] S. Gurtner, “A formally verified reduction of the RV32I ISA,” 2022,
master Thesis at Johannes-Kepler-University, Linz, Austria.

[4] E. Torlak and R. Bodı́k, “Growing solver-aided languages with rosette,”
in ACM Symposium on New Ideas in Programming and Reflections
on Software, Onward! 2013, part of SPLASH ’13, Indianapolis, IN,
USA, October 26-31, 2013, A. L. Hosking, P. T. Eugster, and
R. Hirschfeld, Eds. ACM, 2013, pp. 135–152. [Online]. Available:
https://doi.org/10.1145/2509578.2509586

[5] A. Niemetz and M. Preiner, “Bitwuzla at the SMT-COMP 2020,”
CoRR, vol. abs/2006.01621, 2020. [Online]. Available: https://arxiv.org/
abs/2006.01621

Proceedings of SAT Competition 2023: Solver and Benchmark Descriptionsvolume B-2023-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2023 .

54

Matching of Properly Intersecting Intervals
Yu Gao

Theory Lab, Central Research Institute, 2012 Labs, Huawei Technologies Co., Ltd.
Beijing, China

gaoyu99@huawei.com

Abstract—This document introduces our instances for the SAT
competition 2023.

I. DESCRIPTION OF BENCHMARK

The set of benchmarks is from problem K of the 2022
ICPC (International Collegiate Programming Contest) Asia
East Continent Final [1].
You are given a sequence a0, . . . , a2n. Initially, all numbers
are zero.

There are n operations. The i-th operation is represented by
two integers li, ri (1 ≤ li < ri ≤ 2n, 1 ≤ i ≤ n), which
assigns i to ali , . . . , ari−1. It is guaranteed that all the 2n
integers, l1, l2, . . . , ln, r1, r2, . . . , rn, are distinct.

You need to perform each operation exactly once, in arbitrary
order.

You want to maximize the number of i (0 ≤ i < 2n) such
that ai ̸= ai+1 after all n operations. Output the maximum
number.

The original problem can be converted into a bipartite
matching problem. Let 2n vertices denote the left and right
endpoints of the n intervals. The right endpoint ra of an
interval a is connected to the left endpoint lb of the other
interval b if and only if ra is in b and rb is in a. It can be proved
that the answer is equal to 2n minus the number of edges in
the maximum matching. It can be solved in O(n

√
n) time by

the Hopcroft-Karp algorithm [2] equipped with a segment tree
for efficiently finding unvisited vertices.

In our benchmarks, we encode the matching problem and
remove all but one right endpoints that are not matched in
some fixed maximum matching. The benchmarks are UNSAT.

REFERENCES

[1] ICPC Asia East Continent Final Contest 2022.
[2] J.E. Hopcroft and R.M. Karp, An n 2.5 algorithm for maximum

matchings in bipartite graphs, SIAM J. Comput., 2, 1973, pp. 225–231.

Proceedings of SAT Competition 2023: Solver and Benchmark Descriptionsvolume B-2023-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2023 .

55

Python Function Register Allocation Benchmarks
Andrew Haberlandt∗ and Harrison Green∗

Carnegie Mellon University
Pittsburgh, Pennsylvania, USA
{ahaberla, harrisog}@cmu.edu
∗Authors contributed equally

Abstract—We describe SAT benchmarks encoding the problem
of register allocation for Python functions.

I. INTRODUCTION

Our benchmarks represent graph coloring problems gener-
ated by simulating register allocation on individual Python
functions. Although in practice register allocation is solved
using greedy polynomial-time algorithms, they still serve as
interesting, naturally-occurring graph coloring problems. We
find that these coloring problems are quite challenging for
modern solvers.

II. BENCHMARK GENERATION

Each of our benchmarks is a simulated register allocation
problem. For each of 20 Python functions, we generate a graph
coloring problem for the function’s variable interference graph.
More precisely, nodes represent variables in a Python function
and edges connect variables whose live ranges overlap.

We only submit UNSATISFIABLE benchmarks, since all of
the SATISFIABLE register allocation problems we generated
were solvable in less than 1 second. For our submitted in-
stances, the number of colors k was chosen such that each
instance is not trivially solvable but solvable within 5000
seconds.

We used the live range analysis from Tensorflow’s ‘auto-
graph’ Python static analysis module [1], which allowed us to
generate ASTs for arbitrary Python functions and analyze live
ranges for each variable.

To identify realistic Python functions to use for our bench-
marks, we consider all functions reachable from PySAT [2], a
popular Python module for manipulating SAT formulas. The
functions in our benchmark set are a combination of functions
in PySAT and functions in Python standard library modules
imported by PySAT. We include only functions with at least
15 variables.

III. INDIVIDUAL BENCHMARK DESCRIPTION

Table I displays the name of each Python function, along
with the number of nodes and edges in the interference graph.
We use the color tool from [3] to encode a coloring problem
with k colors for each graph.

AH is supported by NSF Graduate Research Fellowship Grant No. DGE-
2140739.

Name # Nodes # Edges k

BZ2File write 16 103 11
CNF to alien 21 169 11
CNF to alien 21 169 12
CNFPlus from fp 29 399 12
collections namedtuple 63 1524 15
DecompressReader read 19 167 12
FileObject open 19 158 12
FileObject open 19 158 13
GzipFile close 17 121 11
LZMAFile init 33 455 14
LZMAFile write 16 103 12
os fwalk 24 268 12
posixpath joinrealpath 27 328 13
posixpath expanduser 28 292 14
StreamReader readline 23 243 13
WCNF from fp 44 935 13
WCNF from fp 44 935 14
WCNF to alien 32 395 14
WCNFPlus from fp 49 1157 13
WCNFPlus to alien 37 541 14

TABLE I: List of benchmark instances derived from Python
functions.

REFERENCES

[1] “liveness.py in tensorflow’s python static analysis module,”
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/
python/autograph/pyct/static analysis/liveness.py, accessed: 2023-04-30.

[2] A. Ignatiev, A. Morgado, and J. Marques-Silva, “PySAT: A Python
toolkit for prototyping with SAT oracles,” in SAT, 2018, pp. 428–437.
[Online]. Available: https://doi.org/10.1007/978-3-319-94144-8 26

[3] M. J. Heule, A. Karahalios, and W.-J. van Hoeve, “From cliques to
colorings and back again,” in 28th International Conference on Principles
and Practice of Constraint Programming (CP 2022). Schloss Dagstuhl-
Leibniz-Zentrum für Informatik, 2022.

Proceedings of SAT Competition 2023: Solver and Benchmark Descriptionsvolume B-2023-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2023 .

56

A SAT-Benchmark Set from the Approximation of
Trigonometric Functions for SAT-based Verification

Kai Hiller
Karlsruhe Institute of Technology

Karlsruhe, Germany
kai.hiller@student.kit.edu

Alexander Weigl
Karlsruhe Institute of Technology

Karlsruhe, Germany
weigl@kit.edu

I. INTRODUCTION

In this note, we present a benchmark set for SAT solvers,
based on different approximations of trigonometric functions.
This benchmark was inspired by the verification of trajectory
planners used in automotive and robotic driving. Therefore, the
benchmark origins from C programs, which are based on the
floating point arithmetic. We use CBMC1 for the translation
into the DIMACS file format. This is a submission for the
SAT Competition 2023. All benchmark files and sources can
be found here:

https://gitlab.com/V02460/sat-bench-trig
In the following of this note, we show explain how to
generate the DIMACS files using CBMC (Sect. II) and give
performance insights (Sect. III).

II. APPROXIMATION OF TRIGONOMETRIC FUNCTION

We have implemented three different approximation of
the sin and cos-function. Note, that you retrieve the other
trigonometric functions by these equations:

sin(x) = cos(x− 90)

tan(x) =
sin(x)

cos(x)

All three functions are composed of a single partial cosine
implementation in the interval [−π

2 ,
π
2]. All functions are

written in a single C file (given in the Appendix). You
can activate an approximation by using defines (-D) on the
command line. Also, some approximations allow to set the
precision of the approximation. We have implemented:

• Bhaskara I2 is a sine approximation formula, rewritten
here to approximate the cosine:

cosx ≈ π2 − 4x2

π2 + x2
, (−π

2
≤ x ≤ π

2
)

You can activate Bhaskara I with -DTRIG_COS_BHASKARA.
• With -DTRIG_COS_LINES, you activate a piece-wise lin-

ear approximation with pre-computed 5 or 17 line seg-
ments – activate with -DTRIG_COS_LINE_SEGMENT_N=5

and -DTRIG_COS_LINE_SEGMENT_N=17.

1https://www.cprover.org/cbmc/
2https://en.wikipedia.org/wiki/Bhaskara I’s sine approximation formula

• We also provide an approximation using the Taylor
series expansion – activate with a -DDTRIG_COS_TAYLOR

and the number of Taylor terms (n = {2, 4, 6}) with
-DTRIG_COS_TAYLOR_TERMS_N=n.

The benchmark verifies a set of invariants that must hold for
trigonometric functions. It asserts the functions for value range
(cosα, sinα ∈ [−1, 1]), signedness on different intervals,
some well-known values (±π,±π

2 , 0), and the Pythagorean
identity (cos2 α+ sin2 α = 1).

To generate the CNF files with various variants of complex-
ity, the following command is used:
cbmc <DEFINES> --dimacs --outfile <out>.cnf

In particular the submitted benchmark files are generated by
the following commands:
bhaskara.cnf: -DTRIG_COS_BHASKARA
lines5.cnf: -DTRIG_COS_LINES -DTRIG_COS_LINE_SEGMENT_N=5
lines17.cnf: -DTRIG_COS_LINES -DTRIG_COS_LINE_SEGMENT_N=17
taylor2.cnf: -DTRIG_COS_TAYLOR -DTRIG_COS_TAYLOR_TERMS_N=2
taylor4.cnf: -DTRIG_COS_TAYLOR -DTRIG_COS_TAYLOR_TERMS_N=4
taylor6.cnf: -DTRIG_COS_TAYLOR -DTRIG_COS_TAYLOR_TERMS_N=6

III. PERFORMANCE

For an evaluation of this submission, we measured the
provided DIMACS instances with KISSAT3 3.0.0 on AMD
Ryzen 7 3700X CPU with 32 GB RAM. The instances were
generated with CBMC 5.50.0. The run time and maximum set
size as reported by kissat are provided in Table I.

TABLE I
OVERVIEW OF THE BENCHMARK

Benchmark Time [min] Max. Set Size [MB]

bhaskara 03:01 334
lines5 00:10 114
lines17 00:13 157
taylor2 03:53 353
taylor4 19:18 592
taylor6 32:06 876

3https://github.com/arminbiere/kissat

Proceedings of SAT Competition 2023: Solver and Benchmark Descriptionsvolume B-2023-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2023 .

57

APPENDIX

A. Source Code

1 #include <assert.h>
2 #include <math.h>
3 #include <stdbool.h>
4 #include <stddef.h>
5
6
7 #define ARR_LEN(a) (sizeof(a)/sizeof(a[0]))
8 #define ARR_LAST(a) ((a)[ARR_LEN((a))-1])
9 #define ARR_FOREACH(a, body) for(size_t i=0; i<ARR_LEN((a)); i++) body

10 #define ARR_FOREACH_PAIR(a, body) for(size_t i=0, j=1; j<ARR_LEN((a)); i++, j++) body
11
12 bool is_between_open(float min, float x, float max) {
13 return min < x && x < max;
14 }
15 bool is_between_closed(float min, float x, float max) {
16 return min <= x && x <= max;
17 }
18 bool is_near(float x, float v, float e) {
19 float d = x - v;
20 return -e <= d && d <= e;
21 }
22
23 float nondet_float();
24 float nondet_between_open(float min, float max) {
25 float r = nondet_float();
26 __CPROVER_assume(is_between_open(min, r, max));
27 return r;
28 }
29 float nondet_between_closed(float min, float max) {
30 float r = nondet_float();
31 __CPROVER_assume(is_between_closed(min, r, max));
32 return r;
33 }
34
35
36 float cos_part(float x) {
37 assert(is_between_closed(-M_PI_2, x, M_PI_2));
38
39 #ifdef TRIG_COS_TAYLOR
40 float x2 = x * x;
41
42 // Taylor series expansion.
43 // Use an even number of taylor terms as their inaccuracies lead to f(PI/2) > 0.
44 float r = 0.0;
45 #if TRIG_COS_TAYLOR_TERMS_N >= 6
46 r = x2 * (r + (1.0/479001600.0));
47 r = x2 * (r - (1.0/3628800.0));
48 #endif
49 #if TRIG_COS_TAYLOR_TERMS_N >= 4
50 r = x2 * (r + (1.0/40320.0));
51 r = x2 * (r - (1.0/720.0));
52 #endif
53 #if TRIG_COS_TAYLOR_TERMS_N >= 2
54 r = x2 * (r + (1.0/24.0));
55 r = x2 * (r - (1.0/2.0));
56 #endif
57
58 return r + 1.0;
59
60 #elif defined(TRIG_COS_LINES)
61 #if TRIG_COS_LINE_SEGMENT_N == 5
62 #define _TRIG_COS_AS1 1.0054194
63 #define _TRIG_COS_BS1 -0.12736896
64 static const float as[] = {1.0, _TRIG_COS_AS1, 1.06930661, 1.19067734, 1.35429905, 1.52567402};
65 static const float bs[] = {0.0, _TRIG_COS_BS1, -0.37707224, -0.61100686, -0.8158226, -0.96930506};
66 static const float us[] = {(1.0 - _TRIG_COS_AS1) / _TRIG_COS_BS1, 0.25585252, 0.51882326,

0.79887273, 1.11657691};
67 #elif TRIG_COS_LINE_SEGMENT_N == 17
68 #define _TRIG_COS_AS1 1.00071168
69 #define _TRIG_COS_BS1 -0.04619989

58

70 static const float as[] = {1.0, _TRIG_COS_AS1, 1.00921298, 1.02599767, 1.05063307, 1.08247781,
1.12069107, 1.16424457, 1.2119373, 1.2624129, 1.31417934, 1.3656305, 1.4150707, 1.46073625,
1.5008367, 1.53352255, 1.55715278, 1.56936604};

71 static const float bs[] = {0.0, _TRIG_COS_BS1, -0.1382055, -0.22903199, -0.31790447, -0.40406469,
-0.48677758, -0.56533745, -0.63907406, -0.70735831, -0.76960766, -0.82529087, -0.87393345,
-0.91511821, -0.94850194, -0.97376936, -0.99081862, -0.99907977};

72 static const float us[] = {(1.0 - _TRIG_COS_AS1) / _TRIG_COS_BS1, 0.09239975, 0.18479949,
0.27719924, 0.36959898, 0.46199872, 0.55439845, 0.64679818, 0.7391979, 0.83159761, 0.9239973,
1.01639697, 1.10879659, 1.20119615, 1.29359552, 1.38599475, 1.47839099};

73 #else
74 #error "No data for given number of line segments"
75 #endif
76 assert(ARR_LEN(as) == ARR_LEN(bs) && ARR_LEN(bs) == ARR_LEN(us) + 1);
77 ARR_FOREACH_PAIR(us, {
78 assert(us[i] < us[j]);
79 })
80
81 x = fabsf(x);
82
83 float a = ARR_LAST(as);
84 float b = ARR_LAST(bs);
85 ARR_FOREACH(us, {
86 if (x < us[i]) {
87 a = as[i];
88 b = bs[i];
89 break;
90 }
91 })
92 return a + b * x;
93
94 #else
95 // https://en.wikipedia.org/wiki/Bhaskara_I%27s_sine_approximation_formula
96 float pi2 = (float)M_PI * (float)M_PI;
97 float x2 = x * x;
98 return (pi2 - 4.0 * x2) / (pi2 + x2);
99

100 #endif
101 }
102
103 float flt_cos(float x) {
104 assert(is_between_closed(-M_PI, x, M_PI));
105 x = fabsf(x);
106 return x <= M_PI_2 ? cos_part(x) : -cos_part(M_PI - x);
107 }
108
109 float flt_sin(float x) {
110 assert(is_between_closed(-M_PI, x, M_PI));
111 return x > 0.0 ? cos_part(x - M_PI_2) : -cos_part(x + M_PI_2);
112 }
113
114 float flt_tan(float x) {
115 assert(is_between_open(-M_PI_2, x, M_PI_2));
116 return flt_sin(x) / flt_cos(x);
117 }
118
119 int main() {
120 float e = 0.1;
121
122 float angle = nondet_between_closed(-M_PI, M_PI);
123 float cos_r = flt_cos(angle);
124 float sin_r = flt_sin(angle);
125
126 // Check range
127 assert(is_between_closed(-1.0, cos_r, 1.0));
128 assert(is_between_closed(-1.0, sin_r, 1.0));
129
130 // Check sign
131 assert(flt_cos(nondet_between_open(-M_PI, -M_PI_2)) <= 0.0);
132 assert(flt_cos(nondet_between_open(-M_PI_2, M_PI_2)) >= 0.0);
133 assert(flt_cos(nondet_between_open(M_PI_2, M_PI)) <= 0.0);
134
135 assert(flt_sin(nondet_between_open(-M_PI, 0.0)) <= 0.0);
136 assert(flt_sin(nondet_between_open(0.0, M_PI)) >= 0.0);
137

59

138 assert(flt_tan(nondet_between_open(-M_PI_2, 0.0)) <= 0.0);
139 assert(flt_tan(nondet_between_open(0.0, M_PI_2)) >= 0.0);
140
141 // Check values
142 assert(is_near(flt_cos(-M_PI), -1.0, e));
143 assert(is_near(flt_cos(-M_PI_2), 0.0, e));
144 assert(is_near(flt_cos(0.0), 1.0, e));
145 assert(is_near(flt_cos(M_PI_2), 0.0, e));
146 assert(is_near(flt_cos(M_PI), -1.0, e));
147
148 assert(is_near(flt_sin(-M_PI), 0.0, e));
149 assert(is_near(flt_sin(-M_PI_2), -1.0, e));
150 assert(is_near(flt_sin(0.0), 0.0, e));
151 assert(is_near(flt_sin(M_PI_2), 1.0, e));
152 assert(is_near(flt_sin(M_PI), 0.0, e));
153
154 assert(is_near(flt_tan(-M_PI_2 * 0.5), -1.0, e));
155 assert(is_near(flt_tan(0.0), 0.0, e));
156 assert(is_near(flt_tan(M_PI_2 * 0.5), 1.0, e));
157
158 // Pythagorean identity
159 assert(is_near(cos_r * cos_r + sin_r * sin_r, 1.0, e));
160
161 return 0;
162 }

60

Benchmark Problems from Parameterized Encoding
of Brent Equations over Z2

Karthikeya Namoju1, Kalind Karia2, Supratik Chakraborty3, Biswabandan Panda4

1,3,4Department of Computer Science and Engineering, 2Department of Electrical Engineering
Indian Institute of Technology, Bombay

karthikeyaiitb@gmail.com1, kalind1610@gmail.com2, {supratik3, biswa4}@cse.iitb.ac.in

I. INTRODUCTION

Given a pair of n×n matrices A and B over an underlying
ring of elements, consider the problem of multiplying them to
form an n×n matrix C. For 1 ≤ i, j ≤ n, the value of C[i, j]
is defined by

∑n
k=1 A[i, k] ·B[k, j], where the summation and

multiplication are interpreted over the underlying ring. This
approach to multiplying A and B requires n3 multiplications
over the underlying ring to obtain all n2 elements of C. An
interesting question to ask is whether all elements of C can be
computed using strictly less than n3 multiplications. It turns
out that in most cases, this is possible. For example, if n = 2,
we know that Strassen’s algorithm [2] allows computing C
using 7 instead of 23 = 8 multiplications in the underlying
ring. Similarly, if n = 3, we can use Laderman’s algorithm [1]
to compute C using 23 instead of 33 = 27 multiplications
in the underlying ring. In general, it is interesting to ask
whether k multiplications in the underlying ring are sufficient
for computing all n2 elements in the product of two n × n
matrices.

The Brent equations [3] give a generic way of encoding
the above problem. Specifically, let Ml, 1 ≤ l ≤ k denote
the product terms in the underlying ring that are meant
be used in computing the n2 elements of C. We assume
each Ml is of the form

(∑
1≤i≤n

∑
1≤j≤n αl

i,j ∗ A[i, j]
)
·(∑

1≤i≤n

∑
1≤j≤n βl

i,j ∗ B[i, j]
)
, where αl

i,j and βl
i,j are

(small) integers and αl
i,j ∗A[i, j] (resp. βl

i,j ∗B[i, j]) is short-
hand for addition (in the underlying ring) of αl

i,j copies of
A[i, j] (resp. βl

i,j copies of B[i, j]). Finally, each element
C[i, j] of the product matrix is obtained by computing a
linear sum of the product terms, i.e. for 1 ≤ i, j ≤ n,
C[i, j] =

∑k
l=1 γ

l
i,j ∗Ml, where the γl

i,j are (small) integers,
and γl

i,j ∗Ml is short-hand for addition (in the underlying ring)
of γl

i,j copies of Ml. A solution to the matrix multiplication
problem using k multiplications in the underlying ring is then
obtained by finding values of αl

i,j , β
l
i,j and γl

i,j such that the
following equations are satisfied:

k∑

l=1

αl
x,y.β

l
u,v.γ

l
i,j = δi,x.δj,v.δy,u

for all x, y, u, v, i, j ∈ {1, . . . n}. In the above equations, δm,n

denotes the Kronecker delta function that evaluates to 1 if
m = n, and evaluates to 0 otherwise.

It turns out that finding solutions to the Brent equations
aren’t that easy, even with help from computers. A first step
towards solving them is to consider all operations over the
ring Z2, where the multiplication operation is interpreted as
logical AND, and the additional operation is interpreted as
logical XOR. With this interpretation, Brent equations for any
n, k (regardless of whether k ≥ n3) gives rise to a set of
Boolean constraints. It is easy to see that for every solution to
the Brent equations over the ring of real numbers, there is also
a solution to the Brent equations over Z2, where both addition
and subtraction (additive inverse) are interpreted as logical
XOR, and multiplication is interpreted as logical AND. The
converse is however not always true: a solution to the Brent
equations over Z2 may not correspond to a solution to the same
equations over the ring of real numbers. Interestingly, although
we know that there is a trivial solution for the Brent equations
over real numbers (and hence for the corresponding equations
over Z2) when k ≥ n3, the set of Boolean constraints arising
from encoding the Brent equations over Z2 are not that trivially
shown to be satisfiable by modern SAT solvers even when
k ≥ n3. This is most likely because state-of-the-art SAT
solvers have no special heuristics to detect encoding of Brent
equations.

Let φn,k denote the CNF (conjunctive normal form) formula
encoding the Brent equations over Z2, using the following
auxiliary Boolean variables (also called Tseitin variables [4]).
For convenience of exposition, we assume that k is an odd
number ≥ 3 (this can easily be relaxed to allow even numbers
as well).

• tx,y,u,v,l to denote αl
x,y ∧βl

u,v for 1 ≤ x, y, u, v ≤ n and
1 ≤ l ≤ k.

• zx,y,u,v,i,j,l to denote αl
x,y ∧ βl

u,v ∧ γl
i,j for 1 ≤

x, y, u, v, i, j ≤ n and 1 ≤ l ≤ k.
• sx,y,u,v,i,j,1,m to denote

⊕m
l=1

(
αl
x,y ∧ βl

u,v ∧ γl
i,j

)
for

1 ≤ x, y, u, v, i, j ≤ n and all m ∈ {2p + 1 | 1 ≤ p ≤
k−1
2 }

The relation between the auxiliary vari-
ables and αl

i,j , β
l
i,j , γ

l
i,j variables are en-

coded using the following set of constraints:
tx,y,u,v,l ⇔ αl

x,y ∧ βl
u,v

zx,y,u,v,i,j,l ⇔ tx,y,u,v,l ∧ γl
i,j

sx,y,u,v,l,1,3 ⇔ zx,y,u,v,i,j,1 ⊕ zx,y,u,v,i,j,2 ⊕ zx,y,u,v,i,j,3
sx,y,u,v,1,m ⇔ sx,y,u,v,1,m−2 ⊕ zx,y,u,v,i,j,m−1

⊕zx,y,u,v,i,j,m, ∀m ∈ {2p+ 1 | 2 ≤ p ≤ k−1
2 }

Proceedings of SAT Competition 2023: Solver and Benchmark Descriptionsvolume B-2023-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2023 .

61

Each of the above constraints involves at most 4 Boolean
variables, and is easily encoded as a CNF formula. The
conjunction of these CNF formulas gives φn,k as another CNF
formula. Since there always exists a way to multiply matrices
A and B using n3 multiplications in the underlying ring, we
know that φn,k is satisfiable for every k ≥ n3. However,
finding such a satisfying assignment is not always an easy
task for a SAT solver. Furthermore, checking satisfiability of
φn,k where k < n3, is highly non-trivial in general. For
example, although we know that φ3,23 is satisfiable, we do not
know if φ3,22 is satisfiable. Our attempts at trying to check
satisfiability of φ3,22 timed out after 10000 seconds even on
using the topmost solvers from the SAT 2022 competition. The
impreesive work of Heule et al [5] also couldn’t determine
if φ3,22 is true, despite using several advanced streamlining
heuristics.

Given the difficulty of checking satisfiability of φn,k in
general, we adopt a different strategy to arrive at benchmark
instances that can be solved by our solver (and other pow-
erful solvers) within 5000 seconds on the StarExec cluster.
Specifically, we constrain the formula φn,k obtained above in
the following way. Let p be a floating point number in [0, 1].
For each i, j in {1, . . . n} and for each l ∈ {1, . . . k}, we
toss a coin with probability of heads as p to decide whether a
constant 0/1 value must be assigned to αl

i,j (resp. βl
i,j , γl

i,j),
or if αk

i,j (resp. βl
i,j , γl

i,j) must be left unassigned. In case the
coin toss decides that αl

i,j (resp. βl
i,j , γl

i,j) must be assigned
a value, we use the strategy discussed below to assign a value
to the variable.

Recall that Laderman [1] already gave a solution to the
Brent equations for n = 3 and k = 23. This solution, when
interpreted over the ring Z2, yields concrete 0/1 values for
αl
i,j , β

l
i,j and γl

i,j for 1 ≤ i, j ≤ 3 and 1 ≤ l ≤ 23. We take
cue from these concrete values to assign values to αl

i,j (resp.
βl
i,j , γ

l
i,j) in φn,k, if the coin toss alluded to above decides that

the variable must be assigned a value. Specifically, we assign 1
to αl

i,j (resp. βl
i,j , γ

l
i,j) iff Laderman’s solution also assigned

1 to the specific variable. Notice that with this assignment
scheme, a variable can get assigned 0 in one of two ways: if
either Laderman’s solution assigned 0 to the variable or if the
value of i or j exceeds 3 or that of l exceeds 23 (recall that
Laderman’s solution was for n = 3 and k = 23).

The above strategy of assigning values yields a partial
assignment of αl

i,j , βl
i,j and γl

i,j for 1 ≤ i, j ≤ n and
1 ≤ l ≤ k. We use these partial assignments to simplify the
following equivalences encoded in the formula φn,k.

• tx,y,u,v,l ⇔ αl
x,y ∧ βl

u,v is simplified to tx,y,u,v,l ⇔ 0 if
either αl

x,y or βl
u,v is assigned 0. If αl

x,y is assigned 1 and
βl
u,v is unassigned, then the equivalence is simplified to

tx,y,u,v,l ⇔ βl
u,v , and analogously if αl

x,y is unassigned
and βl

u,v is assigned 1. Finally, if both αl
x,y and βl

u,v are
assigned 1, we use the equivalence tx,y,u,v,l ⇔ 1.

• zx,y,u,v,i,j,l ⇔ tx,y,u,v,l ∧ γl
i,j is simplified to

zx,y,u,v,i,j,l ⇔ 0 if γl
i,j is assigned 0. On the other hand,

if γl
i,j is assigned 1, then the simplified equivalence is

zx,y,u,v,i,j,l ⇔ tx,y,u,v,l

Note that we do not propagate the partial assignment beyond
the above two identities when constructing the constrained
version of the formula φn,k.

In view of the above discussion, the final CNF formula
obtained for our benchmark suite can have three potential
parameters: n, k and p. For purposes of our submission,
however, we fixed n to 3, and varied k and p. Each benchmark
thus generated is named brent_k_p.cnf, where k is a
positive integer and p is a floating point number in [0, 1]. These
benchmarks and the satisfiability status as determined by our
solver are given in the table below.

brent 65 0.cnf sat
brent 51 0.29.cnf sat
brent 51 0.07.cnf sat

brent 9 0.cnf unsat
brent 69 0.05.cnf sat
brent 65 0.1.cnf sat
brent 51 0.28.cnf sat
brent 13 0.1.cnf unsat
brent 63 0.1.cnf sat
brent 63 0.2.cnf sat
brent 67 0.05.cnf sat

brent 69 0.cnf sat
brent 71 0.25.cnf sat
brent 63 0.22.cnf sat
brent 63 0.26.cnf sat
brent 51 0.17.cnf sat
brent 15 0.25.cnf unsat

brent 63 0.cnf sat
brent 63 0.15.cnf sat
brent 69 0.3.cnf sat

TABLE I
20 BENCHMARKS LIST

Acknowledgements: The key ideas in the encoding discussed
above are adapted from [5]. We thank Vijay Ganesh and Curtis
Bright for discussions and comments on encoding the Brent
equations over Z2 as Boolean formulas.

REFERENCES

[1] J. D. Laderman. A noncommutative algorithm for multiplying 3×3 ma-
trices using 23 multiplications. Bulletin of the American Mathematical
Society, 82(1):126–128, 1976.

[2] V. Strassen. Gaussian elimination is not optimal. Numerische Mathe-
matik, 13(4):354–356, 1969.

[3] R. P. Brent. Algorithms for matrix multiplication. Technical report,
Department of Computer Science, Stanford, 1970.

[4] G. S. Tseitin. On the complexity of derivation in propositional calculus.
Structures in Constructive Mathematics and Mathematical Logic, Part
II, Seminars in Mathematics, pages 115–125, 1968.

[5] M. Heule, M. Kauers and M. Seidl. Local Search for Fast Matrix
Multiplication. Proceedings of SAT Conference, pg 155-163, 2019.

62

Testing the ASCON Hash Function
Norbert Manthey

nmanthey@conp-solutions.com
Dresden, Germany

I. INTRODUCTION

Hash functions have several properties. In times of quantum
computing, cryptographic functions and their implementations
have to meet specific security properties. The ASCON en-
cryption algorithm family has been selected as meeting all
relevant properties. Several analysis have been performed on
these algorithms already [2].

We used searching for missing input bytes of a known
partial plain text. First, we generate a random input, and com-
pute the hash value related to this input. Next, for satisfiable
formulas, we simply ask the SAT solver to find the bits for a
random subset of the input bytes. For unsatisfiable formulas,
we furthermore exchange one of the output bytes.

To simplify generating the relevant formulas, we use the AS-
CON reference implementation of the hash function, optimized
for 64 bit CPUs. The library is included into the generating C
program, leaving out the initializations that have to be found
by the SAT solver. The expected hash value is then added as
an assertion. Finally, the CBMC [1] tool converts such a C
program into CNF. For each generated CNF, we generated the
relevant C program before; as well as computed the actual
hash value for the random input. For this conversion, CBMC
in version 5.10 (cbmc-5.10) has been used.

II. FORMULA SELECTION

CNFs have been generated for formulas with four to thirteen
input bytes. From those, one to three input bytes have been

allowed to be guessed by the SAT solver – for each com-
bination we generated one random combination of dropped
bytes. Finally, for each configuration furthermore a likely
unsatisfiable formula has been generated.

As MINISAT 2.2 is not the most recent SAT solver, and
to not move further into a KISSAT solver mono culture, we
filtered the generated formulas and dropped the ones that could
be solved easily with KISSAT (version rel-3.0.0-1-g97917dd).

III. AVAILABILITY

The source of the tool is publicly available at https://github.
com/conp-solutions/ascon-c/tree/satcomp-2023. The reposi-
tory also contains a script to generate a first set of formulas.

REFERENCES

[1] E. Clarke, D. Kroening, and F. Lerda, “A tool for checking ANSI-C
programs,” in Tools and Algorithms for the Construction and Analysis
of Systems (TACAS 2004), ser. Lecture Notes in Computer Science,
K. Jensen and A. Podelski, Eds., vol. 2988. Springer, 2004, pp. 168–176.

[2] D. Gérault, T. Peyrin, and Q. Q. Tan, “Exploring differential-based
distinguishers and forgeries for ASCON,” IACR Trans. Symmetric
Cryptol., vol. 2021, no. 3, pp. 102–136, 2021. [Online]. Available:
https://doi.org/10.46586/tosc.v2021.i3.102-136

Proceedings of SAT Competition 2023: Solver and Benchmark Descriptionsvolume B-2023-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2023 .

63

Symmetry Reduced SAT Encodings for
the Social Golfer Problem

Shubh Jaju
Indian Institute of Technology Delhi

New Delhi, India
jajushubh.iitd@gmail.com

Valentin Mayer-Eichberger
Universität Potsdam
Potsdam, Germany

valentin@mayer-eichberger.de

Abdallah Saffidine
The University of New South Wales

Sydney, Australia
Abdallah.Saffidine@gmail.com

Abstract—We re-visit the Social Golfer Problem (SGP) that
has received considerable attention in the SAT, constraint pro-
gramming (CP) and local search communities because of its
intriguing combinatorial structure with many symmetries. In
our benchmark for the SAT competition we introduce a new
SAT model for this problem using a different representation of a
schedule. Our model reduces symmetries by using a context and
table-free representation.

I. INTRODUCTION

In 1850, Reverend Thomas Kirkman sent a query to the
readers of a popular math magazine, Lady’s and Gentleman’s
Diary:

Fifteen young ladies in a school walk out 3 abreast
for seven days in succession: it is required to arrange
them daily, so that no two will walk twice abreast.

Finding such schedules still puzzles researchers today. In
the constraint programming and SAT community, the gener-
alised problem is known as the Social Golfer Problem with
parameters g − p − w: How to schedule g · p players in g
groups of size p for w weeks such that no players meet more
than once.

The following table is a solution for the instance 4− 3− 4:
12 players in 4 groups of 3 scheduled for four weeks. Each
matrix is the schedule of one week, and each row in a matrix
denotes one group.

1 2 3
4 5 6
7 8 9
10 11 12

1 5 7
2 9 10
3 4 12
6 8 11

1 4 10
2 5 8
3 7 11
6 9 12

1 8 12
2 6 7
3 5 10
4 9 11

II. THE APPROACH

The typically SAT and CP representation of SGP is based on
the variables tablei,j,k,p meaning in week i in group j plays
player k at position p in this group. Research has focused on
improving this representation and the required constraints, and
applying symmetry breaking [1] [6] [3].

Our encoding works on a different set of variables which
avoids an explicit representation of the schedule:

• contexti,j,k,l is true if player i and j play together in the
same week in that k and l player together.

We describe the complete schedule just by the informa-
tion which pair of players play together in the same week

that another pair of players play together. This is a unique
representation of the schedule and removes group and week
symmetries by definition. The challenge here is to avoid a
blow-up in the number of variables and clauses.

In the above example of the solution to 4−3−4, the variable
context2,5,9,12 is true because players 2 and 5 play in the same
week (here week 3) together as players 9 and 12 play together.
Note that we do not need an explicit representation of week
3.

The following set of constraints needs to be encoded in SAT:
• Fixing i and j, each player needs to occur exactly once

as k or l.
• Players play at most once together.
• Transitive closure of group relations: If i and j play

together, and j and k play together in one group, then
also i and k.

A naive encoding of these constraints leads to too many
clauses and variables. The following set of techniques were
used to overcome this challenge.

• We require i < j and k < l for the variables
contexti,j,k,l.

• We fix one player in contexti,j,k,l. In our encoding, we
only consider j equal to the last player.

• We use the counter encoding to encode the cardinality
constraint of group size.

The idea behind this approach was mentioned in the work
of Barbara Smith in [4]. However, the idea was given with
the comment that it would be very hard to formulate these
constraints in practice, and it was not implemented in her
work. To the best of our knowledge, we are the first to attempt
a concrete implementation.

III. THE BENCHMARK

There is a natural upper bound of the number of weeks given
the number of players and groups since, at some point, a player
will have to meet another player again to make a schedule.
Finding schedules is easy for a few weeks and becomes very
hard close to this upper bound. Unfortunately, just a few
instances are not too easy but not too hard for SAT solvers.
The benchmark consists of the instances we could find to be
interesting. Furthermore, to complete the set of instances we
have also added instances from the standard table encoding as

Proceedings of SAT Competition 2023: Solver and Benchmark Descriptionsvolume B-2023-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2023 .

64

a comparison. All instances in this benchmark are satisfiable.
The benchmark has been prepared with the SAT programming
language Bule [2] which provides a DIMACS output.

We propose the satisfiable instance of 8 − 4 − 10 as a
milestone for SAT. Other incomplete and greedy methods
have solved this problem [5], but we are unaware of either
SAT or CP to successfully compute a schedule. We believe a
combination of encoding and solving techniques is necessary
to achieve this goal.

REFERENCES

[1] Gent, I.P., Lynce, I.: A sat encoding for the social golfer problem.
Modelling and Solving Problems with Constraints 2 (2005)

[2] Jung, J.C., Mayer-Eichberger, V., Saffidine, A.: QBF programming with
the modeling language bule. In: Meel, K.S., Strichman, O. (eds.) SAT
2022. LIPIcs, vol. 236 (2022)

[3] Lardeux, F., Monfroy, E., Rodriguez-Tello, E., Crawford, B., Soto, R.:
Solving complex problems using model transformations: from set con-
straint modeling to sat instance solving. Expert Systems with Applications
p. 113243 (01 2020). https://doi.org/10.1016/j.eswa.2020.113243

[4] Smith, B.M.: Reducing symmetry in a combinatorial design problem. In:
Proceedings of the Third International Workshop on Integration of AI
and OR Techniques. p. 351–359 (2001)

[5] Triska, M., Musliu, N.: An effective greedy heuristic for the social golfer
problem. Annals of Operations Research 194(1), 413–425 (2012)

[6] Triska, M., Musliu, N.: An improved sat formulation for the social golfer
problem. Annals of Operations Research 194(1), 427–438 (2012)

65

SAT Encodings of Acceptance Problems
in Abstract Argumentation

Andreas Niskanen
Helsinki Institute for Information Technology HIIT,

Department of Computer Science,
University of Helsinki, Finland

Email: andreas.niskanen@helsinki.fi

Abstract—Abstract argumentation is one of the major ap-
proaches to formal argumentation with various applications in
artificial intelligence. In an abstract argumentation framework
(AF), arguments are modeled as vertices in a directed graph,
with edges representing attacks between arguments. Different
semantics map such an AF to a set of extensions, that is, jointly
acceptable sets of arguments. An individual argument is then
accepted if it is contained in one or all extensions. We briefly
describe benchmarks for SAT encodings of such acceptance
problems.

Index Terms—abstract argumentation, credulous acceptance,
skeptical acceptance

I. ABSTRACT ARGUMENTATION

We recall argumentation frameworks and their seman-
tics [1]. An argumentation framework (AF) is a pair F =
(A,R), where A is a (finite) set of arguments, and R ⊆ A×A
is an attack relation. If (a, b) ∈ R, we say that argument a
attacks argument b. An argument a ∈ A is defended by a set
S ⊆ A if, for each b ∈ A with (b, a) ∈ R, there is a c ∈ S with
(c, b) ∈ R. A set S ⊆ A is conflict-free if there is no a, b ∈ S
with (a, b) ∈ R. We denote the collection of conflict-free sets
of F by cf (F).

Semantics map each AF F = (A,R) to a set σ(F) ⊆ 2A

of extensions. We consider for σ the functions adm and stb,
which stand for admissible and stable semantics, respectively.
For a conflict-free set S ∈ cf (F), it holds that S ∈ adm(F)
if each a ∈ S is defended by S, and S ∈ stb(F) if for each
a ∈ A \ S, there is some b ∈ S with (b, a) ∈ R. Finally, an
argument q ∈ A is credulously accepted under σ if there is
an extension E ∈ σ(F) with q ∈ E, and skeptically accepted
under σ if for all extensions E ∈ σ(F) it holds that q ∈ E.

II. SAT ENCODINGS

We briefly outline SAT encodings of admissible and stable
semantics [2]. Let F = (A,R) be an AF. To represent
an extension, for each argument a ∈ A, we introduce a
variable xa. Admissible sets are encoded as φadm(F) =∧

(a,b)∈R(¬xa ∨ ¬xb) ∧
∧

a∈A(xa →
∧

(b,a)∈R

∨
(c,b)∈R xc),

and stable semantics as φstb(F) = φadm(F) ∧ ∧
a∈A(xa ∨∨

(b,a)∈R xb). Now, for σ ∈ {adm, stb}, an argument q ∈ A is
credulously accepted under σ iff φσ(F)∧xq is satisfiable, and
skeptically accepted under σ iff φσ(F)∧¬xq is unsatisfiable.

This work is supported by Academy of Finland (grant #347588).

III. BENCHMARKS

We used 23 different AFs from the ICCMA 2017 compe-
tition [3], benchmark set B (http://argumentationcompetition.
org/2017/B.tar.gz). We selected all instances from the “too
hard” category from the Erdös-Rényi, Watts-Strogatz, and Sta-
bleGenerator domains. Finally, we considered both query ar-
guments provided in the benchmark set (.arg1 and .arg2),
and three different acceptance tasks, namely credulous accep-
tance under admissible (DC-AD) and stable semantics (DC-
ST), and skeptical acceptance under stable semantics (DS-ST).
This resulted in 23 ·2 ·3 = 138 instances. The CNF encodings
were generated using the SAT-based AF solver µ-TOKSIA [4].

The instances are named according to the format
<af>_<query>_<task>.cnf where <af> is the original
AF instance, <query> is the query argument used (1 or 2,
which stand for files <af>.arg1 or <af>.arg2 in the
benchmark data set), and <task> is the acceptance task
(DC-AD, DC-ST, DS-ST). Note that all AF instances and
thus all file names start with either ER, WS, or stb. These
identifiers correspond to the graph generation model (Erdös-
Rényi, Watts-Strogatz, and StableGenerator, respectively).

REFERENCES

[1] P. M. Dung, “On the acceptability of arguments and its fundamental role
in nonmonotonic reasoning, logic programming and n-person games,”
Artif. Intell., vol. 77, no. 2, pp. 321–358, 1995.

[2] P. Besnard and S. Doutre, “Checking the acceptability of a set of
arguments,” in 10th International Workshop on Non-Monotonic Reason-
ing (NMR 2004), Whistler, Canada, June 6-8, 2004, Proceedings, J. P.
Delgrande and T. Schaub, Eds., 2004, pp. 59–64.

[3] S. A. Gaggl, T. Linsbichler, M. Maratea, and S. Woltran, “Design and
results of the second international competition on computational models
of argumentation,” Artif. Intell., vol. 279, 2020.

[4] A. Niskanen and M. Järvisalo, “µ-toksia: An efficient abstract argumen-
tation reasoner,” in Proceedings of the 17th International Conference
on Principles of Knowledge Representation and Reasoning, KR 2020,
Rhodes, Greece, September 12-18, 2020, D. Calvanese, E. Erdem, and
M. Thielscher, Eds., 2020, pp. 800–804.

Proceedings of SAT Competition 2023: Solver and Benchmark Descriptionsvolume B-2023-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2023 .

66

Crafted Benchmark Formulas Requiring
Symmetry Breaking and/or Parity Reasoning
Bart Bogaerts

Vrije Universiteit Brussel
bart.bogaerts@vub.be

Jakob Nordström
University of Copenhagen

and Lund University
jn@di.ki.dk

Andy Oertel
Lund University and

University of Copenhagen
andy.oertel@cs.lth.se

Çağrı Uluç Yıldırımoğlu
Vrije Universiteit Brussel

cagri.uluc.yildirimoglu@vub.be

Abstract—We propose a benchmark set containing crafted
CNF formulas for which the hardness with respect to resolution
scales exponentially with the formula size, which means that these
formulas will be very challenging for CDCL SAT solvers without
strong pre- or inprocessing. However, the formulas are designed
so that different formulas in the benchmark set are amenable to
symmetry breaking, parity reasoning, or a combination of these
two techniques, respectively. In this way, our benchmarks can
be used to evaluate to what extent solvers are able to implement
such techniques efficiently.

I. INTRODUCTION

We contribute a set of unsatisfiable crafted CNF formulas
that are designed to be exponentially hard for the resolution
proof system [6], [12], [11], [17], and hence also for conflict-
driven clause learning (CDCL) SAT solvers, which decide
unsatisfiability of CNF formulas by, in effect, constructing
resolution proofs of unsatisfiability [3]. However, if resolution-
based reasoning is combined with symmetry breaking, parity
reasoning, or sometimes a combination of these two techniques,
then the formulas become trivial from a theoretical point of
view. Our goal is that these benchmark formulas could be used
to evaluate to what extent SAT solvers can efficiently perform
symmetry breaking or parity reasoning in practice.

We provide benchmark instances from five different formula
families, namely clique-colouring formulas (Section II), Tseitin
formulas (Section III), relativized pigeonhole principle (RPHP)
formulas (Section IV), graph ordering principle formulas with
XOR substitution (Section V), and random 3-XOR formulas
with OR substitution (Section VI). All contributed formulas are
unsatisfiable, since this is the setting in which the theoretical
hardness guarantees apply.

All formulas were generated using CNFGEN [15], [9], except
for the relativized pigeonhole principle instances where a
dedicated C program was employed.

II. CLIQUE-COLOURING FORMULAS

The clique-colouring formula with parameters n, k, and c
encodes the claim that there exists a graph on n vertices which
has a clique of size k and is simultaneously c-colourable. This
is a contradiction if k > c. In our benchmark instances we fix
k = c+ 1.

Pudlák [16] proved that if k = c+ 1 scales like 4
√
n, then

clique-colouring formulas are exponentially hard not only for
resolution but even for the exponentially stronger cutting planes

proof system [10]. However, if symmetry reasoning is used,
then we can argue that without loss of generality there is a
k-clique on the first k vertices, after which a second symmetry
argument says that these k vertices have to be coloured with
colours 1, 2, . . . , c until we run out of colours.

The clique-colouring formula instances in our benchmark set
have file names with the prefix cliquecolouring. Since
Pudlák’s result only provides asymptotic lower bounds, we
have tried to tune k = c+ 1 with respect to n to get suitably
small formulas that exhibit interesting properties in practice.

III. TSEITIN FORMULAS

A Tseitin formula over a graph G is, very roughly speaking,
a convoluted way of encoding the handshaking lemma, namely
that the sum of all vertex degrees in an undirected graph
must be an even number. These formulas have received their
name from Tseitin [19], and Urquhart [20] proved that Tseitin
formulas are exponentially hard for resolution if G is a very
well-connected bounded-degree expander graph.1

In a bit more detail, for a graph G and a charge function
χ : V (G) → {0, 1} such that the sum

∑
v∈V (G) χ(v)

over all vertices is odd, the Tseitin formula for G and χ
has a variable xe for every edge e ∈ E(G). For every
vertex v ∈ V (G) the formula contains the parity constraint∑

e∈E(v) xe = χ(v) (mod 2) encoded in CNF, where E(v)
is the set of edges incident to v in G. The size of Tseitin
formulas scale linearly with the number of vertices if the
vertex degrees are bounded by some (universal) constant.

Since Tseitin formulas are a special case of inconsistent
systems of linear equations mod 2, they can easily be refuted
by solvers doing parity reasoning using Gaussian elimination.
Less obviously, Tseitin formulas are also easy to solve by
symmetry breaking, since every cycle in G induces a symmetry
where all variables/edges in the cycle can have their values
flipped simultaneously. This can be used to eliminate cycles
one by one in the graph by fixing some edge in every cycle to 0
and removing it. This eventually reduces the graph to a tree,
for which the Tseitin formula is solved by unit propagation.

We have included two subfamilies of Tseitin formulas in
our benchmark set that have varying difficulty for solvers that

1Quite confusingly, and probably because of Urquhart’s paper [20], Tseitin
formulas over expander graphs are sometimes referred to in the SAT solving
community as “Urquhart formulas,” which does not appear to be established
terminology elsewhere.

Proceedings of SAT Competition 2023: Solver and Benchmark Descriptionsvolume B-2023-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2023 .

67

do not implement parity reasoning or symmetry breaking.

A. Tseitin Formulas over Grid Graphs

The vertices in a grid graph form an n × m grid, where
each vertex is adjacent to its four neighbours horizontally and
vertically on the grid. The size of resolution refutations of such
formulas scale exponentially with the smaller grid dimension,
which is at most exponential in the square root of the formula
size.

Our Tseitin formulas over grid graphs have filenames with
the prefix tseitin_grid.

B. Tseitin Formulas over Random 3-Regular Graphs

We also generate Tseitin formulas over random 3-regular
graphs, for which resolution refutations asymptotically almost
surely have size growing exponentially measured in the formula
size.2

The Tseitin formula benchmark files generated from random
3-regular graphs have names starting with tseitin_d3.

IV. RELATIVIZED PIGEONHOLE PRINCIPLE FORMULAS

The relativized pigeonhole principle (RPHP) formula with
parameters p and r encodes, roughly speaking, that there are
mappings m1 : [p] → [r] and m2 : [r] → [p − 1] such that
their composition m1 ◦m2 is injective. Such formulas have
been studied in [2], [1].

In a bit more detail, and expressed in terms of pigeons and
pigeonholes, the RPHP formula states that

1) First, the p pigeons should fly to r resting places, where
each resting place can only be occupied by a single
pigeon.

2) Every resting place contains the address of a final
pigeonhole, and after resting the pigeon should continue
to that hole.

3) The map from resting places to pigeonholes need not
be injective in general, but it should be injective when
restricted to the resting places actually used by the
pigeons, so that at the final destination every pigeon
gets its own pigeonhole.

Since there are p pigeons but only p− 1 holes, this formula
is just as unsatisfiable as the standard pigeonhole principle
formula. What is interesting, however, is that if one fixes p to be
a constant and lets r grow, then the minimal size of resolution
refutations for such formulas scales roughly like rp [1], which
can be chosen to be a suitably large polynomial by fixing an
appropriate constant p. That is, such formulas are “easy” in
the theoretical sense of having polynomial-size refutations, but
such refutations will grow too quickly for SAT solvers to be
able to find them efficiently in practice.

By repeated use of symmetry reasoning, one can argue that
all pigeons, resting places, and pigeonholes are interchangeable.
This makes the formulas easy for a solver with strong enough
symmetry breaking.

2There are also explicit constructions of good enough graphs that are
guaranteed to yield exponentially hard formulas, but in practice random graphs
will always satisfy the required properties and are much simpler to generate.

The relativized pigeonhole principle formulas in our bench-
mark set have filenames with prefixes rphp.

V. XORIFIED GRAPH ORDERING PRINCIPLE FORMULAS

The ordering principle formula with parameter n encodes
the contradictory claim that there exists a set with n elements
that is partially ordered and yet does not contain any minimal
element. This final condition is encoded for every element j by
a clause saying that some other element i ∈ {1, 2, . . . , n} \ j
is smaller.

Ordering principle formulas were studied by Krishna-
murthy [14], who conjectured them to be exponentially hard
for resolution. Stålmarck [18] showed that the formulas in fact
have resolution refutations that are linear in the formula size,
but the formulas are still quite interesting in that for CDCL
solvers with the standard VSIDS decision heuristic performance
is quite sensitive to the VSIDS decay factor [13].

The graph ordering principle formula is a more constrained
version, in which a d-regular graph G (for d ≥ 3) is defined
over the n elements, and the fact that the element j is not
minimal has to be witnessed by some neighbour i ∈ NG(j).
This turns the encoding into a d-CNF formula, but if G is
a so-called expander graph (which will hold asymptotically
almost surely for a randomly generated d-regular graph),3 then
resolution refutations of graph ordering principle formulas
need clauses of width linear in n [7] (i.e., clauses containing
a number of literals that is linear in n).

From any CNF formula F we can generate a new for-
mula F [⊕] by applying XOR substitution, or XORification,
which is to replace every variable x by an exclusive or of two
new, fresh variables x1 ⊕ x2 and then expand the resulting
formula to CNF in the canonical way. For k-CNF formulas of
constant width k, this does not increase formula size more than
by a constant factor 2k. Ben-Sasson [4] (crediting Alekhnovich
and Razborov) observed that if a CNF formula F requires
resolution refutations of width w, then F [⊕] requires resolution
refutations of size exponential in w. Our XORified graph
ordering principle formulas, which are generated from graph
ordering principle formulas by XOR substitution, are therefore
exponentially hard for resolution (at least asymptotically almost
surely).

By using strong enough symmetry reasoning (or potentially
by introducing a new variable x that is defined to be the value of
x1⊕x2 for every pair of variables resulting from XORification),
it is possible to “un-XORify” F [⊕] and recover the original
formula F , after which the short resolution refutation of F can
be applied. This means that solvers that are able to perform
such reasoning should also be able to decide unsatisfiability
of XORification graph ordering principle formulas efficiently.

For our XORified graph ordering principle formulas in our
benchmark set we used 3-regular graphs, and the formulas
have file names with the prefix xor_op.

3Again, there are also explicit constructions of such graphs, but in practice
random graphs always work.

68

VI. ORIFIED RANDOM 3-XOR FORMULAS

A random k-XOR formula with m constraints over n vari-
ables is generated by randomly selecting m times a set of
k variables xi1 , xi2 , . . . , xik for 1 ≤ i1 < i2 < · · · < ik ≤ n
and a bit b ∈ {0, 1} and then adding the parity constraint
xi1 ⊕ xi2 ⊕ · · · ⊕ xik = b encoded in CNF to the formula.
If k is constant, then the size of this formula scales linearly
with m.

For random 3-XOR formulas with m = n it holds
asymptotically almost surely as n goes to infinity that the
formulas are unsatisfiable and require resolution refutations of
exponential size (which can be established by techniques as
in [5]). However, any unsatisfiable XOR formula (random
or not) is trivial to refute by doing Gaussian elimination
over GF(2), which means that random 3-XOR formulas are
easy for solvers that implement parity reasoning in this way.

From any CNF formula F we can generate a new for-
mula F [∨] by applying OR substitution, or ORification, where
every variable x is replaced by a standard or x1 ∨ x2 of two
new, fresh variables, after which the result is expanded to CNF
again in the canonical way. For ORified versions of 3-XOR
formulas Gaussian elimination no longer works, since the parity
constraints have been destroyed, but the formulas still have
small refutations in the more general polynomial calculus proof
system [8] formalizing Gröbner basis computations.

Analogously to what holds for the XORified formulas
in Section V, one can use (human) symmetry reasoning or
introductions of new auxiliary variables to “un-ORify” ORified
3-XOR formulas, after which parity reasoning can be used
to derive contradiction. This means that at least in theory, a
solver that combined strong enough symmetry reasoning or
variable introduction with parity reasoning—or, alternatively,
implemented a strong enough version of general algebraic
reasoning, as noted in the previous paragraph—could solve
these formulas easily.

Our ORified random 3-XOR formulas have filenames starting
with or_randxor.

REFERENCES

[1] A. Atserias, M. Lauria, and J. Nordström, “Narrow proofs may be
maximally long,” ACM Transactions on Computational Logic, vol. 17,
no. 3, pp. 19:1–19:30, May 2016, preliminary version in CCC ’14.

[2] A. Atserias, M. Müller, and S. Oliva, “Lower bounds for DNF-refutations
of a relativized weak pigeonhole principle,” Journal of Symbolic Logic,
vol. 80, no. 2, pp. 450–476, Jun. 2015, preliminary version in CCC ’13.

[3] P. Beame, H. Kautz, and A. Sabharwal, “Towards understanding
and harnessing the potential of clause learning,” Journal of Artificial
Intelligence Research, vol. 22, pp. 319–351, Dec. 2004, preliminary
version in IJCAI ’03.

[4] E. Ben-Sasson, “Size-space tradeoffs for resolution,” SIAM Journal on
Computing, vol. 38, no. 6, pp. 2511–2525, May 2009, preliminary version
in STOC ’02.

[5] E. Ben-Sasson and A. Wigderson, “Short proofs are narrow—resolution
made simple,” Journal of the ACM, vol. 48, no. 2, pp. 149–169, Mar.
2001, preliminary version in STOC ’99.

[6] A. Blake, “Canonical expressions in Boolean algebra,” Ph.D. dissertation,
University of Chicago, 1937.

[7] M. L. Bonet and N. Galesi, “Optimality of size-width tradeoffs for
resolution,” Computational Complexity, vol. 10, no. 4, pp. 261–276, Dec.
2001, preliminary version in FOCS ’99.

[8] M. Clegg, J. Edmonds, and R. Impagliazzo, “Using the Groebner basis
algorithm to find proofs of unsatisfiability,” in Proceedings of the 28th
Annual ACM Symposium on Theory of Computing (STOC ’96), May
1996, pp. 174–183.

[9] “CNFgen: Combinatorial benchmarks for SAT solvers,” https://
massimolauria.net/cnfgen/.

[10] W. Cook, C. R. Coullard, and G. Turán, “On the complexity of cutting-
plane proofs,” Discrete Applied Mathematics, vol. 18, no. 1, pp. 25–38,
Nov. 1987.

[11] M. Davis, G. Logemann, and D. Loveland, “A machine program for
theorem proving,” Communications of the ACM, vol. 5, no. 7, pp.
394–397, Jul. 1962.

[12] M. Davis and H. Putnam, “A computing procedure for quantification
theory,” Journal of the ACM, vol. 7, no. 3, pp. 201–215, 1960.

[13] J. Elffers, J. Giráldez-Cru, S. Gocht, J. Nordström, and L. Simon,
“Seeking practical CDCL insights from theoretical SAT benchmarks,”
in Proceedings of the 27th International Joint Conference on Artificial
Intelligence (IJCAI ’18), Jul. 2018, pp. 1300–1308.

[14] B. Krishnamurthy, “Short proofs for tricky formulas,” Acta Informatica,
vol. 22, no. 3, pp. 253–275, Aug. 1985.

[15] M. Lauria, J. Elffers, J. Nordström, and M. Vinyals, “CNFgen: A
generator of crafted benchmarks,” in Proceedings of the 20th International
Conference on Theory and Applications of Satisfiability Testing (SAT ’17),
ser. Lecture Notes in Computer Science, vol. 10491. Springer, Aug.
2017, pp. 464–473.

[16] P. Pudlák, “Lower bounds for resolution and cutting plane proofs and
monotone computations,” Journal of Symbolic Logic, vol. 62, no. 3, pp.
981–998, Sep. 1997.

[17] J. A. Robinson, “A machine-oriented logic based on the resolution
principle,” Journal of the ACM, vol. 12, no. 1, pp. 23–41, Jan. 1965.

[18] G. Stålmarck, “Short resolution proofs for a sequence of tricky formulas,”
Acta Informatica, vol. 33, no. 3, pp. 277–280, May 1996.

[19] G. Tseitin, “On the complexity of derivation in propositional calculus,” in
Structures in Constructive Mathematics and Mathematical Logic, Part II,
A. O. Silenko, Ed. Consultants Bureau, New York-London, 1968, pp.
115–125.

[20] A. Urquhart, “Hard examples for resolution,” Journal of the ACM, vol. 34,
no. 1, pp. 209–219, Jan. 1987.

69

Subsumption Benchmarks

Luke Nuttall
Independent

Yantai, China
lukerossnuttall@gmail.com

Abstract—Benchmarks were made to test solvers which
either explicitly or heuristically / implicitly perform self-
subsuming resolution of clauses.

Keywords—benchmark, subsumption, resolution

I. INTRODUCTION

Many different solvers have been submitted for the SAT
competition using a variety of methods, which are only
usually equivalent. Some techniques will not explicitely
perform techniques used by others, but will heuristically
produce similar results. For exampe, any process that
continually produces resolutions of clauses will eventually
make a groebner basis of the solution space, even though that
wasn’t the aim.

The purpose of these benchmarks is to determine if the
techniques employed by solvers will heuristically
approximate a simple but often wasteful technique –
subsumption.

II. SUBSUMPTION

A. Clause subsumption

Given a problem instance with the two CNF clauses;
{a,b,c & a,b} the first clause is redundant of the second
clause. Any solution which satisfies the second clause
implies that the first is also satisfied (it doesn’t matter what c
is). The second clause subsumes the first clause, which can
be removed from the instance without changing the solution
set.

B. Self-subsuming resolution

Given a problem instance with the two CNF clauses;
{a,b,c & a,-c} neither clause subsumes the other, but the
resolution of the two clauses a,b subsumes the first.

Self-subsuming resolution is the technique of replacing
the clause a,b,c with the clause a,b when it would not change
the solution set (ie in light of the clause a,-c). This simplifies
an applicable problem instance.

III. WORTH TRYING?

Alone, this technique isn’t going to solve any problems
other than those specially crafted for this benchmark.
Determining if a clause can be subsumed, either directly or
through a resolution takes time which (under a developer’s
opinion) might be better spent performing other tasks.

The naive implementation requires O(n^2) tests of every
clause agaisnt every other. Reducing the cost requires
developing structures based on the variables in each clause;
which again might not be ‘worth it’ for some solvers which
need to generate incompatible structures.

This raises the question, what other techniqes can be used
to ensure all subsumptions are replaced, to what degree of
efficiency, and what techniques are fundamentally
incompatible?

IV. THE BENCHMARKS

A set of benchmarks is made to test for solvers which
effectively perform subsumption. A solver which only
performs this one technique and no other would solve the
benchmarks given. However, the benchmarks are large
enough that solvers who are incompatible will not solve the
problems within the time limits. Solvers which heuristically
perform subsumption will fall in between, to show the level
of compatibility.

A number of variables is chosen uniformly from 512-
1536, and a length uniformly from 8-12. A clause assigning
a unique solution to every variable is chosen. A bit is flipped,
and it heads a contradiction with a single (uniformly random)
variable assignment is added. Each clause is split by adding
either the positive or negative form of a (uniformly randomly
chosen) variable. The process is repeated until every clause is
of the target length.

Clauses produced this way always have another
(probably unique) clause with which their resolution can
subsume both; until it is a univariable assignment or the lone
contradiction.

Proceedings of SAT Competition 2023: Solver and Benchmark Descriptionsvolume B-2023-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2023 .

70

Verifying Hash Table Safety Properties in AWS
C99 Package with CBMC

Muhammad Osama and Anton Wijs
Department of Mathematics and Computer Science

Eindhoven University of Technology, Eindhoven, The Netherlands
{o.m.m.muhammad, a.j.wijs}@tue.nl

Abstract—In this paper, state-of-the-art proofs are generated
with harness using the CBMC bounded model checker for the
Amazon Web Services C99 core package. In this submission, we
check the safety properties of the Hash Table find routine with
various loop unwinding settings as opposed to the String compare
submitted last year. The generated proof has proven to be
reasonably hard to solve using modern SAT solvers. It has many
variable-clause redundancies which are not only challenging for a
SAT solver but also useful to assess the performance of different
simplification techniques.

I. INTRODUCTION

Bounded Model Checking (BMC) [1]–[3] determines
whether a model M satisfies a certain property φ expressed in
temporal logic, by translating the model checking problem to
a propositional satisfiability (SAT) problem or a Satisfiability
Modulo Theories (SMT) problem. The term bounded refers to
the fact that the BMC procedure searches for a counterexample
to the property, i.e., an execution trace, which is bounded in
length by an integer k. If no counterexample up to this length
exists, k can be increased and BMC can be applied again.
This process can continue until a counterexample has been
found, a user-defined threshold has been reached, or it can be
concluded (via k-induction [2]) that increasing k further will
not result in finding a counterexample. CBMC [4], [5] is an
example of a successful BMC model checker that uses SAT
solving. CBMC can check ANSI-C programs. The verification
is performed by unwinding the loops in the program under
verification a finite number of times, and checking whether the
bounded executions of the program satisfy a particular safety
property [6]. These properties may address common program
errors, such as null-pointer exceptions and array out-of-bound
accesses, and user-provided assertions.

II. BENCHMARKS

In this paper, we are interested in verifying the safety
properties of the find routine implemented in the Hash Table
data structure of the Amazon Web Services (AWS) C99 core
package. The proof covers the following:
• Memory allocation failure and access violations
• Pointer/floating-point overflow
• Data types conversion

We generated 21 different formulas using different hash table
sizes in the range [10, 30], with an incremental step. These
sizes chosen carefully to produce SAT formulas with 100%

coverage of all functionalities. All problems are written in this
format:

hash_table_find_safety_size_<x>
where x denotes the size value. The first and the last formulas
are solved via MiniSat [7] within 209 and 2738 seconds
respectively on a machine with Intel Xeon Platinum 8260
processor operating at base clock of 2.4 GHz. The solving
time of the rest of the benchmarks are expected to fall within
that range.

REFERENCES

[1] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu, “Symbolic Model
Checking without BDDs,” in Proc. of TACAS (Mar. 1999), Amsterdam,
The Netherlands, ser. LNCS, vol. 1579. Springer, 1999, pp. 193–207.

[2] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu, “Bounded
model checking,” Advances in Computers, vol. 58, pp. 117–148, 2003.

[3] M. Osama and A. Wijs, “GPU Acceleration of Bounded Model Checking
with ParaFROST,” in Proc. of CAV (Jul. 2021), USA, ser. LNCS, vol.
12760. Springer, 2021, pp. 447–460.

[4] E. M. Clarke, D. Kroening, and F. Lerda, “A Tool for Checking ANSI-C
Programs,” in Proc. of TACAS (Mar. 2004), Barcelona, Spain, ser. LNCS,
vol. 2988. Springer, 2004, pp. 168–176.

[5] D. Kroening and M. Tautschnig, “CBMC - C Bounded Model Checker
- (Competition Contribution),” in Proc. of TACAS (Apr. 2014), Grenoble,
France, ser. LNCS, vol. 8413. Springer, 2014, pp. 389–391.

[6] D. Kroening and O. Strichman, Decision Procedures - An Algorithmic
Point of View, Second Edition, ser. Texts in Theoretical Computer Science.
An EATCS Series. Springer, 2016.

[7] N. Eén and N. Sörensson, “An Extensible SAT-solver,” in Proc. of
SAT (May 2003) Santa Margherita Ligure, Italy, ser. LNCS, vol. 2919.
Springer, 2003, pp. 502–518.

Proceedings of SAT Competition 2023: Solver and Benchmark Descriptionsvolume B-2023-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2023 .

71

Pigeon Hole and Mutilated Chessboard with Mixed
Constraint Encodings and Symmetry-Breaking

Cayden R. Codel, Joseph E. Reeves, Randal E. Bryant
Carnegie Mellon University, Pittsburgh, United States

INTRO

The pigeonhole and mutilated chessboard problems are
challenging benchmarks for most SAT solvers not employing
special reasoning techniques. The solvers that do employ
special techniques can efficiently solve the canonical versions
of these two problems, but may fail with even slight problem
variations. In a previous competition, we submitted formulas
from a benchmark family of perfect matching problems on
bipartite graphs that generalizes the pigeonhole and mutilated
chessboard problems [1]. These formulas were generated from
moderately dense bipartite graphs. For this competition we
present additional formulas drawn from the bipartite graphs
representing the pigeon hole problem, and the mutilated chess-
board problem. These problems provide more structure for
solvers to make use of, but variation of encodings may deter
less robust solving techniques. We add varying amounts of
symmetry-breaking clauses to formulas, which should improve
a general SAT solver’s performance but may worsen the
performance of a solver with special solving techniques.

PIGEON HOLE AND MUTILATED CHESSBOARD PROBLEMS

Random bipartite graphs are used to explore non-structured
problem instances of the perfect matching problem. Our
benchmark generator can create encodings of perfect matching
problems on random bipartite graphs for any n and m. In this
description, we look at structured instances of the bipartite
matching problem, namely the pigeon hole problem and the
mutilated chessboard problem.

The pigeon hole problem involves placing n+1 pigeons into
n holes, where no hole can contain two pigeons. This problem
is encoded using at-most-one (AMO) constraints stating each
hole contains at most one pigeon, and at-least-one (ALO)
constraints stating each pigeon is in at least one hole. This
problem along with the mutilated chessboard problem have
exponentially sized resolution proofs [2], [3].

The mutilated chessboard problem involves covering an n×
n chessboard that has two opposite corners removed with 2×1
dominoes. This formula is encoded using AMO constraints
stating at most one domino is placed on each tile, and ALO
constraints stating at least one domino is placed on each tile.
Viewing the problem as a bipartite graph, this simply adds
more edges to the graph, where each edge is a possible domino
placement, and vertices in the graph are tiles on the board.

AMO ENCODINGS

There are several ways to encode an AMO constraint into
conjunctive normal form (CNF). Some encodings introduce
new variables (auxiliary variables) to the formula. These
variables can be important for improving solver performance
on many problems.

We present three AMO encodings: Pairwise, Sinz, and
Linear,

Pairwise(x1, ..., xn) is the pairwise set of binary clauses
with no auxiliary variables:

(xi ∨ xj) with 1 ≤ i < j ≤ n

Sinz(x1, ..., xn) introduces signal variables that propagate
the AMO condition:

xi∨si for 1 ≤ i ≤ n si∨si+1, si∨xi+1 for 1 ≤ i < n

Linear(x1, ..., xn) introduces variables to split up the Pair-
wise encoding when n > 4:

Pairwise(x1, x2, x3, y) ∧ AMO(y, x4, .., xn)

The Mixed AMO constraint option selects one of the three
AMO encodings at random for each AMO independently.

SYMMETRY BREAKING CLAUSES

The problems listed above have many natural symmetries.
For example, pigeon 1 can be placed in hole 1 or hole 2,
and pigeon 2 can be placed in hole 1 or hole 2. We can
break the symmetry by saying pigeon 1 cannot be placed in
hole 1 if pigeon 2 is in hole 2. This can be represented as a
binary clause and added to the formula. Some proof systems
allow the addition of such clauses. When generalizing this to
the problem of a perfect matching on a bipartite graph, the
symmetry-breaking clauses can be added to disallow all but
one of the possible perfect matchings on any K2,2 or 6-cycle
subgraph. For the pigeon hole problem, we can take pigeons
as the vertices in one partition and holes as the vertices in
the other. The example for pigeon 1, 2 and hole 1, 2 would
represent a K2,2 in the graph, and the symmetry can be broken
with a single clause.

Our generator can be configured to randomly add a specified
percent of symmetry-breaking clauses to the formula. We first
count the total number of possible symmetry-breaking clauses,
then randomly add the clauses until the percentage is met.

Proceedings of SAT Competition 2023: Solver and Benchmark Descriptionsvolume B-2023-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2023 .

72

BENCHMARKS

We submitted 20 benchmarks to the 2023 SAT Competition.
Eight formulas are the pigeon hole problem n = 15...18 with
mixed constraint encodings, and either 15% or 35% of the
symmetry-breaking clauses added. Twelve formulas are the
mutilated chessboard n = 16, 18, 20, 22 with 25%, 35%, or
45% of the symmetry breaking clauses added. All formulas
are unsatisfiable. The tool can be found at
https://github.com/jreeves3/BiPartGen-Artifact.

REFERENCES

[1] C. Codel, J. Reeves, M. Heule, and R. Bryant, “Bipartite perfect matching
benchmarks,” in Proceedings of Pragmatics of (SAT), 2021.

[2] M. Alekhnovich, “Mutilated chessboard problem is exponentially hard for
resolution,” Theoretical Computer Science, vol. 310, no. 1, pp. 513–525,
2004.

[3] A. Urquhart, “Hard examples for resolution,” J.ACM, vol. 34, no. 1, pp.
209–219, 1987.

TABLE I: Problem sizes at which timeout occurred on
symmetry-broken pigeonhole (top four rows) and mutilated
chessboard problems (bottom four rows). The columns in-
dicate the fraction of symmetry-breaking clauses added. If
a solver didn’t time out on instances of size n ≤ 24 for
pigeonhole and n ≤ 30 for mutilated chessboard, then runtime
(in seconds) is reported in parens.

Encoding Direct Sinz Linear

Solver 0% 50% 100% 0% 50% 100% 0% 50% 100%

PGBDD 11 11 23 10 8 22 14 10 23
KISSAT 12 (246.87) (0.03) 14 (3.93) (0.04) 13 (3.12) (0.048)

LINGELING (0.01) (0.03) (0.08) 15 (4.75) (0.20) (0.01) (0.01) (0.04)
SADICAL (3.00) 14 20 9 13 (10.11) 9 14 23

PGBDD 18 16 14 18 8 8 – – –
KISSAT 20 22 26 14 22 26 – – –

LINGELING (0.02) (0.02) (0.03) 18 20 24 – – –
SADICAL 14 16 16 14 14 16 – – –

73

Simplified and Randomized Formula REGN

Shuolin Li1, Chu-Min Li12, Mao Luo3, Jordi Coll4, Mohamed Sami Cherif1, Djamal Habet1 and Felip Manyà4
1Aix Marseille Univ, Université de Toulon

CNRS, LIS, Marseille, France
shuolin.li, mohamedsami.cherif, djamal.habet@lis-lab.fr

2Université de Picardie Jules Verne
Amiens, France

chu-min.li@u-picardie.fr

3School of Computer Science,
Hubei University of Technology

Wuhan, China
luomao@hbut.edu.cn

4Artificial Intelligence Research Institute
CSIC, Bellaterra, Spain
jcoll, felip@iiia.csic.es

Abstract—This document is an introduction of the benchmarks
submitted to the SAT Competition 2023. These benchmarks are
based on the REGN formulas described in [1], some simplifica-
tions and randomizations are done to make the benchmark size
and hardness reasonable.

PRELIMINARY

In [1], Goerdt uses two integers M and N such that N =
2M , to generate a variable matrix VarN , the variables in the
matrix following the natural order. He divides each row into
sections, a section at row i consists of 2i adjacent variables.
Then, he equally divides each section into two halfsections.
The notation Sec x (Halfsec x) to show the unique section
(halfsection) containing variable x. in addition, Row x (Col
x) is the unique row (column) containing x. For X,Y ⊆ VarN ,
X is covered by Y if and only if X ⊆ ∪y∈Y Col y.

1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

Fig. 1. An example of matrix Var8

For example, given M = 3, then N = 8, Goerdt gives the
variable matrix Var8 in Fig 1 in [1]. There are 4 sections in
the first row, separated by short vertical bars, 2 sections in the
second row and 1 in the third.

FORMULA MPHPN

Goerdt then defines in [1] formulas MPHPN (Modified
PigeonHole Principle) by modifying the formulas used by
Haken in [2], which encode the pigeonhole principle. Each
formula MPHPN consists of positive and negative clauses.

The disjunction of all variable in the same column of the
matrix VarN forms a positive clause. So, a MPHPN formula
has N positive clauses.

The negative clauses are binary as {¬x,¬y}, x and y belong
to the same section, but x is chosen from the left half section
and y from the right half section.

The formulas MPHPN are UNSAT. Goerdt shows that there
exists a polynomial regular resolution proof for them [1]. Since

general resolution is stronger than regular resolution, there is a
polynomial general resolution proof of it, too. By making some
modifications to the formulas MPHPN , Goerdt gets formula
REGN , which can be proved to have a polynomial general
resolution proof but no polynomial regular resolution proof
[1].

FORMULA REGN

To define formula REGN , Goerdt first introduces a few new
concepts. Given an integer K, let M = 3K and N = 23K be
the number of rows and columns in matrix VarN defined in
preliminary. Goerdt defines Third 1 to be the set of variables
from the first K rows, Third 2 from the second K rows and
Third 3 from the last K rows. In Fig 1, K = 1,M = 3, N = 8,
Third 1 to Third 3 respectively contain the first, second and
third row.

Then, Goerdt uses Cor13 to denote the correspondence
relation between Third 1 and Third 3. For x ∈ Row i
(i ∈ [1,K]), y ∈ Row 2K + i, y ∈ Cor13(x) if and only
if x is covered by Sec y, but not covered by Halfsec y. Cor32
denotes the correspondence relation between Third 3 and Third
2. For x ∈ Row 2K + i, y ∈ Row K + i, y ∈ Cor32(x) if
and only if Sec y covers x, but Halfsec y does not cover x.

A formula REGN consists of positive and negative clauses
as a formula MPHPN . The positive clauses in REGN are the
same as in MPHPN and the negative clauses can be divided
into three subsets Third 1, Third 2 and Third 3.

The negative clauses for Third 1 can be divided into two
types. The first is a group of ternary clauses, which can be
showed in the form {¬x,¬y,¬z}. x and y come from the same
section at Row i (i ∈ [1,K]) in Third 1, but from different
halfsections, x belongs to the left half and y to the right half,
and z ∈ Cor13(x) (Note that Cor13(x) = Cor13(y)). The
second is the set of clause {¬x,¬y}∪ Sec z, the definition of
x, y are the same as in the first type.

The negative clauses for Third 2 are simply binary clauses
{¬x,¬y}, in which x, y belong to the same section from Row
K + 1 to 2K in Third 2, x coming from the left half section
and y from the right.

Proceedings of SAT Competition 2023: Solver and Benchmark Descriptionsvolume B-2023-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2023 .

74

There are four kinds of negative clauses in Third 3.
In {¬x,¬y,¬z,¬w}, x and y come from the left and
the right half of the same section from Row 2K + 1
to 3K, respectively. And z ∈ Cor32(x), w ∈ Cor32(y).
The other three sets of clauses are {¬x,¬y,¬z}∪Cor32(y),
z ∈ Cor32(x); {¬x,¬y,¬w}∪Cor32(x), w ∈ Cor32(y);
{¬x,¬y}∪Cor32(x)∪Cor32(y), the definition of x, y are the
same as before.

The formulas REGN are unsatisfiable and have polynomial
general resolution proof, but only have superpolynomial reg-
ular resolution proof [1]. Goerdt uses these formulas to say
that general resolution is exponentially stronger than regular
resolution.

SIMPLIFIED AND RANDOMIZED FORMULA REGN

With the growth of K, the REGN formula grows very
rapidly, resulting in large CNF benchmark which are too hard
to solve in practice. In order to obtain a group of benchmarks
with reasonable size and hardness, we modify the formula
REGN .

We keep all positive clauses as before. For negative clauses,
we keep clauses for Third 1, and remove all clauses for Third
3. After removing Third 3 clauses, the number of rows in Third
2 won’t affect other clauses, so we introduce a new variable
L,L ∈ [0,K] for the number of rows in Third 2. Now the
simplified VarN has 2K+L rows, K rows in Third 1, L rows
in Third 2 and K rows in Third 3. The simplified REGN

formula is made of the same positive clauses as before, the
negative clauses in Third 1 and the negative clauses in new
and smaller Third 2.

Note that this simplification is due to the need to gen-
erate suitable benchmarks in practice, it may have changed
the theoretical property of the original REGN formula, so
that an optimal variable ordering may lead to a polynomial
regular resolution proof for the changed formulas. However,
we still hope these changed formulas can distinguish regular
resolution and general resolution in practice, because a SAT
solver usually does not miss that optimal ordering for regular
resolution. Furthermore, the bounded variable elimination in
the CDCL solvers is based on regular resolution, while CDCL
is equivalent to general resolution under a few assumptions.
We hope that these changed formulas can be used to guide the
improvement of bounded variable elimination implementation
and its cooperation with CDCL.

The variables in the original VarN matrix follows the natural
order. We introduce a random parameter RandomSeed to
shuffle the order of variable distributions. The randomization
won’t change the benchmarks’ size but it may affect the
hardness because it changes the initial solving path of the SAT
solver. These random orderings might be used to illustrate the
robustness of the variable ordering in variable elimination.

The name of the benchmarks we submit is “REGRandom-
Kx-Ly-Seedz.cnf”, in which x is the number of K, y is the
number of rows in Third 2 and z is RandomSeed.

REFERENCES

[1] A. Goerdt, “Regular Resolution Versus Unrestricted Resolution,”
SIAM J. Comput., vol. 22, no. 4, pp. 661–683, Aug. 1993, doi:
10.1137/0222044.

[2] A. Haken, “The intractability of resolution,” Theoretical Computer
Science, vol. 39, pp. 297–308, Jan. 1985, doi: 10.1016/0304-
3975(85)90144-6.

75

Logical Equivalence Checking of Arithmetic
Benchmarks

Zhihui Xie‡, Xu Liu‡, Wanqian Luo†, Junhua Huang†, Hui-Ling Zhen†,
Xijun Li†, Mingxuan Yuan† and Shuai Li‡

†Huawei Noah’s Ark Lab
‡Shanghai Jiao Tong University

{luowanqian1, huangjunhua15, zhenhuiling2, xijun.li, Yuan.Mingxuan}@huawei.com
{fffffarmer, liu skywalker, shuaili8}@sjtu.edu.cn

Abstract—We describe SAT encoding for logical equivalence
checking of arithmetic benchmarks

I. INTRODUCTION

Logical equivalence checking (LEC) plays an important role
in EDA. Its application is to verify functional equivalence of
combinational circuits after multi-level logic synthesis. In a
typical scenario, there are two structurally different implemen-
tations of the same design, and the problem is to prove their
functional equivalence.

In a LEC flow, the two circuits are transformed into a
single circuit called miter [1] derived by combining the pairs
of inputs with the same names and feeding the pairs of
outputs with the same names into XOR gates. The miter is
a combinational circuit with the same inputs as the original
circuit and the is constant 0 if and only if the two original
circuits produce identical output values under all possible input
assignments

II. ENCODING

The data for constructing the miter circuits are obtained
from the publicly available dataset EPFL benchmark [2],
which consists of three subsets, namely arithmetic, ran-
dom/control and MtM circuits. Here we use the arithmetic
dataset to generate the benchmark to be submitted.

First we combine the two circuits into a miter circuit
using XOR, and then we transform the circuit into a CNF
using Tseytin Encoding [3]. To increase the difficulty of
solving the generated CNF, we transform the formula. The
transformation is mainly the replacement of variables into two
new variables, which are combined by specific operators. Here
we use CNFgen [4] to perform an OR or XOR transformation
of the CNF.

On the generated CNF, we also perform a series of random
shuffling operations to further increase the computing diffi-
culty, which include variable permutation, clause permutation
and polarity flip. In detail, the variable permutation changes
the order of variables within each clause, the clause permu-
tation changes the order of clauses within the CNF formula,
and the polarity flip will flip the phase of literals randomly.

REFERENCES

[1] D. Brand, “Verification of large synthesized designs,” Proc. ICCAD
1993, pp. 534 -537.

[2] Amarú L, Gaillardon P E, De Micheli G, “The EPFL combinational
benchmark suite,” Proceedings of the 24th International Workshop on
Logic Synthesis (IWLS), 2015.

[3] https://en.wikipedia.org/wiki/Tseytin transformation
[4] https://github.com/MassimoLauria/cnfgen

Proceedings of SAT Competition 2023: Solver and Benchmark Descriptionsvolume B-2023-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2023 .

76

CNF Generation of Arithmetic Circuits
Zhihan Chen, Yuhang Qian, Xindi Zhang, Shaowei Cai*

State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China
School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing, China

{chenzh,zhangxd,caisw}@ios.ac.cn,i@yuhangq.com

Fig. 1. Miter Circuit

Introduction
The difficulty in logical equivalence checking (LEC) of

arithmetic circuits has been a challenging problem for many
years. In recent times, the SAT-SWEEPING framework [2]
has emerged as a widely used approach for equivalence
verification due to its ability to provide an efficient solution
to the problem. However, its solving performance is highly
dependent on the sat solvers that are used. Therefore, the
performance of SAT solvers in arithmetic circuit verification
is worthy of attention. This document submits some instances
of miter circuit of array and Wallace tree multipliers for SAT
Competition 2023.

Miter Circuit
Miter circuit [1] is a logic circuit that compares the outputs

of the two circuits being verified. Fig. 1 is an example.
Specifically, the construction of the miter circuit involves
connecting the inputs of two circuits whose equivalence is
to be checked, with both circuits sharing the same input. The
corresponding outputs are then connected via XOR gates, and
all of these XOR gates are taken as inputs to an OR gate,
with the output of the OR gate serving as the output of the
miter circuit. If there is a set of inputs for which the output
of the miter circuit is 1, it indicates that the circuits are not
equivalent. Conversely, if such inputs do not exist, the two
circuits are equivalent.

Generation of Benchmarks
Firstly, implement a basic circuit generator to generate array

multipliers and Wallace tree multipliers of different bit widths.
The circuit is generated in AIG (And-Inverter Graph) format,
which includes only AND and NOT logic. Then, build a
miter circuit using the two different implementation multiplier
circuits, which also output in AIG format. Finally, convert the
AIG format to CNF format.

Converting AIG format to CNF format is very easy. Only the
encoding of AND gates needs to be considered, for example
c = a And b can be encoded to CNF (¬c ∨ a) ∧ (¬c ∨ b) ∧
(c∨¬b∨¬a) As for the NOT logic in AIG, it can be achieved
by inverting the symbol.

Benchmarks
The equivalence checking of multipliers has the property of

small scale but high computational difficulty. So we generated
multipliers of 10 to 16 bits and evaluated the difficulty of
each example. To further simplify the problem, these instances
only need to verify the equivalence of one of the outputs
of multiplier circuit. Then we selected some examples with
moderate difficulty for submission. The benchmarks are shown
in Table I.

TABLE I
MULTIPLIER EQUIVALENCE CHECKING BENCHMARK

benchmark num vars num clauses
multiplier 13bits miter 14.cnf 3728 11082
multiplier 13bits miter 15.cnf 3728 11082
multiplier 13bits miter 16.cnf 3728 11082
multiplier 13bits miter 17.cnf 3728 11082
multiplier 14bits miter 14.cnf 4376 13018
multiplier 14bits miter 15.cnf 4376 13018
multiplier 14bits miter 16.cnf 4376 13018
multiplier 14bits miter 17.cnf 4376 13018
multiplier 14bits miter 18.cnf 4376 13018
multiplier 14bits miter 19.cnf 4376 13018
multiplier 15bits miter 18.cnf 5052 15038
multiplier 15bits miter 19.cnf 5052 15038
multiplier 15bits miter 20.cnf 5052 15038
multiplier 15bits miter 23.cnf 5052 15038
multiplier 15bits miter 24.cnf 5052 15038
multiplier 16bits miter 19.cnf 5776 17202
multiplier 16bits miter 20.cnf 5776 17202
multiplier 16bits miter 21.cnf 5776 17202
multiplier 16bits miter 22.cnf 5776 17202
multiplier 16bits miter 27.cnf 5776 17202

References
[1] D. Brand. Verification of large synthesized designs. In Proceedings

of 1993 International Conference on Computer Aided Design (ICCAD),
pages 534–537. IEEE, 1993.

[2] A. Mishchenko, S. Chatterjee, R. Brayton, and N. Een. Improvements
to combinational equivalence checking. In Proceedings of the 2006
IEEE/ACM international conference on Computer-aided design, pages
836–843, 2006.

Proceedings of SAT Competition 2023: Solver and Benchmark Descriptionsvolume B-2023-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2023 .

77

Encoding Reduced Simon Cipher
Zhongyi Zhang

1State Key Laboratory of Information Security, Institute of Information
Engineering,Chinese Academy of Sciences, Beijing, China

zhangzhongyi0714@iie.ac.cn

Fig. 1. One round of the Simon cipher

Abstract—The propositional satisfiability problem (SAT) has
a wide range of applications in cryptography. This document
describes several CNF instances encoded from a simplified Simon
cipher, which are submitted to SAT Competition 2023.

I. THE SIMON CIPHER AND CNF ENCODING

The Simon cipher [1] is a famous block cipher, which is
in the form of the balanced Feistel structure. The studies of
the Simon cipher started in 2011, and the Simon cipher is
released by the NSA in 2013. The goal of Simon cipher is to
work effectively on a wide range of Internet of Things devices
while retaining an acceptable security level .

Since the Simon cipher is a balanced Feistel cipher with n-
bit word, the block length is 2n. The key length is a m multiple
of n, where m = 2, 3, or 4. Therefore, a Simon cipher instance
can be denoted as Simon2n/nm. The operations of the Simon
cipher round function are shown in Fig. 1. Tabel I shows the
combinations of block sizes, key sizes, and the number of
rounds, which are suggested by Simon [1].

The Simon Cipher can be seen as a special circuit with only
bit-wise AND gates and XOR gates. Noting that the shifting
operations in the Simon cipher can be viewed as EQL gates,
which can be eliminated in the encoding process. And the
gates can be easily encoded into CNF by the Tseitin encoding
methods [2]. According to the Tseitin encoding methods, the

TABLE I
THE PARAMETERS SUPPORTED BY STANDARD SIMON CIPHER

Block Size (bits) 32 48 48 64 64 96 96 128 128 128
Key Size (bits) 64 72 96 96 128 96 144 128 192 256

Rounds 32 36 36 42 44 52 54 68 69 72

TABLE II
DETAILS OF THE SELECTED INSTANCES

Benchmark Names R V C
16 0.cnf, 16 1.cnf, 16 2.cnf 16 2688 8896
17 0.cnf, 17 1.cnf, 17 2.cnf 17 2848 9440
18 0.cnf, 18 1.cnf, 18 2.cnf 18 3008 9984
19 0.cnf, 19 1.cnf, 19 2.cnf 19 3168 10528
20 0.cnf, 20 1.cnf, 20 2.cnf 20 3328 11072
21 0.cnf, 21 1.cnf, 21 2.cnf 21 3488 11616
22 0.cnf, 22 1.cnf, 22 2.cnf 22 3648 12160
23 0.cnf, 23 1.cnf, 23 2.cnf 23 3808 12704
24 0.cnf, 24 1.cnf, 24 2.cnf 24 3968 13248
25 0.cnf, 25 1.cnf, 25 2.cnf 25 4128 13792
26 0.cnf, 26 1.cnf, 26 2.cnf 26 4288 14336
27 0.cnf, 27 1.cnf, 27 2.cnf 27 4448 14880
28 0.cnf, 28 1.cnf, 28 2.cnf 28 4608 15424
29 0.cnf, 29 1.cnf, 29 2.cnf 29 4768 15968
30 0.cnf, 30 1.cnf, 30 2.cnf 30 4928 16512
31 0.cnf, 31 1.cnf, 31 2.cnf 31 5088 17056
32 0.cnf, 32 1.cnf, 32 2.cnf 32 5248 17600

2 inputs AND gate a = b AND c can be encoded to ¬a∨b∨c,
¬b∨ a, and ¬c∨ a; the 2 inputs XOR gate a = b XOR c can
be encoded to a ∨ ¬b ∨ ¬c, ¬a ∨ b ∨ ¬c, ¬a ∨ ¬b ∨ c and
a ∨ b ∨ c.

However, even with the easiest Simon cipher structure [1],
where the block size is 32 bits and the number of rounds is
32, state-of-the-art sequential SAT solvers are still unable to
solve the encoded CNFs. For the convenience of evaluation in
SAT Competition, we reduce the structure of the Simon cipher
so that it can be solved by some of the popular SAT solvers
in a reasonable time. The methods are as follows:

• We remove the key scheduling methods, which means
that the keys are set the same for each round.

• The number of keys is reduced from 64 to 32 by randomly
generating 32 EQL relationships among keys.

• The number of rounds is reduced from 32 to at least 16.

II. BENCHMARK SELECTION

The submitted benchmarks are shown in Table II, where the
number of rounds (R), the number of variables (V), and the
number of clauses (C) are given. For each round, we randomly
create three instances with three different seeds.

REFERENCES

[1] R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, and
L. Wingers. The simon and speck families of lightweight block ciphers.
cryptology eprint archive, 2013.

Proceedings of SAT Competition 2023: Solver and Benchmark Descriptionsvolume B-2023-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2023 .

78

[2] G. S. Tseitin. On the complexity of derivation in propositional calculus.
Automation of reasoning: 2: Classical papers on computational logic
1967–1970, pages 466–483, 1983.

79

SAT Instances based on the
Set Covering Problem with Conflict

Jiongzhi Zheng1,2 Mingming Jin1,2 Kun He1,2 Zhuo Chen1,2 Jinghui Xue1,2

1School of Computer Science and Technology, Huazhong University of Science and Technology, China
2Hopcroft Center on Computing Science, Huazhong University of Science and Technology, China

{jzzheng,mingmingk,brooklet60,ciaozer,jh xue}@hust.edu.cn

I. INTRODUCTION

We propose a new variant of the well-known set cover-
ing problem [1], called set covering problem with conflict
(WSCPC). In the last competition, we generate 20 UNSAT
instances by transforming 20 WSCPC instances. This year
we generate 20 SAT instances by transforming 4 WSCPC
instances.

II. THE WEIGHTED SET COVERING PROBLEM WITH
CONFLICT

Given a set of items S = {s1, ..., sm} and a set of elements
E = {e1, ..., en}, where each item covers a subset of E and
each element ej (j ∈ {1, ..., n} has a positive weight wj , a
conflict graph G = (V,E′) where the node set V consists of
all the items in S, an edge (si, sj) belonging to E′ indicates
that items si and sj are conflict with each other. The goal of
WSCPC is to find a subset S′ ⊂ S that any two items in S′

are not conflict, and the total weight of the covered elements
is maximized.

III. TRANSFORMING WSCPC INTO SAT

Firstly, a Weighted Partial MaxSAT [2], [3] instance can be
generated by a WSCPC instance as follows. We use each item
si to represent a variable vi, each element ej that covered by k
items {sj1, ..., sjk} to represent a soft clause with weight wj

that consists of the positive literal of variables {vj1, ..., vjk}.
We further use each pair of conflict items sa and sb to generate
a hard clause, which consists of the negative literal of va and
vb.

The Weighted Partial MaxSAT instance generated by a
WSCPC instance can be easily transformed to an SAT instance
by selecting all the hard clauses and p% random soft clauses
to obtain a new CNF formula.

IV. BENCHMARKS

We first generate four SCPC instances with 700, 800, 900,
and 1000 items, respectively. For each instance, the number
of elements is 5 times the number of items, the density of
the conflict graph is 0.1, and each element is covered by 55
randomly selected items.

Each SAT instance is named SCPC-m-p, where m is the
number of items in the corresponding SCPC instance, and p
is the percent of selecting soft clauses.

All the instances are SAT.

REFERENCES

[1] E. Balas, M. W. Padberg, “On the set-covering problem,” Oper. Res.,
vol. 20(6), pp. 1152-1161, 1972.

[2] J. Zheng, K. He, J. Zhou, Y. Jin, C. M. Li, F. Manyà, “BandMaxSAT: A
Local Search MaxSAT Solver with Multi-armed Bandit,” IJCAI 2022.

[3] J. Zheng, K. He, J. Zhou, “Farsighted Probabilistic Sampling based
Local Search for (Weighted) Partial MaxSAT,” AAAI 2023.

Proceedings of SAT Competition 2023: Solver and Benchmark Descriptionsvolume B-2023-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2023 .

80

PROOF CHECKER DESCRIPTIONS

GRAT: a formally verified (UN)SAT proof checker
Proof Checker Proposal

Peter Lammich
FMT Group, EEMCS department

University of Twente
Enschede, The Netherlands

p.lammich@utwente.nl 0000-0003-3576-0504

Abstract—We propose the GRAT proof checker toolchain as a
verified proof checker suitable for SAT competitions. It accepts
proofs in the DRAT format, and is verified down to a functional
implementation in Standard ML. On benchmarks drawn from
recent SAT competitions, it’s performance is similar to that of
drat-trim.

I. INTRODUCTION

The GRAT toolchain accepts DRAT (ASCII and binary
format) as input. The result is formally verified with Is-
abelle/HOL, down to the integer sequence representing the
formula. The trusted code base of the verification is Is-
abelle/HOL’s kernel and code generator, compilation and
running of the extracted Standard ML code with MLton, and
a thin command line wrapper and formula parser written in
Standard ML.

Our tool chain follows a two step approach, with a highly
optimized but unverified first step, and a formally verified sec-
ond step. As the first step only acts as certificate preprocessor,
it is not part of the trusted code base.

On a set of benchmarks drawn from the 2016 and 2017
SAT competitions, our full toolchain performed faster than
the unverified (then state-of-the-art) tool drat-trim. We have
confirmed that our tool is still usable for modern SAT com-
petitions, by testing it on benchmarks from the 2022 SAT
competition.

A detailed description can be found in [2], [3] and [4]. Here,
we briefly summarize the main aspects, and report on the new
set of benchmarks.

GRAT’s webpage is https://www21.in.tum.de/∼lammich/
grat/, and the project is maintained as part of the IsaFOL
repository https://bitbucket.org/isafol/isafol/src/master/GRAT/.

Download and build instructions are on the webpage.

II. PROOF FORMAT

Our toolchain supports the de-facto standard DRAT-format
as input [5].

This is then processed by the unverified gratgen tool,
which produces a certificate enriched with unit propagation
information, in the GRAT-format. The GRAT certificate and
the original formula is then passed to the verified gratchk
tool, which either confirms unsatisfiability of the formula by
printing the status line s VERIFIED UNSAT, or yields an error.

In the following, we sketch the GRAT-format.

Each clause is identified by a unique positive ID. The
clauses of the original formula implicitly get the IDs 1 . . . N .
The lemma IDs explicitly occur in the certificate.

For memory efficiency reasons, we store the certificate in
two parts: The lemma file contains the lemmas, and is stored
in DIMACS format. During certificate checking, this part is
entirely loaded into memory. The proof file contains the hints
and instructions for the certificate checker. It is not completely
loaded into memory but only streamed during checking.

The proof file is a binary file, containing a sequence (stored
in reverse order) of 32 bit signed integers in 2’s complement
little endian format. The sequence is interpreted according to
the following grammar:
proof ::= rat-counts item* conflict
literal ::= int32 != 0
id ::= int32 > 0
count ::= int32 > 0
rat-counts ::= 6 (literal count)* 0
item ::= uprop | del | rup-lem | rat-lem
uprop ::= 1 id* 0
del ::= 2 id* 0
rup-lem ::= 3 id id* 0 id
rat-lem ::= 4 literal id id* 0 cand-prf* 0
cand-prf ::= id id* 0 id
conflict ::= 5 id

The checker maintains a clause map that maps IDs to
clauses, and a partial assignment that maps variables to true,
false, or undecided. Partial assignments are extended to literals
in the natural way. Initially, the clause map contains the clauses
of the original formula, and the partial assignment maps all
variables to undecided. Then, the checker iterates over the
items of the proof, processing each item as follows:

• rat-counts This item contains a list of pairs of literals
and the count how often they are used in RAT proofs.
This map allows the checker to maintain lists of RAT
candidates for the relevant literals, instead of gathering
the possible RAT candidates by iterating over the whole
clause database for each RAT proof, which is expensive.
Literals that are not used in RAT proofs at all do not
occur in the list. This item is the first item of the proof.

• uprop For each listed clause ID, the corresponding
clause is checked to be unit, and the unit literal is
assigned to true. Here, a clause is unit if the unit literal
is undecided, and all other literals are assigned to false.

• del The specified IDs are removed from the clause map.

Proceedings of SAT Competition 2023: Solver and Benchmark Descriptionsvolume B-2023-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2023 .

82

• rup-lem The item specifies the ID for the new lemma,
which is the next unprocessed lemma from the lemma
file, a list of unit clause IDs, and a conflict clause ID.
First, the literals of the lemma are assigned to false.
The lemma must not be blocked, i.e. none of its literals
may be already assigned to true1. Note that assigning the
literals of a clause C to false is equivalent to adding the
conjunct ¬C to the formula. Second, the unit clauses are
checked and the corresponding unit literals are assigned
to true. Third, it is checked that the conflict clause ID
actually identifies a conflict clause, i.e. that all its literals
are assigned to false. Finally, the lemma is added to the
clause-map and the assignment is rolled back to the state
before checking of the item started.

• rat-lemma The item specifies a pivot literal l, an ID
for the lemma, an initial list of unit clause IDs, and a list
of candidate proofs. First, as for rup-lemma, the literals
of the lemma are assigned to false and the initial unit
propagations are performed. Second, it is checked that
the provided RAT candidates are exhaustive, and then the
corresponding cand-prf items are processed: A cand-prf

item consists of the ID of the candidate clause D, a list
of unit clause IDs, and a conflict clause ID. To check
a candidate proof, the literals of D \ {¬l} are assigned
to false, the listed unit propagations are performed, and
the conflict clause is checked to be actually conflict.
Afterwards, the assignment is rolled back to the state
before checking the candidate proof. Third, when all
candidate proofs have been checked, the lemma is added
to the clause map and the assignment is rolled back.
To simplify certificate generation in backward mode, we
allow candidate proofs referring to arbitrary, even invalid,
clause IDs. Those proofs must be ignored by the checker.

• conflict This is the last item of the certificate. It
specifies the ID of the conflict clause found by unit
propagation after adding the last lemma of the certificate
(root conflict). It is checked that the ID actually refers to
a conflict clause.

III. EVALUATION

A. Usage Example

We give a simple example on how to use our toolchain:
To verify that a formula stored in the DIMACS file

unsat.cnf is unsatisfiable, proceed as follows:

Create a (binary) drat-file
> kissat -q unsat.cnf unsat.drat
s UNSATISFIABLE
Process into proof (gratp) and lemmas (gratl) file
> gratgen unsat.cnf unsat.drat \

-o unsat.gratp -l unsat.gratl -b
s VERIFIED
Check against original formula
> gratchk unsat unsat.{cnf,gratl,gratp}
s VERIFIED UNSAT

1Blocked lemmas are useless for unsat proofs, such that there is no point
to include them in the certificate.

To verify that a formula stored in the DIMACS file
sat.cnf is satisfiable, proceed as follows:

Produce variable assignment,
as 0-terminated list of literals
> kissat -q sat.cnf | grep "ˆv" \

| sed -re ’s/ˆv//g’ > sat.vars
Check against original formula
> gratchk sat sat.{cnf,vars}
s VERIFIED SAT

B. MLtons Memory Manager

When running gratchk on machines with a lot of memory,
we ran into two problems with MLtons default memory
manager: First it will take half of the machine’s memory
before even starting to garbage collect. And, second, when
it garbage collects, it will try to keep allocated 8 times the
live memory size. Both behaviours are problematic: small
problems will consume huge amounts of memory, making
it impossible to verify many small problems in parallel on
the same machine. Also, most of the memory that gratchk
consumes is the storage for the formula and lemmas. Once
the checking starts, only little additional memory is needed.
However, MLtons memory manager will try to allocate 8 times
the live size, which includes the (potentially large) formula and
lemmas. In practice, this led to gratchk processes being killed
by the out-of-memory killer.

While there is no ideal solution currently supported by
MLton, we decided to apply a simple heuristic and limit the
memory available to gratchk to 10 times the formula and
lemma file size, and a minimum of 1GiB. In practice, this
can be achieved by system tools, or by a runtime option to
MLton, e.g.:

> gratchk @MLton max-heap 2G -- \
unsat unsat.{cnf,gratl,gratp}

C. Theoretical Complexity

Our toolchain has polynomial complexity in the size of
the input (drat) certificate and formula. While we have not
estimated the precise complexities, we give a rough argument
that the complexity is polynomial.

The first phase, gratgen, iterates over each clause in the
certificate, and puts it into a two-watched-literals (twl) data
structure. This clearly takes polynomial time. It then iterates
backwards over the clauses. For each clause, the (inverted)
literals are added as units, and then unit-propagation is per-
formed. This also takes polynomial time. In case of a RAT
clause, further clauses are gathered from the available clauses,
and for each of those, another unit propagation is done (again,
polynomial unit propagation for linearly many clauses). After
checking each clause, the twl data structure is reverted to the
state before that clause (which also takes polynomial time).

The second phase, gratchk, repeats the actions from the
first phase, but iterating in a forwards fashion, and using
extra information for unit propagation. Thus, it is also clearly
polynomial.

83

D. Empirical Evaluation

We have extensively benchmarked our toolchain in [4],
where we also compared it against the then-current versions
of drat-trim and LRAT [1].

Our tool has not significantly changed since then, and we
refer the reader to [4] for those results.

To check if our tool is still usable, we have run it on
problems from the 2022 SAT competition’s main track. We
considered the winning solver Kissat MABHyWalk, and the
highest ranked non-Kissat based solver SeqFROST-ERE-All.
We ran the solvers on all unsatisfiable problems they could
solve in the competition to regenerate the certificates, and
then used GRAT to verify the results. We benchmarked
two configurations for gratgen: single-threaded and 8 parallel
threads. Previous experiments have shown that more than 8
threads do not bring significant speedup.

1) Verified Problems: First of all, we could verify all 146
problems for Kissat and all 138 problems for SeqFROST.
The single-threaded gratgen timed out on one Kissat problem,
though.

2) Solving vs. Verification time: We compare the solving
time with the verification time. Let ts be the solving time,
and tv be the verification time, we compute, for each problem
the ratio r = tv/ts, and then count for what percentage of
the problems this ratio is less than .5, 1, 2, and 4. This is
a sensible measure, as we expect the verification time to be
related to the difficulty of the problem, and thus the solving
time. Also, it estimates the extra time required to get a verified
result. The result is displayed in the following table:

< .5 < 1 < 2 < 4 #problems
Kissat-j8 70.5 85.6 93.8 97.3 146
SeqFROST-j8 76.8 89.1 96.4 99.3 138
Kissat-j1 26.9 60.0 87.6 93.8 145
SeqFROST-j1 24.6 50.7 81.9 97.1 138

That is, with 8 threads, we can verify more than 80% of
the problems when allowing the same time for verification as
for solving. In single-threaded mode, it’s still more than half
of the problems. And more than 90% of the problems will be
solved when allowing a factor of 2 (8 threads) or 4 (1 thread),
respectively.

3) Drat Certificate vs Grat Certificate Size: Next, we
compare the size of the drat certificate produced by the SAT
solver to the size of the enriched (grat) certificate produced by
the first phase of our tool. This is of concern as the certificates
have to be stored on disk, and thus, should not be excessively
big. As for the time, we determine the ratio grat-size over
drat-size, and count the percentage of problems below certain
ratios.

< .5 < 1 < 2 < 4 #problems
Kissat 46.6 54.1 84.9 97.9 146
SeqFROST 50.0 54.3 81.9 97.8 138

We observe that the generated grat certificate is smaller
than the original drat certificate in more than half of the
cases, and rarely exceeds factor 4. This is due to the trimming
heuristics in gratgen, which, similar to drat-trim, tries hard to
eliminate as many useless lemmas as possible. In many cases,
this elimination removes more than the extra unit-propagation
information that is added by gratgen.

IV. FORMAL VERIFICATION

The crucial part of our toolchain is the gratchk tool, which
takes as input the original formula and a certificate in GRAT
format, and then verifies that the formula is actually unsatisfi-
able. It also supports a mode for verifying satisfiable formulas,
which takes a list of true literals as proof.

The gratchk tool is written in Standard ML, and compiled
using the MLton compiler. The top-level is an unverified
command line interface, which interprets the commands, and
parses the specified files into an array of integers. The ar-
ray contains a representation of the formula, followed by a
representation of the proof. It then calls the core functions
verify_sat_impl and verify_unsat_split_impl,
which are exported from an Isabelle formalization using Is-
abelle’s code generator.

val verify_sat_impl
: int array → nat → unit → (_, _) sum

val verify_unsat_split_impl
: int array → (′a → int *

′a)
→ nat → nat → nat *

′a → unit → (_, _) sum

For these functions, we have proved the following lemmas
in Isabelle:

theorem verify_sat_impl_correct:
<DBi 7→a DB>

verify_sat_impl DBi F_end
<λresult. DBi 7→a DB

* ↑(¬isl result =⇒ verify_sat_spec DB F_end)>

theorem verify_unsat_impl_correct:
<DBi 7→a DB>

verify_unsat_split_impl DBi prfn F_end it prf
<λresult. DBi 7→a DB

* ↑(¬isl result =⇒ verify_unsat_spec DB F_end)>

The preconditions of these Hoare triples state that the argu-
ment DBi points to an array holding the elements DB. This
array is not changed by the functions (it occurs unchanged in
the postcondition), and these Hoare-triples imply termination
of the program, as well as that it does not change any memory
apart from what it allocates itself.

The original formula is stored in DB[1..<F_end]. (DB[0]
is used as a guard by our implementation). The result of the
functions are from an exception monad, represented by a sum
type. The second parts of the postconditions state that, if no
exception is raised, the formula stored at DB[1..<F_end] is
satisfiable or unsatisfiable respectively. In case of the unsat
proof, the other parameters prfn, it, prf are used to
represent the proof, but they have no influence on the statement
of this lemma: regardless of their values, an accepted formula
is always unsat (If we pass nonsense, however, we will likely
get an exception).

84

To express when a formula is (un)sat, we have two (proved
equivalent) specifications. The first version relies on a function
F_α that maps lists of integers to our internal representation
of SAT formulas, and the predicate sat that specifies if a
formula is satisfiable:

definition verify_sat_spec DB F_end ≡
1 ≤ F_end ∧ F_end ≤ length DB

∧ (let lst = tl (take F_end DB) in
F_invar lst ∧ sat (F_α lst))

definition verify_unsat_spec DB F_end ≡
1 ≤ F_end ∧ F_end ≤ length DB

∧ (let lst = tl (take F_end DB) in
F_invar lst ∧ ¬sat (F_α lst))

These specifications state that F_end is in range, and that
DB[1..<F_end] (in Isabelle: tl (take F_end DB)) is a
valid (F_invar) representation of a satisfiable or unsatisfi-
able, respectively, formula.

To increase the trust in these specifications, we
prove them equivalent to a version that only relies
on basic list operations: First, we use the function
tokenize :: int list ⇒ int list list,
which splits a list into its zero-terminated components. To
sanity-check this function, we prove that, for a list that ends
with a zero (i.e., contains no open clause at the end), its
result is the unique inverse of concatenation:

definition concat0 ll = concat (map (λl . l@[0]) ll)
lemma unique_tokenization:

assumes l6=[] =⇒ last l = 0
shows ∃1ls. (0/∈⋃set (map set ls) ∧ concat0 ls = l)

and tokenize l = (THE ls.
0/∈⋃set (map set ls) ∧ concat0 ls = l)

where THE is the definite description operator.
Next, we define an assignment from integers to Booleans

to be consistent iff a negative value is mapped to the opposite
of its absolute value:

definition assn_consistent :: (int ⇒ bool) ⇒ bool
where assn_consistent σ

= (∀x. x6=0 =⇒ ¬ σ (-x) = σ x)

Finally, we characterize an (un)satisfiable input by the
(non)existence of a consistent assignment that assigns at least
one literal of each clause to true. Thus, we prove the following
alternative characterizations of our specifications:

lemma verify_sat_spec DB F_end = (
1≤F_end ∧ F_end ≤ length DB ∧ (
let lst = tl (take F_end DB) in

(lst 6=[] =⇒ last lst = 0)
∧ (∃σ. assn_consistent σ

∧ (∀C∈set (tokenize 0 lst). ∃l∈set C. σ l))))

lemma verify_unsat_spec DB F_end = (
1 < F_end ∧ F_end ≤ length DB ∧ (
let lst = tl (take F_end DB) in

last lst = 0
∧ (@σ. assn_consistent σ

∧ (∀C∈set (tokenize 0 lst). ∃l∈set C. σ l))))

In the case of unsatisfiability, the bounds have been adjusted
to exclude the empty formula, which is trivially satisfiable.

A. Trusted Code Base

Our approach relies on the correctness of the following
components

• Isabelle/HOL’s inference kernel.
• Isabelle/HOL’s code generator to Standard ML.
• The Imperative/HOL extension of the code generator.
• The correct formalization of what a Hoare-triple means.
• The correct specification of the correctness properties.
• The command line interface and DIMACs file parser.
• The correctness of the ML compiler and execution envi-

ronment.
Where possible, we have tried to keep these trusted compo-

nents as simple as possible. For example, we have proved two
equivalent forms of the correctness specification, and limited
the unverified parser to parse the DIMACs file into an array of
integers. The interpretation of these integers as list of clauses
is done inside Isabelle.

REFERENCES

[1] M. Heule, W. Hunt, M. Kaufmann, and N. Wetzler. Efficient, verified
checking of propositional proofs. In Proc. of ITP. Springer, 2017.

[2] P. Lammich. Efficient verified (UN)SAT certificate checking. In Proc. of
CADE. Springer, 2017.

[3] P. Lammich. The GRAT tool chain - efficient (UN)SAT certificate
checking with formal correctness guarantees. In SAT, pages 457–463,
2017.

[4] P. Lammich. Efficient verified (UN)SAT certificate checking. J. Autom.
Reason., 64(3):513–532, 2020.

[5] N. Wetzler, M. J. H. Heule, and W. A. Hunt. Drat-trim: Efficient checking
and trimming using expressive clausal proofs. In Proc. of SAT 2014, pages
422–429. Springer, 2014.

85

VERIPB and CAKEPB in the
SAT Competition 2023

Bart Bogaerts Ciaran McCreesh Magnus O. Myreen Jakob Nordström Andy Oertel Yong Kiam Tan

I. SUMMARY

The pseudo-Boolean proof format used for the proof checker
VERIPB [1] supports proof logging for decision, enumeration,
and optimization problems, as well as problem reformulations,
all in a unified format. So far, VERIPB has been used
for proof logging of enhanced SAT solving techniques [2],
[3], pseudo-Boolean CDCL-based solving [4], constraint
programming [5], [6], subgraph solving [7], [8], and MaxSAT
solving [9], [10], and this list of applications is expected to
keep growing. This description briefly summarizes how a
restricted version of the proof format can be used to certify
unsatisfiability of CNF formulas in the SAT competition
2023. A complete documentation of the proof format can be
found at https://gitlab.com/MIAOresearch/software/VeriPB/-/
blob/satcomp2023_checker/satcomp23/documentation_SAT_
competition_2023.pdf.

II. QUICKSTART GUIDE FOR BOOLEAN SATISFIABILITY
(SAT) PROOF LOGGING

This section contains the bare minimum of information
needed to use VERIPB and CAKEPB as proof checkers
for Boolean satisfiability (SAT) solvers with pseudo-Boolean
proof logging. A good way to learn more (in addition to
reading this document) might be to study the example files
in the directory tests/integration_tests/correct/ in
the repository [1] and run VERIPB with the options
--trace --useColor, which will output detailed information
about the proofs and the proof checking.

A. Running the Proof Checkers

If a SAT solver with pseudo-Boolean proof logging
has solved the instance input.cnf, the generated proof
input.pbp can be checked by VERIPB and CAKEPB by
runnning the following commands:

Translate to kernel format proof
veripb --cnf --proofOutput translated.pbp \
input.cnf input.pbp

Check the kernel proof
cake_pb_cnf input.cnf translated.pbp

The first command recompiles the pseudo-Boolean proof
input.pbp into a more restricted “kernel-format” proof
translated.pbp using VERIPB, after which the kernel proof
is checked using CAKEPB. In case of successful recompilation,
VERIPB will output:

Running veripb as shown above
...
Verification succeeded

Upon successful proof checking, CAKEPB will report success
on the standard output stream:
Running cake_pb_cnf as shown above
s VERIFIED UNSAT

All errors are reported on standard error.

B. Proof Format
The syntactic format of a pseudo-Boolean proof of unsat-

isfiability for a CNF formula as expected by the version of
VERIPB proposed for the SAT competition 2023 is
pseudo-Boolean proof version 2.0
f ⟨N⟩
Derivation section
output NONE
conclusion UNSAT : ⟨id⟩
end pseudo-Boolean proof

where ⟨N⟩ should be the number of clauses in the formula
and Derivation section should contain the actual proof which
derives contradiction as the pseudo-Boolean constraint with
constraint ID ⟨id⟩.

In pseudo-Boolean format, a disjunctive clause like

x1 ∨ x2 ∨ x3 (1a)

is represented as the inequality

x1 + x2 + x3 ≥ 1 (1b)

claiming that at least one of the literals in the clause is true
(i.e., takes value 1), and this inequality is written as
+1 x1 +1 ∼x2 +1 x3 >= 1 ;

in the OPB format [11] used by VERIPB. The proof checker
can also read CNF formulas in the DIMACS and WDIMACS
formats used for SAT solving and MaxSAT solving, respectively.
For such files, VERIPB will parse a clause
1 -2 3 0

to be identical to (1b), and the variables should be referred to
in the pseudo-Boolean proof file as x1, x2, x3, et cetera.

DRAT proofs can be transformed into valid VERIPB proofs
by simple syntactic manipulations. Most of the proof resulting
from a CDCL SAT solver is the ordered sequence of clauses
learned during conflict analysis. Since all such clauses are
guaranteed to be reverse unit propagation (RUP) clauses, the
easiest way to provide pseudo-Boolean proof logging for a
learned clause (1a) would be to write

Proceedings of SAT Competition 2023: Solver and Benchmark Descriptionsvolume B-2023-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2023 .

86

rup +1 x1 +1 ∼x2 +1 x3 >= 1 ;

in the derivation section of the pseudo-Boolean proof.
If instead the clause (1a) is a resolution asymmetric tautology

(RAT) clause that is RAT on the literal x1, then this is written
as

red +1 x1 +1 ∼x2 +1 x3 >= 1 ; x1 -> 1

in the pseudo-Boolean proof using the more general
redundance-based strengthening rule. And if the RAT literal
would instead have been x2, this would have been indicated
by ending the proof line above by x2 -> 0 instead.

Finally, in order to delete the clause (1a), the deletion
command

del spec +1 x1 +1 ∼x2 +1 x3 >= 1 ;

is issued. An important difference from DRAT proofs is that
deletion is made also for unit clauses, i.e., clauses containing
only a single literal—DRAT proof checkers typically ignore
such deletion commands. Another crucial difference is that all
clauses learned during CDCL execution need to be written
down in the proof log, including unit clauses. If unit clauses are
missing in a DRAT proof, the proof checkers will typically be
helpful and silently infer and add the missing clauses. No such
patching of formally incorrect proofs is offered by VERIPB.

It should be noted, though, that if all the reasoning
performed by some particular SAT solver can efficiently
be captured by standard DRAT proof logging, then there
is no real reason to use pseudo-Boolean proof logging for
that solver. Pseudo-Boolean proof logging becomes relevant
only if the solver uses more advanced techniques such as,
for instance, cardinality reasoning, Gaussian elimination,
or symmetry breaking. We refer the reader to [2] and [3],
respectively, for detailed descriptions of how to do efficient
pseudo-Boolean proof logging for the latter two techniques. A
detailed description of the cutting planes proof system and
proof steps supported in the augmented for VERIPB and the
kernel format for CAKEPB is available at https://gitlab.com/
MIAOresearch/software/VeriPB/-/blob/satcomp2023_checker/
satcomp23/documentation_SAT_competition_2023.pdf.

III. FORMALLY VERIFIED PROOF CHECKING

The kernel proof checker CAKEPB has been formally
verified in the HOL4 theorem prover [12] using the CAKEML
suite of tools for program verification, extraction, and com-
pilation [13]–[15]. In this section, we present the verification
guarantees for CAKEPB_CNF, a version of CAKEPB equipped
with a DIMACS CNF parser frontend for UNSAT proof
checking with pseudo-Boolean proof logging.

A. Verified Correctness Theorem for CAKEPB_CNF

The end-to-end verified correctness theorem for CAKEPB_-
CNF is shown in Figure 1. This theorem can be intuitively
understood in four parts, corresponding to the indicated lines
(2)–(5):

• The theorem assumes (2) that the CAKEML-compiled
machine code for CAKEPB_CNF is executed in an x64

machine environment set up correctly for CAKEML. The
definition of cake_pb_cnf_run is shown below, where the
first line (wfcl cl ∧ wfFS fs ∧ ...) says the command line
cl and filesystem fs match the assumptions of CAKEML’s
FFI model. The second line says that the compiled code
(cake_pb_cnf_code) is correctly set up for execution on
an x64 machine.

cake_pb_cnf_run cl fs mc ms
def
=

wfcl cl ∧ wfFS fs ∧ STD_streams fs ∧ hasFreeFD fs ∧
installed_x64 cake_pb_cnf_code mc ms

• Under these assumptions, the CAKEPB_CNF program is
guaranteed to never crash (3). However, it may run out
of resources such as heap or stack memory (extend_-
with_resource_limit ...). In these cases, CAKEPB_CNF will
fail gracefully and report out-of-heap or out-of-stack on
standard error.

• Upon termination, the CAKEPB_CNF program will output
some (possibly empty) strings out and err to the standard
output and standard error streams, respectively (4).

• The key verification guarantee (5) is that, whenever the
string “s VERIFIED UNSAT” is printed to standard output,
the input CNF file (first command line argument) parses
in DIMACS format to a CNF which is unsatisfiable. No
other output is possible on standard output; error strings
are always printed to standard error.

Internally, CAKEPB_CNF transforms input CNF clauses (in
DIMACS format) to normalized pseudo-Boolean constraints,
as exemplified by (1a) and (1b). This transformation is
formally verified to preserve satisfiability as part of the end-
to-end correctness theorem shown in Figure 1. Note that the
CAKEPB_CNF tool has an essentially identical correctness
theorem to an existing verified Boolean unsatisfiability proof
checking tool [16]. In fact, these tools share exactly the same
definitions of DIMACS CNF parsing, Boolean satisfiability
semantics, and all of the CAKEML’s standard assumptions.

B. Complexity and Empirical Evaluation

All of the commands in the kernel format are designed to
minimize the need to search over the entire constraint database.
For example, each implicational and deletion proof step can be
performed in linear time with respect to the size of that step.

The only proof steps that scale linearly with respect to the
size of the constraint database are redundancy and dominance-
based strengthening steps. For either of these steps, the proof
checker potentially needs to loop over the entire constraint
database to check all the necessary proof goals. However, the
maximum size of the database is linear in the size of the input
formula and the proof. Therefore, the overall complexity of the
verified proof checker is polynomial in the size of the input
formula and proof, as required.

Table I shows an empirical evaluation of the verified proof
checking pipeline on a selected suite of example proofs,
generated using BREAKID [17]1 and KISSAT [18]2 to solve

1https://bitbucket.org/krr/breakid/src/veriPB/
2https://gitlab.com/MIAOresearch/tools-and-utilities/kissat_fork

87

⊢ cake_pb_cnf_run cl fs mc ms ⇒ (2)
machine_sem mc (basis_ffi cl fs) ms ⊆

extend_with_resource_limit
{ Terminate Success (cake_pb_cnf_io_events cl fs) } ∧

 (3)

∃ out err .
extract_fs fs (cake_pb_cnf_io_events cl fs) =

SOME (add_stdout (add_stderr fs err) out) ∧

 (4)

if out = «s VERIFIED UNSAT\n» then
LENGTH cl = 3 ∧ inFS_fname fs (EL 1 cl) ∧
∃ fml .

parse_dimacs (all_lines fs (EL 1 cl)) = SOME fml ∧
unsatisfiable (interp fml)

else out = «»

(5)

Fig. 1: The end-to-end correctness theorem for the CAKEML pseudo-Boolean proof checker with a CNF parser

TABLE I: Example timings for verified proof checking using
VERIPB and CAKEPB_CNF. All times are in seconds.

Benchmark VeriPB Time (s) CakePB Time (s)

queen14_14.col.14.cnf 6.5 52.3
harder-php{...}.cnf 9.3 30.5
Pb-chnl15-16_c18.cnf 13 43.2
tseitin_n104_d3.cnf 4.2 3.9
rphp_p6_r28.cnf 123 68.2

SAT competition instances of the last years and theoretical
instances.

ACKNOWLEDGEMENTS

We wish to acknowledge the monumental contributions of
Stephan Gocht [19], without whom there would not have been
any pseudo-Boolean proof checker.

REFERENCES

[1] “VeriPB: Verifier for pseudo-Boolean proofs,” https://gitlab.com/
MIAOresearch/software/VeriPB.

[2] S. Gocht and J. Nordström, “Certifying parity reasoning efficiently using
pseudo-Boolean proofs,” in Proceedings of the 35th AAAI Conference
on Artificial Intelligence (AAAI ’21), Feb. 2021, pp. 3768–3777.

[3] B. Bogaerts, S. Gocht, C. McCreesh, and J. Nordström, “Certified
symmetry and dominance breaking for combinatorial optimisation,” in
Proceedings of the 36th AAAI Conference on Artificial Intelligence
(AAAI ’22), Feb. 2022, pp. 3698–3707.

[4] S. Gocht, R. Martins, J. Nordström, and A. Oertel, “Certified CNF
translations for pseudo-Boolean solving,” in Proceedings of the 25th
International Conference on Theory and Applications of Satisfiability
Testing (SAT ’22), ser. Leibniz International Proceedings in Informatics
(LIPIcs), vol. 236, Aug. 2022, pp. 16:1–16:25.

[5] J. Elffers, S. Gocht, C. McCreesh, and J. Nordström, “Justifying all
differences using pseudo-Boolean reasoning,” in Proceedings of the 34th
AAAI Conference on Artificial Intelligence (AAAI ’20), Feb. 2020, pp.
1486–1494.

[6] S. Gocht, C. McCreesh, and J. Nordström, “An auditable constraint
programming solver,” in Proceedings of the 28th International Conference
on Principles and Practice of Constraint Programming (CP ’22), ser.
Leibniz International Proceedings in Informatics (LIPIcs), vol. 235, Aug.
2022, pp. 25:1–25:18.

[7] ——, “Subgraph isomorphism meets cutting planes: Solving with certified
solutions,” in Proceedings of the 29th International Joint Conference on
Artificial Intelligence (IJCAI ’20), Jul. 2020, pp. 1134–1140.

[8] S. Gocht, R. McBride, C. McCreesh, J. Nordström, P. Prosser, and
J. Trimble, “Certifying solvers for clique and maximum common
(connected) subgraph problems,” in Proceedings of the 26th International
Conference on Principles and Practice of Constraint Programming
(CP ’20), ser. Lecture Notes in Computer Science, vol. 12333. Springer,
Sep. 2020, pp. 338–357.

[9] D. Vandesande, W. De Wulf, and B. Bogaerts, “QMaxSATpb: A certified
MaxSAT solver,” in Proceedings of the 16th International Conference
on Logic Programming and Non-monotonic Reasoning (LPNMR ’22),
ser. Lecture Notes in Computer Science, vol. 13416. Springer, Sep.
2022, pp. 429–442.

[10] J. Berg, B. Bogaerts, J. Nordström, A. Oertel, and D. Vandesande,
“Certified core-guided MaxSAT solving,” in Proceedings of CADE-29,
2023, accepted for publication.

[11] O. Roussel and V. M. Manquinho, “Input/output format and solver
requirements for the competitions of pseudo-Boolean solvers,” Jan. 2016,
revision 2324. Available at http://www.cril.univ-artois.fr/PB16/format.pdf.

[12] K. Slind and M. Norrish, “A brief overview of HOL4,” in TPHOLs, ser.
LNCS, O. A. Mohamed, C. A. Muñoz, and S. Tahar, Eds., vol. 5170.
Springer, 2008, pp. 28–32.

[13] Y. K. Tan, M. O. Myreen, R. Kumar, A. C. J. Fox, S. Owens,
and M. Norrish, “The verified CakeML compiler backend,” J. Funct.
Program., vol. 29, p. e2, 2019.

[14] A. Guéneau, M. O. Myreen, R. Kumar, and M. Norrish, “Verified
characteristic formulae for CakeML,” in ESOP, ser. LNCS, H. Yang,
Ed., vol. 10201. Springer, 2017, pp. 584–610.

[15] M. O. Myreen and S. Owens, “Proof-producing translation of higher-
order logic into pure and stateful ML,” J. Funct. Program., vol. 24, no.
2-3, pp. 284–315, 2014.

[16] Y. K. Tan, M. J. H. Heule, and M. O. Myreen, “cake_lpr: Verified
propagation redundancy checking in CakeML,” in TACAS, ser. LNCS,
J. F. Groote and K. G. Larsen, Eds., vol. 12652. Springer, 2021, pp.
223–241.

[17] “Breakid,” https://bitbucket.org/krr/breakid.
[18] “Kissat SAT solver,” http://fmv.jku.at/kissat/.
[19] S. Gocht, “Certifying correctness for combinatorial algorithms by using

pseudo-Boolean reasoning,” Ph.D. dissertation, Lund University, Lund,
Sweden, Jun. 2022.

88

Verified LRAT and LPR Proof Checking
with cake_lpr

Yong Kiam Tan Marijn J. H. Heule Magnus O. Myreen

I. SUMMARY

We present the cake_lpr proof checker [1] which is capa-
ble of checking proofs in either Linear RAT (LRAT) or Linear
PR (LPR) proof formats. The LPR format is a backwards-
compatible extension of LRAT. The checker is formally veri-
fied using CakeML and the HOL4 theorem prover; its formal
proof is discussed in [1] and briefly in Section III. The DRAT
and DPR proof formats are supported using DRAT-trim and
DPR-trim as preprocessing tools, respectively.
The verified proof checker is available at:

https://github.com/tanyongkiam/cake_lpr
The DRAT-trim and DPR-trim tools are available at:

https://github.com/marijnheule/drat-trim
https://github.com/marijnheule/dpr-trim

A. Example
An outline of an end-to-end LRAT proof checking run is as

follows:
Assume the problem is input.cnf in DIMACS

... run SAT solver on input.cnf ...

... generate proof file input.drat ...

Run drat-trim on the DRAT proof and
generate LRAT file

drat-trim input.cnf input.drat -L input.lrat

Run cake_lpr on the resulting LRAT proof

cake_lpr input.cnf input.lrat

If the proof checks successfully, cake_lpr will print to
standard output:
s VERIFIED UNSAT

All other error messages, such as proof checking error,
parsing error, out-of-memory error, will be printed to stderr.
Solvers capable of generating LRAT proofs directly can skip
the use of DRAT-trim. End-to-end proof checking for LPR
proofs can be done similarly, using DPR-trim as the pre-
processor for DPR proofs. It is also possible to convert DPR
proofs to DRAT, then use DRAT-trim, but this approach is
not recommended as it is significantly slower than checking
DPR (and LPR) proofs directly [1].

II. SUPPORTED PROOF FORMATS

Formal descriptions of all proof formats are available in
the cited publications [1], [2] and online. We give brief
descriptions of the formats with concrete examples.

A. DRAT and LRAT

The DRAT format consists of a list of clause addition or
deletion steps, one per line. All lines are terminated by 0.
Each added clause must have RAT redundancy with respect
to the current formula.
<CLAUSE> 0
d <CLAUSE> 0

Concrete example:
1 -2 3 0 # Add clause x_1,!x_2,x_3
d 1 2 -3 0 # Del clause x_1,x_2,!x_3

The DRAT-trim tool can be used as a preprocessor to
automatically convert an input DRAT proof to LRAT format.
The latter format extends DRAT with a notion of clause IDs
and proof hints for each line. The input CNF is assumed to
be given IDs in ascending order from 1 to n where n is the
number of clauses in the file. Addition lines in LRAT have the
following format, where <ID> is a positive integer, <IDs> is
a list of <ID>, and [...]* denotes 0 or more repetitions of
the enclosed block:
<ID> <CLAUSE> 0 <IDs> [-<ID> <IDs>]* 0

The first <ID> is the clause ID to be assigned to
<CLAUSE>. If <CLAUSE> has RAT redundancy, then the
first literal in the clause is the pivot literal. The first block of
<IDs> lists unit propagation steps starting from the blocking
assignment for <CLAUSE>. If <CLAUSE> has RAT redun-
dancy, then this first block is followed by 0 or more -<ID>
<IDs> blocks, where -<ID> refers to the <ID>-th clause
in the RAT proof and the corresponding <IDs> indicate unit
propagation steps for that clause.

Deletion steps are written with a list of clause IDs rather
than clauses. All the clauses with IDs in <IDs> are deleted.
<ID> d <IDs> 0

Concrete example:
Add clause x_1,!x_2,x_3 at clause ID 15
with RAT on pivot !x_2
15 -2 1 3 0 4 13 7 10 8 -5 2 4 -10 3 5 0
Del clause IDs 13 14 15
(ID 16 in front of the line is ignored)
16 d 13 14 15 0

A complexity analysis for the LRAT proof format is given
in [2, Theorem 2], where asymptotically (keeping all parame-
ters constant except number n of steps in proofs), the complex-
ity is reported as O(n2 log n); cake_lpr slightly improves

Proceedings of SAT Competition 2023: Solver and Benchmark Descriptionsvolume B-2023-1 of Department of Computer Science Series of Publications
B, University of Helsinki 2023 .

89

⊢ cake_lpr_run cl fs mc ms ⇒
machine_sem mc (basis_ffi cl fs) ms ⊆

extend_with_resource_limit
{ Terminate Success (cake_lpr_io_events cl fs) } ∧

∃ out err .
extract_fs fs (cake_lpr_io_events cl fs) =

Some (add_stdout (add_stderr fs err) out) ∧
if . . .
else if length cl = 3 then
if out = «s VERIFIED UNSAT\n» then

inFS_fname fs (el 1 cl) ∧
∃ fml .

parse_dimacs (all_lines fs (el 1 cl)) = Some fml ∧
unsatisfiable (interp fml)

else out = «»
else . . .

} (1)}
(2)

(3)

(4)

Fig. 1. The end-to-end correctness theorem for the CakeML LPR proof checker. (Some irrelevant cases are elided with . . . for brevity).

the asymptotic bound to O(n2) because it uses constant-
time rather than logarithmic-time lookup data structures [1].
Empirically, we have observed that most proofs generated by
solvers in past SAT competitions are dominated by simple
(non-RAT) steps. In that case, one may expect near-linear
scaling from cake_lpr.

B. DPR and LPR

The DPR format extends DRAT so that added clauses are
propagation redundant with respect to the current formula.
Here, <WIT> is a list of literals which must start with the first
literal in <CLAUSE>. Note that this is syntactically backwards
compatible with DRAT (when <WIT> is empty).

<CLAUSE> <WIT> 0

The DPR-trim tool can be used as a preprocessor to
automatically convert an input DPR proof to LPR format. The
latter format extends DPR with clause IDs and proof hints
in the same way LRAT extends DRAT. The only syntactic
addition is the optional <WIT> after <CLAUSE>.

<ID> <CLAUSE> <WIT> 0 <IDs> [-<ID> <IDs>]* 0

The proof checking procedure for LPR is backwards com-
patible with LRAT, using <IDs> and [-<ID> <IDs>]*
as unit propagation hints for propagation redundancy [1].
Deletion lines are identical for LPR and LRAT.
Concrete example:
Add clause x_1,!x_2,x_3 at clause ID 15
with PR witness !x_2,x_5
15 -2 1 3 -2 5 0 4 13 7 10 8 -5 2 4 -10 3 5 0
Del clause IDs 13 14 15
(ID 16 in front of the line is ignored)
16 d 13 14 15 0

The proof checking procedure for LPR is essentially the
same as LRAT, i.e., with O(n2) complexity (assuming all other
parameters are held constant).

III. PROOF CHECKER VERIFICATION

Our proof checker, cake_lpr, is formally verified down
to the level of its x64 machine code implementation, which
eliminates the possibility of bugs arising from, e.g., compiler
errors, code extraction, or other, unverified additions to (veri-
fied) source code. This is achieved by compiling its formally
verified CakeML source code implementation, with a formally
verified compiler for CakeML [1].

The key correctness theorem is shown in Fig. 1. To infor-
mally summarize:

• Line (1) assumes that the cake_lpr binary is executed
in an x64 machine environment set up according to the
standard CakeML assumptions.

• Lines (2) guarantees that cake_lpr will terminate suc-
cessfully (i.e., no out of bounds array accesses, etc.); it
may run out of either heap or stack memory (resource
limits).

• Lines (3) says that, according to the CakeML file system
model, there will be some strings printed to standard
output and standard error.

• Lines (4) says (among other things) that, IF the string
“s VERIFIED UNSAT” is printed onto standard output,
then the first command line argument corresponds to a
file, which parsed in DIMACS format, to a formula that
is unsatisfiable. The DIMACS parser is verified to be left
inverse to the DIMACS printer.

REFERENCES

[1] Y. K. Tan, M. J. H. Heule, and M. O. Myreen, “cake_lpr: Verified
propagation redundancy checking in CakeML,” in TACAS, ser. LNCS,
J. F. Groote and K. G. Larsen, Eds., vol. 12652. Springer, 2021, pp.
223–241.

[2] L. Cruz-Filipe, M. J. H. Heule, W. A. Hunt Jr., M. Kaufmann, and
P. Schneider-Kamp, “Efficient certified RAT verification,” in CADE, ser.
LNCS, L. de Moura, Ed., vol. 10395. Springer, 2017, pp. 220–236.

90

Solver Index

AMSAT, 32

BreakID-kissat, 25

CaDiCaL-WatchSat, 10
Cadical_rel_1.5.3.Scavel, 12
Cadical_rel_Scavel, 12
CaDiCaL_vivinst, 14

DPS-Kissat, 41

gdrcnf, 38
Gimsatul, 14

hKis, 37

IsaSAT, 14

Kissat, 14
kissat-hywalk-exp, 28
kissat-hywalk-exp-gb, 28
kissat-hywalk-gb, 28
Kissat-INCSP, 19
Kissat-Pre-sc23, 39
Kissat_MAB_Binary, 32
Kissat_MAB_Conflict, 27
Kissat_MAB_Conflict+, 27
Kissat_MAB_DeepWalk+, 27
Kissat_MAB_prop, 16
Kissat_MAB_Rephases, 27

Mallob1600, 46
Mallob32, 46
Mallob64, 46
malloblin, 28
MapleCaDiCaL, 30
Merge, 34
MergeSat-Pcasso, 34

P-KISSAT, 42
P-KISSAT-STR, 42
PahKis, 37
PaKisInc, 37
pKisDS, 44
PreLearn, 23
PRS-distributed-sc23, 39
PRS-nopre-sc23, 39
PRS-sc23, 39

ReEncode, 23

SBVA-CaDiCaL, 18
SBVA-Kissat, 18
SeqFROST, 21

TabularaSAT, 14

uKissatInc, 37

91

Benchmark Index

Acceptance in abstract argumen-
tation, 66

ASCON Hash Function, 63

Benchmark selection, 48
Brent Equations over Z2, 61

Crafted benchmarks with sym-
metries/parities, 67

Equivalence checking, 76, 77

Matching of Properly Intersect-
ing Intervals, 55

Mutilated chessboard, 72

Pigeon-hole, 72
pproximation of Trigonometric Func-

tions, 57
Profitable Robust Production, 50
Python Function Register Allo-

cation, 56

Reduced Simon, 78
RISC-V instruction replacement,

54

Set covering with conflict, 80
Simplified and Randomized For-

mula REGN, 74
Social Golfer Problem, 64
Subsumption, 70

UNSATcoin, 52

Verification of AWS C99 hash ta-
ble safety properties, 71

Verifying Floating-Point Commu-
tativity with GRS, 53

92

Proof checker Index

cake_lpr, 89
CakePB, 86

GRAT, 81

VeriPB, 86

93

Author Index

Baarir, Souheib, 42
Biere, Armin, 14
Biere, Armin , 53
Bogaerts, Bart, 25, 67, 86
Bryant, Randal E., 23, 72
Buss, Sam, 30, 52

Cai, Shaowei, 39, 77
Chakraborty, Supratik, 19, 61
Chen, Zhihan, 39, 77
Chen, Zhuo, 27, 80
Cherif, Mohamed Sami, 32, 74
Chowdhury, Md Solimul, 28, 50
Chung, Jonathan, 30, 52
Codel, Cayden R., 72
Coll, Jordi, 32, 74

Djamegni, Clémentin Tayou, 37

Fleury, Mathias, 14, 53, 54
Fukiage, Tsubasa, 41

Ganesh, Vijay, 30, 52
Gao, Yu, 16, 55
Green, Harrison, 18, 56
Große, Daniel, 54
Gurtner, Sonja, 54

Haberlandt, Andrew, 18, 56
Habet, Djamal, 32, 74
He, Kun, 27, 80
Heule, Marijn J. H., 89
Hiller, Kai, 57
Huang, Junhua, 44, 76

Inoue, Katsumi, 41
Iser, Markus, 48

Jaju, Shubh, 64
Jin, Mingming, 27, 80

Karia, Kalind, 19, 61
Klemmer, Lucas, 54

Lammich, Peter, 81
Li, Chu-Min, 32, 74
Li, Shuai, 44, 76
Li, Shuolin, 32, 74

Li, Xijun, 44, 76
Li, Zhihui, 12
Liu, Xu, 44, 76
Long, Zhiguo, 12
Luo, Mao, 32, 74
Luo, Wanqian, 44, 76

Manthey, Norbert, 10, 34, 63
Manyà, Felip, 32, 74
Mayer-Eichberger, Valentin, 64
McCreesh, Ciaran, 86
Myreen, Magnus O., 86, 89

Nabeshima, Hidetomo, 41
Namoju, Karthikeya, 19, 61
Niskanen, Andreas, 66
Nordström, Jakob, 25, 67, 86
Nuttall, Luke, 38, 70

Obitsu, Yuto, 41
Oertel, Andy, 25, 67, 86
Osama, Muhammad, 21, 71

Panda, Biswabandan, 19, 61
Pollitt, Florian, 14

Qian, Yuhang, 39, 77

Reeves, Joseph E., 23, 72

Saffidine, Abdallah, 64
Schreiber, Dominik, 46
Sopena, Julien, 42

Tan, Yong Kiam, 86, 89
Tchinda, Rodrigue Konan, 37
Trüby, Robin, 53

Uluç Yıldırımoğlu, Çağrı Uluç,
25

Vallade, Vincent, 42

Wang, Keming, 12
Weigl, Alexander, 57
Wijs, Anton, 21, 71
Wu, Guanfeng, 12

Xie, Zhihui, 44, 76

94

Xu, Yang, 12
Xue, Jinghui, 27, 80

Yıldırımoğlu, Çağrı Uluç, 67
Yu, Zhibin, 12
Yuan, Mingxuan, 44, 76

Zhang, Xindi, 39, 77
Zhang, Zhongyi, 78
Zhen, Hui-Ling, 44, 76
Zheng, Jiongzhi, 27, 80

95

