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Abstract. The Internet of Things (IoT) plays a significant role in the
development and future evolution of smart cities by connecting physical
devices and systems to the Internet to collect and exchange data, auto-
mate processes, and improve overall urban management, and quality of
life. This chapter presents the requirements and challenges to realize IoT
deployments in smart cities, including sensing infrastructure, Artificial
Intelligence (AI), computing platforms, and enabling communications
technologies such as 5G beyond networks. To highlight these challenges
in practice, the chapter also presents a real-world case study of a city-
scale deployment of IoT air quality monitoring within the city of Helsinki.
The results demonstrate the role that IoT plays in future smart cities,
illustrating how deployments of air quality monitoring devices can ben-
efit decision-making by supporting local air pollution monitoring, traffic
management, and urban planning. Lastly, the chapter discusses the role
of AI and other emerging technologies in the future of smart cities.

Keywords: Internet of Things, Smart Cities, Artificial Intelligence, Sensor De-
ployment, 6G Networks
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1 Introduction

The number of Internet of Things (IoT) devices has long since surpassed the
number of people on Earth and is expected to continue growing with estimates
suggesting nearly 30 billion devices will be deployed by 2030 [1]. Cities and urban
areas are one of the main areas for these devices with examples ranging from
smart home sensors to driverless cars, portable IoT devices, smart wearables,
and different types of drones. Examples of these devices in operation within a
smart city are shown in Figure 1.

Fig. 1: Illustration of large-scale sensor deployment in a smart city.

The characteristics of the IoT devices vary depending on the device designs
and their intended applications, which in turn poses requirements for the in-
frastructure that is available in the city. For example, driverless cars require
continuous and persistent network connections, whereas wearables typically re-
quire discontinuous and transient connections. Similarly, applications that target
the immediate needs of citizens tend to require support for real-time computa-
tion and processing, whereas analytics and other more long term services can
operate without support for real-time processing. Besides the need for real-time
responsiveness of the networks, some of these applications would be compu-
tationally demanding. Providing the necessary networking and computational
support in an affordable, efficient and scalable manner is highly challenging [2].
Besides these overall infrastructure challenges, deploying the sensors can also
be demanding. IoT devices that benefit the city mostly can be categorized into
fixed sensors and mobile sensors. Fixed sensors require strategic planning for
deployment and to ensure the necessary electricity, networking, computations,
and security support are in place. Mobile sensors, in turn, need to have suffi-
ciently dense coverage and data quality may be an issue as certain locations or
demographic groups may be overrepresented.

Taking all of the above into account, massive-scale deployments of IoT sen-
sors in smart cities that meet the needs of citizens and applications is a highly
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challenging task. This chapter details these challenges, beginning from require-
ments (Section 2) and continuing to key challenges (Section 3). To highlight some
of the potential benefits that can be obtained from IoT deployments in smart
cities, in Section 2 we present a case study and results from a deployment of air
quality sensors in the city of Helsinki. We further provide a discussion about the
role of AI and emerging technologies in future smart cities in Section 5. Finally,
we conclude the chapter in Section 6.

2 Requirements for IoT Deployment in Smart Cities

2.1 Reliable Network Connection

To ensure successful operations of deployed IoT devices in smart cities, it is
mandatory to have robust and seamless network services in the cities. While
some IoT applications would require ultra-low latency services from the network,
other applications may demand high bandwidth or may need to obtain massive
connections [3]. The following are examples of applications requiring different
forms of services from the network.

Ultra-low Latency: The driverless cars and drones are outstanding exam-
ple applications that would need fast data processing in order to make precise
decision-making, e.g., for avoiding obstacles and changing directions. To ensure
the safe operations of the applications, thus, driverless cars and drones are ex-
pected to have stringent latency requirements [2, 4].

High Bandwidth: The surveillance cameras have been widely used in ur-
ban areas to monitor human activities as well as face recognition [5]. To perform
real-time image processing streamed from the cameras therefore there is a need
for enhanced bandwidth from the network such that it can support the trans-
mission of tens of video frames every second while each frame requires a few
Megabits of bandwidth from the network. Assuming a frame size of 20KB and
30fps be the standard frame rate, then the required bandwidth for a single frame
would be 4.8Mb/s (20KB x 30fps x 8 bits/byte). This bandwidth requirement
is further enhanced with the frame transmission rate of the surveillance cam-
era. Hyperspectral cameras that are widely used for environmental and pollution
monitoring are the other prominent examples of IoT applications as they can
produce images of 30–300 MB in less than a second [6, 7]. Therefore, for frame
transmission, compared to the surveillance cameras they require even higher
bandwidth from the network.

Massive Connection: In addition to the example IoT devices mentioned
earlier, the number of other types of IoT devices and applications rapidly in-
crease which mandates obtaining ubiquitous and responsive network services in
cities. Among many, examples of such applications include portable low-cost air
quality sensors, smart homes, smart grids, smart metering, and different forms
of wearables such as smartwatches and smart rings. The increasing number of
IoT devices either mobile (carried by people or vehicles) or installed at fixed
locations requires providing massive connections by the networks [4].
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2.2 Infrastructure Deployment

To provide effective network services and ensure successful operations of IoT it
is necessary to first, place the network infrastructure such as base stations, IoT
gateways, and edge computers in strategic locations (PoIs) to enable providing
full network coverage in cities [8]. This is needed to ensure support for mobile
IoT devices (either vehicles, drones, or people) moving at various speeds.

Second, when deploying fixed sensors in urban areas, it is essential to in-
stall them in places that can easily connect to the network and maintain its
connection. In addition, as IoT devices require power supplies as well as contin-
uous maintenance, it is important to install the devices in locations with energy
sources and easy access for inspection.

3 Key Aspects of Sensor Deployment and Data
Management in Smart Cities

3.1 Sensor Deployment and Placement

Urban environments are complex systems as they consist of different urban el-
ements such as residential areas, shopping centers, parks and green areas, and
highways and streets (with high and low levels of traffic). These urban environ-
ments do not only span horizontally, they grow vertically (such as tall buildings
and skyscrapers) with the population growth in cities. Therefore, to optimally
provide IoT services [9] and also better monitor the health of city infrastruc-
tures [10], there is a need for optimal sensor deployments and placement methods
in order to cover the whole city environment.

In the existing methods, the solutions include “citizen-centric” sensor place-
ment approach by i) installing sensors near public places, e.g., schools and hos-
pitals, ii) providing local information by minimizing the distance between the
sensors and the people, and iii) placing and optimizing sensors on critical ur-
ban infrastructure, e.g., monitoring traffic emissions on roads with high traffic
levels [11].

In addition, current sensor deployment and placement the most areas of a
city are not covered. The areas that fall under a certain radius of a sensor are
considered covered by sensing systems. Therefore, to cover the missing areas,
the current approaches rely on interpolating data using the measurements of
other sensor nodes in the same area. Indeed, the city environments because of
their complex features and dynamics make sensor deployment challenging. Thus,
sensor deployment and placement require new models that take into account the
dynamics of the city blocks, urban infrastructure, building shapes, demographics,
and the micro-environmental features of the regions.

In light of the challenges associated with sensor deployment and placement
outlined in this section, it is crucial to consider the broader ecosystem in which
these sensors operate. Effective sensor deployment is but the first step in a
multi-faceted process that ultimately leads to the delivery of valuable services
and applications within smart cities.
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Figure 2 provides an illustrative overview of this ecosystem, segmented into
four primary layers: Data Collection, Data Transmission, Data Services, and
Applications. Each layer represents a critical stage in the data lifecycle, with its
unique challenges and requirements.

Data Collection Data Transmission

Data Services

• Cellular Networks (e.g., 5G)
• Wi-Fi
• LoRa
• Bluetooth
• NB-IoT
• …

• Environmental Sensors
• Traffic Cameras
• Smart Meters
• Wearable Devices
• …

• Cloud Storage
• Edge Computing Platforms
• Data Analytics Tools
• Data Warehouses
• Distributed Databases
• …

Applications

• Traffic Management Systems
• Energy Monitoring
• Air Quality Monitoring
• Public Safety
• Waste Management
• …

Fig. 2: Illustration of the four primary layers in smart city data management:
Data Collection, Data Transmission, Data Services, and Applications, each with
representative examples.

Each of these layers is interconnected, collaboratively ensuring that data is
effectively collected, transmitted, managed, and utilized to provide intelligent
and responsive smart city applications.

Within this complex framework, security and ethical considerations permeate
every layer. The process of data handling often involves sensitive or personally
identifiable information, necessitating stringent ethical considerations and ro-
bust security measures. Techniques like data anonymization are implemented
to protect privacy, while adherence to international and local legal frameworks,
like the GDPR in Europe, guide the ethical collection and handling of data [12].
Security considerations are equally crucial, involving the deployment of encryp-
tion technologies and access control mechanisms to safeguard data at rest and
in transit, providing a secure environment for data storage and processing [13].

The following sections will delve deeper into the challenges and considerations
associated with Data Collection, Data Transmission, and Data Services within
this secured and ethically compliant framework. Then, in Section 4, we will
explore a practical application of this layered framework through a case study
on Air Quality Monitoring with IoT for Smart Cities, offering real-world insights
into how these layers function consistently to support smart city initiatives while
upholding the highest standards of security and ethics.
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3.2 Data Collection

Data collection is the foundational component in the IoT lifecycle within smart
city applications, requiring robust and efficient processes to ensure the efficacy
of subsequent analytics and decision-making. In the realm of IoT, data collection
entails gathering various types of data from devices like environmental sensors,
traffic cameras, smart meters, wearable devices, and RFID tags, as illustrated
in Figure 2.

Each device plays a specific role in collecting different data types, which are
essential for various applications in smart cities. For instance, environmental
sensors gather crucial data on air quality, temperature, and humidity, providing
real-time information necessary for monitoring and responding to changes in the
urban environment.

To facilitate reliable and efficient data collection, adherence to established
protocols and standards is crucial. Protocols like MQTT and CoAP [14], while
also playing a role in the transmission, are fundamental at the collection stage
for ensuring data is gathered and packaged correctly for transmission. MQTT
is notable for its lightweight characteristics, making it ideal for scenarios with
limited bandwidth, high latency, or unreliable networks. CoAP, used for devices
in constrained environments, simplifies data transmission at the initial collection
point.

Interoperability is another crucial factor at the data collection stage [15],
ensuring that various devices can communicate and share data effectively. Inter-
operability not only considers the compatibility between different device types
but also the protocols and standards they use, fostering a seamless and efficient
data collection process [16]. Initiatives and efforts, such as those led by the In-
ternet Engineering Task Force (IETF) and many other standardization bodies
(e.g., 3GPP, IEEE, etc.), actively work towards standardization to ensure that
different protocols, data formats, and devices can effectively interoperate with
one another [15, 17].

3.3 Data Transmission

Efficient data transmission is critical in the deployment of IoT systems within
smart cities, as it acts as the bridge between data collection and data services.
The significance of effective data transmission lies in the necessity for real-time
(or near real-time), accurate, and secure transmission of data from myriad IoT
devices to their respective end-points.

The challenges in data transmission are multiple. Applications within smart
cities necessitate the transmission of a wide and varied volume of data, requir-
ing robust and adaptable networks [18]. The latency in data transmission, or the
delay in data transfer, becomes particularly significant for applications that man-
date immediate or real-time responses. Limited bandwidth is another substantial
challenge, often stressed in areas densely populated with devices simultaneously
transmitting data.
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Additionally, the heterogeneity of transmission technologies introduces com-
plexity. Various technologies, including LoRa, Wi-Fi, Bluetooth, LTE-M, NB-
IoT, and 5G, offer different advantages and challenges [19]. For instance, while
LoRa provides long-range connectivity and low power consumption, it might
not offer the high data rates required for some applications. Conversely, 5G pro-
vides high data rates and low latency, supporting applications with demanding
throughput and responsiveness requirements.

Smart city applications can also be characterized by different requirements
[20], aligning with the categorizations provided by 5G networks. Ultra-Reliable
Low Latency Communications (URLLC) is crucial for applications that require
immediate responses with minimal delay. Enhanced Mobile Broadband (eMBB)
caters to applications that need high data rates and bandwidth. Finally, massive
Machine Type Communications (mMTC) is essential for supporting a massive
number of connected devices, typically seen in densely populated urban areas.

To address these challenges, it is fundamental to deploy and use optimized
data transmission protocols and technologies, ensuring each application’s unique
requirements are met. Techniques like data compression can be utilized to reduce
the amount of data transmitted, saving bandwidth and improving transmission
efficiency.

3.4 Data Services

Data services play an fundamental role in the framework of IoT within smart
cities, offering a wide set of functionality that are essential for effectively man-
aging and utilizing the data gathered. Within this landscape, we identify four
main components belonging to data services: Data Storage, Data Processing,
Data Analytics, and Data Sharing and Access. These components are intercon-
nected, each playing a critical role while collaboratively working to ensure that
data flows seamlessly through the system from collection to actionable insight,
ultimately serving as the backbone for various smart city applications.

Data Storage and Data Processing are pivotal in the IoT lifecycle within
smart cities [21], serving as the repository and analysis mechanism for the vast
data generated. Efficient and secure data storage solutions are essential due
to the immense volume of data continuously produced by various IoT devices.
These solutions must guarantee data integrity, swift retrieval times for real-time
applications and robust security to protect sensitive information from unautho-
rized access and potential breaches. On the processing end, transforming the raw
data into actionable insights presents its challenges. First, there is a demand for
substantial computational power to analyze and process the collected data ef-
ficiently. Quality control of the data is also paramount; ensuring accuracy is
crucial for reliable analysis and insights. Strategies and technologies must be in
place to handle incomplete or ”noisy” data, requiring sophisticated data clean-
ing and validation processes. Additionally, for real-time applications, minimizing
latency—from data collection to insight generation—is critical.

Several technologies and strategies have emerged to address the challenges
associated with data storage and processing. Cloud computing [22] offers a viable
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solution, providing scalable storage and computing resources. This technology is
particularly well-suited for applications without stringent latency requirements.
For applications demanding real-time data processing, edge computing [23] offers
a solution by processing data closer to its generation point, thereby reducing
latency and conserving bandwidth. Data warehouses and distributed databases
also play a crucial role [24]. Data warehouses serve as centralized repositories
that store integrated data from various sources, designed mainly for query and
analysis. In contrast, distributed databases provide a framework for storing and
processing large data volumes across a network of computers, offering scalability
and fault tolerance.

Data Analytics takes the processed data to the next level by employing ad-
vanced tools and algorithms to interpret and analyze it for patterns, trends, and
hidden insights. While data processing prepares and refines the data, data ana-
lytics is concerned with drawing meaningful conclusions and providing foresight
and understanding that inform decision-making processes. Within this frame-
work, technologies like AI and ML play a significant role in providing deeper in-
sights, offering predictive analytics and facilitating more informed and proactive
decision-making and planning in the urban context. This process encompasses
three main analytics types: descriptive, predictive, and prescriptive [19, 25]. De-
scriptive analytics, commonly utilized in business, measures, and contextualizes
past performance to aid decision-making. It brings out hidden patterns and in-
sights from historical data but isn’t primarily used for forecasting. Predictive an-
alytics, on the other hand, goes beyond description, extracting information from
raw data to identify patterns and relationships, thereby facilitating forecasts of
behaviors and events. Using both historical and current data, predictive analytics
provides valuable foresights. Prescriptive analytics advances further, quantifying
the potential effects of future decisions to provide recommendations and insights
on possible outcomes. This advanced analytics type supports decision-making
by offering choices and suggestions based on data analysis, making it a crucial
tool for planning and strategy in smart cities.

However, the integration of big data analytics necessitates a clear under-
standing of specific functional and non-functional requirements [26, 27], given the
diverse and dynamic nature of data sources and applications within smart cities.
Functional requirements encompass aspects like interoperability, real-time mon-
itoring, access to historical data, mobility, service composition, and integrated
urban management. On the other hand, non-functional requirements include
sustainability, availability, privacy considerations, social impact, and scalability.
Addressing these requirements is imperative for developing robust and resilient
smart city architectures that can seamlessly integrate and analyze data from het-
erogeneous sources, including IoT sensors, social media networks, and electronic
medical records. Furthermore, the dynamic urban environment of smart cities
demands attention to stream data analytics, enabling real-time services while
also accommodating planning and decision-making processes through historical
or batch data analytics. Essential characteristics that a big data analytics plat-
form should embody to navigate the challenges of big data include scalability,
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fault tolerance, I/O performance, real-time processing capabilities, and support
for iterative tasks.

Effective and secure Data Sharing and Access is key to maximizing the
utility of data in smart cities. This involves making collected data available to
authorized entities, departments, or individuals who require it for various appli-
cations and analytics, always with robust data access policies and mechanisms
in place to ensure both data sharing and privacy protection. Data sharing in the
context of smart cities encompasses a set of technologies, practices, and frame-
works aimed at facilitating secure and efficient data access amongst multiple
stakeholders without compromising data integrity [28]. This process is integral
to improving efficiency and fostering collaboration not only within city depart-
ments but also with external partners, vendors, and the community at large, all
while being aware of and mitigating associated risks. There are at least two main
factors that strengthen the importance of data sharing in smart cities. The first
relates to the possibility of integrating data from different sources, which can pos-
sibly enhances the value and performance of dedicated services [29]. For instance,
data sharing enables improved urban planning and transportation management
by combining information from traffic cameras, sensors, and public feedback,
leading to more effective and responsive city services. The second is linked to a
more effective Data-Driven Decision-Making. Transparent information sharing
facilitates improved analytics, enabling city officials and stakeholders to make
informed and effective long-term decisions [30]. For example, integrating data
from environmental sensors, healthcare institutions, and public service depart-
ments can provide a holistic view of city health and environmental conditions,
aiding in timely decision-making and policy formulation.

However, the process of data sharing is not without challenges. Risks include
potential privacy disclosure, where organizations must navigate legal and ethical
obligations to protect customer data while sharing information responsibly. The
process also opens up possibilities of data misinterpretation and issues related
to data quality, including hidden biases in datasets [28].

In mitigating risks and facilitating data sharing in smart cities, several tech-
nologies are essential. Among these, Data Warehousing is crucial for internal
data sharing, serving as a repository for data from various departments and
allowing isolated access to shared information [28]. Next, APIs play a key role
by enabling fine-grained communication and controlled data sharing between
software components. They precisely dictate accessible data and usage rules,
ensuring structured and secure data exchange [31]. Lastly, Federated Learning
is transformative, allowing collaborative AI and ML development while main-
taining data control and privacy for each contributor. This approach not only
enhances data-driven insights but also ensures confidentiality, supporting robust
and intelligent smart city applications [32].

While Data Services provide the foundational support for various applica-
tions in smart cities, the effectiveness of these applications is highly dependent
upon the quality of the data being collected, transmitted, and analyzed. The
following section, therefore, will delve into the topic of Data Quality, exploring
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the challenges and considerations related to ensuring the accuracy, reliability,
and validity of data in smart city ecosystems.

3.5 Data Quality

An IoT application may comprise hundreds or thousands of sensor devices that
produce vast amounts of data. This data is rendered useless if it is riddled with er-
rors as poor sensor data quality caused by the errors may lead to wrong decision-
making results. In order to enable massive deployment, most IoT applications
use low-cost sensor techniques, though at the expense of data quality. As a result,
IoT often encounters soft faults (i.e., error) which are associated to outliers, bias,
drifts, missing values, and uncertainty, which should be detected or quantified
and removed or corrected in order to improve sensor data quality [33]. Due to
the diverse nature of IoT deployments and the likelihood of sensor failures in
the wild, a key challenge in the design of IoT systems is ensuring the integrity,
accuracy, and fidelity of sensor data [34]

The error within an IoT application may take place for different reasons.
For example, in a sensor network serving an IoT application, poor data quality
may arise from congested and unstable wireless communication links and can
cause data loss and corruption [35]. The other example pertains to the damage
or exhaustion of battery in sensor devices that would cause the data quality to
degrade, as towards the end of its battery life, sensors tend to produce unstable
readings [36].

In addition, the role of external factors such as the hostile environment is
not negligible on sensor readings and data quality. For example, air quality IoT
devices that include aerosol, trace gases, and meteorological sensors are often
placed outdoors and are subjected to extreme local weather conditions such as
strong winds and snow, which might affect the operation of the sensor [37].

In IoT datasets, one of the most common data quality problems is called
missing data (incomplete data) which indicates a portion of data that is missing
from a time series data [38]. In principle, the missing data may be caused by
different factors such as unstable wireless connection due to network congestion,
sensor device outages due to its limited battery life, environmental interferences
e.g. human blockage, walls, and weather conditions, and malicious attacks [39].

To cover missing data, one solution can be to re-transmit the data. However,
since most IoT applications are in real-time, therefore, the data re-transmission
would not be effective as i) rendering the data is not beneficial if there is a delay,
and ii) the re-transmission adds to the computation and energy costs. The latter
is due to the fact that the sensor devices are usually limited in terms of battery,
memory, and computational resources. However, to fill in the missing data an
alternative would be applying imputation based on Akima Cubic Hermite [40]
and multiple segmented gap iteration [41] methods.

Another common problem that involves data quality is called outlier which
can be in the forms of anomalies [37, 42] and spikes [43, 44]. An outlier takes
place when sensor measurement values exceed thresholds or largely deviate from
the normal behavior provided by the model. In other words, the outlier occurs
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when the sensor measurement value is significantly different from its previous
and next observations or observations from neighboring sensor nodes [45, 46].
In practice, outliers can be identified by applying anomaly detection methods
based on adaptive Weibull distribution [37] and Principal Component Analysis
(PCA) [47, 48].

In addition to the outliers, another common problem in IoT data quality is
known as bias or offset [49], which occurs when the sensor measurement value is
shifted in comparison with the normal behavior of a reference sensor. A drift is a
specific type of bias that takes place when the sensor measurement values deviate
from their true values over time. Drifts are usually caused by IoT device degra-
dation, faulty sensors, or transmission problems [50]. In current solutions, the
drifts caused by any reasons can be detected by comparing two types of Bayesian
calibration models [51] or applying ensemble classifiers where each classifier will
learn a normal behavior model and compare it with the current reading [52].
In order to correct the bias and drift, calibrations are usually required [51].
For example, air-quality low-cost sensors often experience bias and drift in the
field due to the sensors’ device quality and variations in environmental factors.
The sensors can then be calibrated using machine learning (ML) models, such
as nonlinear autoregressive network with exogenous inputs (NARX) and long
short-term memory (LSTM), to improve data quality and meet the data quality
of reference instruments [40].

With a clearer understanding of the importance of Data Quality analysis, and
having navigated through the various challenges and solutions crucial to each
aspect of the data lifecycle in IoT as summarized in Table 1, we move forward
to explore how the concepts and challenges discussed thus far manifest in real-
world scenarios. The next section provides a practical perspective through a case
study on Air Quality Monitoring with IoT for Smart Cities. This case study offers
a valuable understanding into the application of data collection, transmission,
services, and quality principles in the development and implementation of smart
city applications, serving as a tangible example of theory translated into practice.

4 Case Study: Air Quality Monitoring with IoT for
Smart Cities

This section presents a case study where IoT devices were used for an air quality
monitoring network in Helsinki, Finland, a well-known smart city. Air pollution
is known to be harmful to human health and the environment. According to
the World Health Organization (WHO), air pollution causes approximately 7
million in deaths each year. Of this, an estimated 4.2 million deaths are due to
outdoor exposure [53]. Official air quality monitoring stations have been estab-
lished across many smart cities around the world. Unfortunately, these monitor-
ing stations are sparsely located and consequently do not provide high-resolution
spatio-temporal air quality information [54]. Thanks to advances in communi-
cation and networking technologies, and the Internet-of-Things (IoT), low-cost
sensors have emerged as an alternative that can be deployed on a massive scale in
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Table 1: A summary of key challenges and solutions for deploying massive IoT
in smart cities.
Concern Key Challenge Solution

Sensor De-
ployment
and Place-
ment

Identifying the key locations and
finding optimal places that allow the
most coverage

Current solutions use interpolations
(of data collected from other nodes
in the sensor network). The need for
enhanced methods that consider the
population, urban, and environmen-
tal factors

Data Col-
lection

Gathering various types of data that
are reliable and efficient and interop-
erability

i) Establishing protocols, such as
MQTT and CoAP, to ensure relia-
bility and efficiency
ii) Establishing standardization to
ensure that different protocols, data
formats, and devices can effectively
interoperate with one another

Data Trans-
mission

The latency in data transmission,
limited bandwidth, limited connec-
tivity, and heterogeneity of trans-
mission technologies

i) 5G networks also provide URLLC,
eMBB, and mMTC to respond
to the minimal delay, high band-
width, and massive connection re-
quirements, respectively.
ii) Optimizing data transmission
protocols and technologies e.g., by
applying data compression methods
to reduce the amount of transmis-
sion data and save bandwidth

Data Ser-
vices

i) Data storage and data process-
ing to handle the immense volume
of generated IoT data
ii) Data analytics to draw meaning-
ful conclusions and provide foresight
for decision-making processes
iii) Data sharing and access to max-
imize the utility of data

i) Cloud computing provides scal-
able storage and computing re-
sources, and edge computing offers
processing data closer to its genera-
tion point, data warehouses, and dis-
tributed databases facilitate storing
and processing large data volumes
ii) Technologies like AI and ML can
play a significant role in provid-
ing deeper insights, offering predic-
tive analytics and facilitating more
informed and proactive decision-
making and planning
iii) Integrating data from different
sources can enhance the value and
performance of dedicated services,
and transparent data sharing can
improve analytics and lead to more
effective decision-making

Data Qual-
ity

The occurrences and identification
of poor data quality, e.g., missing
data, outlier bias, and drift data

i) Identification of anomalous and
poor data quality through drift de-
tection
ii) Correcting the data by applying
imputation and calibration methods
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cities [40]. This deployment offers a high resolution of spatio-temporal air quality
information [6]. This case study demonstrates how air quality IoT devices benefit
several aspects in terms of local pollution monitoring, traffic management, and
urban planning.

4.1 IoT Installation

This subsection describes the experimental details including the sites, IoT de-
vices, and the data collected from the experiments.

Fig. 3: The sites and the IoT devices used in the experiment.

Experimental sites

In this case study, two air quality IoT devices were installed at the following two
different sites in the city of Helsinki, Finland. These sites include:

1. The Kumpula site that is located at Kumpula campus of the University
of Helsinki in the front open yard and about 4 kilometers northeast of the
Helsinki center. The site is also considered as an urban background, that
is situated at about 150 meters from a main street in Kumpula district in
Helsinki [55].
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2. The Mäkelänkatu site is known as a street canyon and is located just beside
Mäkelänkatu Street, which is one of the arterial roads and is lined with
apartment buildings. The street consists of six lanes, two rows of trees, two
tramlines, and two pavements, in a total of 42 meters of width. Every day,
different types of vehicles including cars, buses, and trucks cross this street
and thus cause frequent traffic congestion [56].

The map of both sites is presented on the left-hand side picture in Figure 3.
The Kumpula site is notated by K, whereas the Mäkelänkatu site is notated by
M. The distance between the two sites is 900 meters.

IoT devices

Air quality IoT devices used in this experiment are developed by Clarity Cor-
poration, a company that is based in Berkeley, California, the USA. These IoT
devices are shown on the right-hand side of Figure 3. The weight of the device
is 450 grams. The input power of the sensor is 5 volts. The sensor device is de-
signed to operate by battery and has a battery lifetime of 15 days of continuous
measurements. If the battery operates by harvesting solar power, its operation
time extends to 1 to 2 years. In our experiment, we used grid electricity for the
sensor’s input power. The sensors offer sensing meteorological variables including
the Temperature (Temp) which uses band-gap technology and Relative Humid-
ity (RH) which uses capacitive technology. The sensors also measure particulate
matter (PM) and CO2 with laser light scattering technology and metal oxide
semiconductor technologies, respectively.

The sensors underwent a laboratory calibration process, by the manufacturer,
using Federal Reference Method (FRM) instruments. The sensors are equipped
with the LTE-4G communication module to transmit the measured data. The
transmitted data is also stored in a cloud platform facilitated by Clarity1. The
cloud platform allows access to the raw sensor and visualized data. The data can
also be downloaded using a user interface accessible by SmartCity WebApp2. The
measurement frequency of data varies around 16-23 minutes per data point. We
installed one of these IoT devices on a container at the Kumpula site (K) about
2 meters from the ground level and another one at the Mäkelänkatu site (M) on
the top of a container about 4 meters above the ground level.

The data

We collected the datasets from 1st January to 31st December 2018 from the
two IoT devices. For our analysis, in this chapter, we use PM2.5 and PM10, and
Air Quality Index (AQI) variables, extracted from the datasets. In our analysis,
we process the data in an hour resolution. In practice, AQI is defined as the
maximum of the indexes for six criterion pollutants, including PM10, PM2.5,
CO, NO2, O3, and SO2 [57].

1 smartcity.clarity.io
2 clarity.io/documents



Towards Large-Scale IoT Deployments in Smart Cities: Motlagh et al. 15

4.2 Air quality IoT monitoring for a smart city

This subsection explains how air quality IoT devices can benefit a smart city
using the analysis extracted from the IoT experiments. These benefits include
local air pollution monitoring, traffic management, and urban planning.

Local air pollution monitoring

Fig. 4: Time-series data of AQI, PM10 and PM2.5 concentrations (in µg/m3) at
Kumpula (K) and Mäkelänkatu (M) sites.

One of the key motivations for deploying dense air quality IoT devices in city
districts is to provide local air pollution monitoring at fine-grained resolution.
In principle, in urban areas the quality of air changes even at a few ten meters
of distance. To show such a variation, we extract measurements of AQI, PM2.5,
and PM10 from our two IoT devices, between 25th March and 11th April 2018.
Then, as illustrated in Figure 4, we plot the time series of these variables. In the
figure, the blue color presents the measurements from the Kumpula site, and
the green color portrays the air quality captured at Mäkelänkatu site. In the
figure, the top subfigure shows the AQI variations, and the middle and bottom
subfigures depict the PM10 and PM2.5 concentrations, respectively.

As shown in the plots, in general, both measurements have similar patterns.
The green curves lie slightly above the blue curves most of the time, indicating
that the pollution level in Mäkelänkatu site is higher than the Kumpula site.
Between 27th to 31st March, PM10 and PM2.5 show relatively low pollution con-
centrations. These results are also confirmed by AQI which indicates overall low
pollution levels for those dates. On the 1st April, all pollutant indexes fluctuate
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and show a slight increase and decrease. Then, we observe another fluctuation
with a higher increase from 5th to 7th April. Again, we observe another rapid
fluctuation between 9th to 10th April. Furthermore, by only considering the fluc-
tuations in the air quality from 9th to 10th April (as zoomed in and shown on
the right side of Figure 4), we observe a large discrepancy between the pollution
levels K and M with a difference of 80 µg/m3.

As a result, the fluctuations shown for the period of the time series plot,
as well as the variations of the measurements in both sites K and M, call for
the need for the deployment of air quality IoT devices separately at both sites
in order to detect pollution hotspots and also monitor the air quality at fine-
grained resolution in real-time. Indeed, deploying dense air quality sensors in
cities could provide more accurate information leading to more robust and reli-
able conclusions about air quality levels at higher resolution, even at a few meter
distances. A dense deployment can also assist in creating emission inventories of
pollutants and detecting pollution sources, as well as allowing real-time exposure
assessment for designing mitigation strategies [58].

Traffic Management

Traffic is one of the main sources of outdoor air pollution in urban areas [59, 60].
The health effects of traffic-related air pollution continue to be of important
public health risks [61]. In order to carry out effective traffic management driven
by the level of air pollution, it is important to have air quality IoT devices
installed next to roads. Therefore, the patterns of air pollution can be observed
in roads allowing designing appropriate traffic management strategies.

Figure 5 shows diurnal cycles of AQI, PM10 and PM2.5 at the sites of
Kumpula (right) and Makelankatu (left). The x-axes show the 24-h time period
whereas the y-axes exhibit the levels of AQI and PM concentrations (in µg/m3).
The blue curves are the median of the data for each variable aggregated from
one year of data whereas the shaded areas represent the lower quartile (25%)
and upper quartile (75%) of the data for each variable aggregated from one year
data (i.e., from 1st January to 31st December 2018).

As demonstrated in Figure 5, on the Kumpula site (the left subfigures), the
AQI, PM10 and PM2.5 do not increase during the peak hours (i.e, rush hours
when people and vehicles movement is high). This is due to the fact that the
Kumpula site is located in an urban background with less exposure to traffic
emissions. However, on the Mäkelänkatu site (the right subfigures), the AQI,
PM10 and PM2.5 show an increase during peak hours, mainly between 8 AM
and 10 AM. These patterns explain that Mäkelänkatu street is a busy road
during the rush hours, especially in the mornings.

As a result, these patterns and the pollution concentration levels can be used
by authorities to study for example the traffic behaviors and types of vehicles
and therefore devise possible interventions to reduce the amount of pollutants
in the areas where the IoT devices are installed. For instance, PM2.5 (that are
known as fine particles) are predominantly emitted from combustion sources
like vehicles, diesel engines, and industrial facilities; and PM10 (that are known
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(a) AQI at Kumpula site (b) AQI at Mäkelänkatu site

(c) PM10 at Kumpula site (d) PM10 at Mäkelänkatu site

(e) PM2.5 at Kumpula site (f) PM2.5 at Mäkelänkatu site.

Fig. 5: Diurnal cycles for AQI, PM10, and PM2.5 in Kumpula (left) and
Mäkelänkatu (right) sites.

as coarse particles) are directly emitted from activities that disturb the soil
including travel on roads, construction, mining, open burning or agricultural op-
erations [62]. Hence, understanding the levels of PM10 and PM2.5 concentrations
at different locations enables planning appropriate interventions and designing
effective traffic management strategies.

Urban Planning

Modern urban planning needs to consider environmental pollution and factors
that threaten cities. Among many, AQI is known to be an important indicator
that plays a vital role in urban life. Based on yearly AQI information, appropriate
urban planning can be designed by considering the effects of different factors on
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air quality such as topography, buildings, roads, vegetation, and other external
sources (e.g., traffic) [63]. Thus, poor AQI levels may indicate areas that are
unsuitable for certain types of land use. For instance, sensitive land uses like
schools, hospitals, and residential areas can be kept away from major pollution
sources like factories or highways.

(a) AQI at Kumpula site

(b) AQI at Mäkelänkatu site

Fig. 6: Different AQI levels (%) in four different seasons at the two sites.

Figure 6 presents different percentages of AQI levels in four different seasons
for the two sites. The figure shows the whole data aggregated for a year (1st

January to 31st December 2018). The AQI is divided into four levels including
Good (green), Satisfactory (light green), Fair (yellow), Poor (orange), and Very
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Poor (red). For example, in the summer, the AQI levels in Kumpula (sub-figure
6a) are better than in Mäkelänkatu (sub-figure 6b). This is because the Kumpula
site is surrounded by vegetation and trees during the summertime. In wintertime,
on the other hand, the Kumpula site is slightly more polluted than Mäkelänkatu,
as there is no vegetation and trees are without leaves, causing the Kumpula
site to be exposed easily to air pollutants transported by nearby roads. The
Kumpula area hosts residential buildings, university campuses, and a school,
thus to mitigate the air pollution effects, in this area it is important for city
planners to consider planting evergreen trees [64] such as Scots pine, Norway
spruce, common juniper, and European yew.

In Mäkelänkatu site, on the other side, due to its proximity to the main road,
the AQI levels are worse than Kumpula site. Therefore, better traffic manage-
ment strategies can be devised for the Mäkelänkatu road. In general, air quality
analysis based on AQI can provide information about prominent air pollution
problems. Therefore, scientific assessments can be carried out in order to realize
future development and planning for smart cities [65].

5 Role of AI and Emerging Technologies in Future Smart
Cities

The convergence of AI and IoT—often defined as AIoT [66]—is not only ex-
pected but is already serving as a foundational element in the development of
smart cities. With AI currently playing a key role in managing and interpreting
the increasing volumes of data generated by a diverse array of IoT devices, it
is evident that its significance will only amplify moving forward. As the data
landscape continues to expand and AI methods undergo continuous refinement
and innovation, there is growing potential for integrating newer, more efficient
AI models and methodologies into key enabling technologies. Such integration
can facilitate the creation of fully automated AI-enabled smart cities but and it
also ensures that smart city ecosystems are equipped to adapt and respond to
the ever-changing demands and challenges of evolving urban spaces.

Below, we outline a set of pivotal enabling technologies situated at the inter-
section of AI and IoT, each playing a crucial role in fostering the development
of future smart cities. It is worth highlighting that the list presented is not
exhaustive. Instead, it provides an illustrative snapshot of significant, emerging
technological trends that are currently shaping the smart cities landscape. These
identified technologies are presented as key drivers facilitating the emergence of
cities that are not only smarter but also more efficient and responsive. Each
technology contributes its unique strengths and capabilities, offering varied so-
lutions. Together, they equip smart cities with functional modules necessary for
addressing the myriad challenges these complex ecosystems currently face and
will encounter in the future.
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Digital Twin Systems

Deploying IoT and sensor networks in urban areas provides the opportunity
for the creation of digital twin systems in smart cities. For example, deploying a
massive number of surveillance cameras in cities can enable real-time monitoring
of the people and traffic flow in cities and learning patterns from the movements
and moving directions, allowing better planning for the traffic design. Similarly,
using the telecom infrastructure and wireless access points deployed in cities
makes it possible to estimate the number of access requests by the users (even
for specific IoT applications), and therefore planning better resource manage-
ment and thus improving the quality of experiences by the users. Moreover, as
highlighted earlier in this chapter, deploying air pollution sensors allows for cap-
turing air pollution in real-time and identifying hotspots in cities, leading to
better planning for the cities. Using such massive deployments therefore enables
the creation of digital twins, a powerful tool that provides the digital transforma-
tion of smart cities that enables real-time and remote monitoring of the physical
elements (such as buildings and transportation systems) in cities, and therefore
enables effective decision-making by the policy makers [67].

On-Device Machine Learning

On-device ML, also known as TinyML, is pivotal in advancing AIoT, offering
substantial benefits in terms of efficiency, latency, and privacy [68]. TinyML en-
ables devices to process and analyze data locally, reducing the need for constant
connectivity and data transmission to centralized data centers, thereby decreas-
ing latency and minimizing bandwidth usage. This approach makes AIoT appli-
cations more responsive and reliable, while also enhancing privacy and security
by keeping sensitive data on the device. In the specific context of smart cities,
there are several application scenarios where TinyML can play a transformative
role. For example, it fosters the development of smart and autonomous entities
capable of making decentralized and quick decisions in applications like traffic
and pollution monitoring, thereby contributing to the collective intelligence in
smart cities. Such deployment simplicity of TinyML, coupled with its indepen-
dence from the power grid, facilitates the establishment of smart spaces even
in remote and disadvantaged areas, promoting their economic and technolog-
ical revitalization [69]. With the impending surge in urban populations, and
the consequent strain on city resources and infrastructure, the introduction of
TinyML in smart spaces is crucial for efficient resource optimization and energy
waste reduction. This is imperative not just for managing the increasing energy
demands but is integral to meeting stringent carbon neutrality goals set for sus-
tainable urban living [70]. Furthermore, practical applications of TinyML, such
as deploying LSTM Autoencoders on constrained devices for tasks like anomaly
detection in urban noise sensor networks, showcase its potential and versatility
in urban settings, paving the way for future explorations into on-device model
training and trust management systems among sensor devices [71]. Each aspect
of on-device ML represents a significant step toward decentralized, efficient, and
intelligent urban planning and decision-making processes in smart cities.
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6G Connectivity

Previous communication technologies including 4G, LTE-M, and NB-IoT as well
as the current 5G technology have paved the way allowing large-scale deployment
of IoT in smart cities. Indeed, the earlier 4G technology provided the communica-
tion resources that can support a large variety of IoT applications, LTE-M and
NB-IoT technologies were planned to specifically support machine-to-machine
and IoT deployments. Later, the 5G improved the communication capabilities
of the previous technologies by providing URLLC, eMBB, and mMTC. Cur-
rently, 5G paves the way for using AI for 6G, the next-generation communication
technology [72].

6G is expected not only to enhance communication capabilities (i.e., by
URLLC+, eMBB+, and mMTC+) but it will offer AI and wireless sensing as
new network services. In practice, 6G will see the physical objects through elec-
tromagnetic waves and will improve communication performance by providing
high-resolution sensing, localization, imaging, and environment reconstruction
capabilities. 6G will provide joint communication and sensing that will integrate
localization, sensing and communication, and will facilitate edge intelligence and
enable the transformation from connected things and people to connected intel-
ligence [73].

The edge intelligence will also offer intelligence at the edge and will enable
the processing of large datasets for critical IoT applications and computations.
The edge intelligence will thus provide swift replies with precise decisions for the
requested services by the specific IoT applications. Moreover, 6G is expected
to provide high-density IoT connections and support one million connections
per square kilometer [4]. Benefiting from these advanced features, therefore, 6G
will support a wide variety of IoT applications at very large scales and with very
high dense deployments. Examples of such applications would include but are not
limited to activity detection, gesture recognition, mobility identification, remote
sensing, simultaneous localization and mapping, object tracking, and security
screening [74].

Blockchain

While AI-based technologies provide the intelligence required for insights gen-
eration and decision-making automation in smart cities, ensuring the security
and integrity of the data utilized by AI algorithms is equally crucial. Blockchain
emerges as a key enabler, safeguarding data collected and transmitted by AI-
enabled Smart City systems, providing a secure, reliable, and trustworthy envi-
ronment [75].

Furthermore, blockchain not only enhances the security and efficiency of
IoT-enabled smart city applications but also mitigates data vulnerability and
addresses single-node failures inherent in cloud-based solutions [76]. Though
cloud-based architectures are widely used, they are susceptible to cyber-attacks,
including data tampering and false data injection, and can experience reliability
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issues due to single-node failures [77]. In this context, blockchain, with its decen-
tralized Distributed Ledger Technology (DLT), offers a robust and transforma-
tive alternative. It ensures transparency, data immutability, and integrity while
providing pseudonymity. This technology is vital for smart cities, offering secure,
resilient, and dynamic services across various sectors, including smart grids and
Intelligent Transportation Systems (ITS) [76]. Blockchain facilitates trust-free,
peer-to-peer transactions without central authorities and protects users’ identi-
ties through public pseudonymous addresses [78].

The use of smart contracts, which is related to the Data Sharing case dis-
cussed in Section 3.4, automates transactions between parties, streamlining smart
city operations seamlessly. The convergence of blockchain’s security features, 6G
connectivity, and AI intelligence is fundamental for the development of secure,
resilient, and adaptable smart cities, ready to meet the evolving requirements of
future applications [18].

6 Conclusion

Information and communication technologies are advancing rapidly, causing an
increase in the deployed network infrastructure and fostering an increase in the
variety and scale of IoT applications that support smart cities. This chapter
addressed the requirements and challenges associated with large-scale IoT de-
ployments in smart cities considering the advances in emerging communication
and computing technologies. The chapter also highlighted the roles of AI, and
5G beyond networks as well as the computing technologies that are needed to
enable massive-scale IoT deployments in cities. To showcase the benefits of IoT
deployments in cities, the chapter also presented the results obtained from a real-
world case study of deploying two air quality IoT devices in the city of Helsinki,
deployed at two separate locations. The results explain how these IoT devices
can benefit decision-making by providing local air pollution monitoring, traffic
management, and urban planning. Finally, the chapter explains the role of AI
and emerging technologies by addressing the advances toward blockchain, digital
twin systems, on-device machine learning, and 6G connectivity that would play
a fundamental role in the creation of future smart cities.
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T. Mäkelä, P. Keronen, E. Siivola, T. Vesala, and M. Kulmala, “The urban
measurement station SMEAR III: Continuous monitoring of air pollution
and surface-atmosphere interactions in helsinki, finland,” Boreal Environ-
ment Research, vol. 14, pp. 86–109, 2009.



Towards Large-Scale IoT Deployments in Smart Cities: Motlagh et al. 27

[56] R. Hietikko, H. Kuuluvainen, R. M. Harrison, H. Portin, H. Timonen, J. V.
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