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Nanotechnology is an emerging applied science delivering crucial human
interventions. Biogenic nanoparticles produced from natural sources have
received attraction in recent times due to their positive attributes in both
health and the environment. It is possible to produce nanoparticles using
various microorganisms, plants, and marine sources. The bioreduction
mechanism is generally employed for intra/extracellular synthesis of biogenic
nanoparticles. Various biogenic sources have tremendous bioreduction potential,
and capping agents impart stability. The obtained nanoparticles are typically
characterized by conventional physical and chemical analysis techniques.
Various process parameters, such as sources, ions, and temperature incubation
periods, affect the production process. Unit operations such as filtration,
purification, and drying play a role in the scale-up setup. Biogenic
nanoparticles have extensive biomedical and healthcare applications. In this
review, we summarized various sources, synthetic processes, and biomedical
applications of metal nanoparticles produced by biogenic synthesis. We
highlighted some of the patented inventions and their applications. The
applications range from drug delivery to biosensing in various therapeutics and
diagnostics. Although biogenic nanoparticles appear to be superior to their
counterparts, the molecular mechanism degradation pathways, kinetics, and
biodistribution are often missing in the published literature, and scientists
should focus more on these aspects to move them from the bench side to clinics.
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GRAPHICAL ABSTRACT

Sources for biogenic synthesis: The synthesis sources include but are not limited to bacteria, fungi, algae, yeasts, marine and plant sources.

1 Introduction

Green nanoparticles, which are produced utilizing sustainable
methods and materials, provide several advantages over
conventional nanoparticles. These benefits include
biocompatibility, improved properties, cost-effectiveness,
environmental sustainability, and sustainable development. Green
nanoparticles are environmentally friendly since they are often
produced using nontoxic, biodegradable, and renewable materials
(Parveen et al., 2016). Synthetic methods for nanoparticle synthesis
are frequently linked to many challenges, including the production
of hazardous byproducts, instability issues, high prices, and major
environmental concerns (Ashique et al., 2022). Green synthesis-
based metal nanoparticles have received greater attention due to
their unique physicochemical properties (Anandalakshmi, 2021;
Tade et al., 2020).

The conventional methods of synthesizing nanoparticles have
several limitations, such as the use of hazardous chemicals, high
energy requirements, and high costs. In contrast, biogenic
nanoparticle synthesis is a green and cost-effective alternative
that utilizes natural biological systems such as plants, animals,
fungi, and bacteria to produce nanoparticles. The green synthesis
approach has an advantage over traditional synthetic processes in
terms of eco-friendliness and biocompatibility. Plant extracts
contain phytochemicals that are essential for the synthesis of
nanoparticles and for enhancing their bioactivity. These
phytochemicals include terpenoids, ketones, flavonoids,
aldehydes, amides, and carboxylic acids. This approach is broadly
termed “green technology,” which is advantageous and eco-friendly
in comparison to physical or chemical methods (Singh et al., 2021).

Biogenic nanotechnology is the combination of biology and
material science. Nanoparticles represent a fundamentally practical
platform, exhibiting special qualities with potentially broad

applicability. The unique qualities and utility of nanoparticles
result from several factors, including their size similarity to
biomolecules such as proteins and polynucleic acids (De et al.,
2008). The biogenic method for synthesizing nanoparticles results
in particles with good polydispersity, diameters, and stability (Ingale
and Chaudhari, 2013).

An expanding number of microorganisms are employed to
produce nanosized particles (Chugh et al., 2021). There are many
distinct types of microorganisms, and they all react with metal
precursors in somewhat different ways to make nanoparticles.
Despite the unique reaction mechanism of each biogenic
material, they all essentially function in the same way, leading to
the production of the desired nanostructures in a “complex broth”
(Srivastava et al., 2015). In addition to the characterization of these
nanosystems, the focus must be placed on the extraction and
identification of the relevant biomolecules to use them as
prototypes for the synthesis of nanomaterials, or more accurately,
“biomimetic materials” (Kim et al., 2017). Some biogenic
techniques, although still in their infancy, have developed into
biomimetic approaches, giving rise to sophisticated bionano
hybrid materials, self-assembled functional materials, and
enhanced biomedical applications (Srivastava et al., 2015).

The employment of eco-friendly procedures, such as the usage
of biopolymers, plant extracts, and biomolecules, has drawn growing
interest to achieve this goal (Ahmed et al., 2016). They are ideal
reagents because they satisfy the criteria for biocompatibility and
accessibility and function in a variety of ways, such as capping,
reducing, and shape-modulating agents. The various advantages of
biogenic synthesis and the importance of biogenic synthesis are
illustrated in Figure 1. Green chemistry is the use of chemicals to
help prevent pollution in particular fields such as clean analytical
methods, environmentally friendly analytical chemistry, and green
analytical chemistry. The fact that green synthesis is biocompatible,
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inert, and harmless to the environment makes it a suitable method
for creating nanoparticles (Scala et al., 2022).

The synthesis process provides eco-friendly nanoparticles with
greater stability, clinical adaptability, and biocompatibility. Organisms
have developed the ability to survive in environments with high metal
concentrations. These organisms may alter their chemical nature and
reduce their toxicity. The fabrication of nanoparticles is an outcome of
a resistance mechanism of an organism to a certain metal (Dhuldhaj
and Pandya, 2021). The synthesis of biogenic metallic nanoparticles is
categorized into two types. 1) Biodegradation: Chemical reduction
through biological means can generate more stable metal ions, which
is achieved through dissimilatory metal reduction. The enzyme
undergoes oxidation, whereas the metal ion undergoes reduction.
The metallic nanoparticles obtained are extracted safely and subjected
to further evaluations. 2) Biosorption: The metal ions present in an
aqueous or soil sample become attached to the organism itself.
Peptides or cell walls bonded with metal ions are obtained by
some bacteria, fungi, and plants (Mittal et al., 2021). These
peptides stabilize the nanoparticles. Several variables influence the
selection of biological approaches for nanoparticle synthesis and
creation. The most crucial variable is the form of the metal
nanoparticle to be generated. The choice of organism remains
limited due to the occurrence of resistance against metals (Patil
et al. 2019a; Patil et al., 2017).

Recent advances in nanotechnology are expected to demonstrate
a considerable impact on the progress of novel therapeutic strategies.
The ability to obtain nanoparticles in the protein size domain results
in a variety of biomedical applications, as they can stimulate
response and improve desired therapeutic effects with minimum
undesirable effects (Gupta and Gupta, 2005). Therapy for various
diseases and disorders includes a variety of synthetic medicines that

have demonstrated promising effects. Synthetic drug usage is linked
to a variety of adverse effects, and scientists have taken a soft turn
toward the use of phytochemicals, which have few side effects
(BhattacharyaSoares et al., 2022). Despite various advantages,
green nanotechnology has some challenges. Scale-up is one of the
major challenges; currently, the production of green nanomaterials
is limited to laboratory-scale experiments, and it is difficult to
translate these findings into large-scale manufacturing processes
(Gacem et al., 2022). Identifying the most suitable bioresource for
producing the desired nanoparticles is the main challenge.
Purification of nanoparticles from raw biological components
after production is also a serious obstacle (Nethi et al., 2021).

This article will provide a better understanding of green
technology in the fabrication of nanoparticles using bacteria,
algae, fungi, yeasts, and plants for potential biomedical uses.

2 Sources for the synthesis of biogenic
nanoparticles

The synthesis of nanoplatforms by physical and chemical
methods demands highly toxic reducing agents, high radiation,
and stabilizing agents (Hebbalalu et al., 2013). These can be
harmful to nature as well as human life. Therefore, researchers
are now interested in green synthesis for sustained and eco-friendly
approaches for the synthesis of metallic and metal oxide
nanoparticles (Priya et al., 2021).

Fungi and bacteria can both have intracellular and extracellular
mechanisms of synthesis (Bhardwaj et al., 2020). Both mechanisms
take place through different pathways in different microorganisms.
In the intracellular synthesis mechanism, the transportation of
positively charged metal ions takes place through the cell wall
possessing a negative charge and are then internalized into the
cells through various mechanisms, e.g., the synthesis of gold
nanoparticles using Lactobacillus kimchicus (Mughal et al., 2021).
In the extracellular synthesis mechanism, metal ions aggregate on
the surface of a cell, e.g., the synthesis of gold nanoparticles using the
Paracoccus haeundaensis bacterium (Cherian et al., 2022).

Similarly, fungi also synthesize nanoparticles by two pathways,
but they are more prone to the extracellular type of synthesis. For
example, the synthesis of silver nanoparticles by Candida glabrata
(Ghosh et al., 2021). Among the available processes for the synthesis
of metallic and metal oxide nanoparticles, the use of plant extracts
for large-scale production instead of bacteria, fungi, and other
microorganisms is a comparatively convenient process. To
produce nanoparticles, plants are highly considered due to their
biodiversity and availability of phytochemicals (Singh et al., 2018;
Patil and Chandrasekaran, 2020). These phytochemicals show
seasonal variations in yield, and nanoparticles synthesized by this
method show a polydisperse nature. Phytofabrication is now
considered a less time-consuming, safe, and cost-effective
approach to constructing stable nanoparticles.

2.1 Plants

The plant is easily available and convenient to handle material
compared to microorganisms in the biogenic synthesis of

FIGURE 1
Salient features and properties of biogenic nanoparticles.
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nanoparticles with efficient scale-up possibilities (Vijayaraghavan
and Ashokkumar, 2017). The various constituents in plants, such as
tannins, vitamins, alkaloids, polysaccharides, flavonoids, tannins,
terpenoids, and saponins, play an important role in the bioreduction
process for the synthesis of nanoparticles. The plant constituents
also impart stability to nanoparticles (Patil and Chandrasekaran,
2020). Nanoparticle synthesis from plant biomass/extract points
toward reducing generated waste and implementation of
sustainability to the synthesized nanoparticles.

Various secondary metabolites, such as flavonoids, amino acids,
phenolic compounds, enzymes, alkaloids, and glycosides, work as
activators of the bioreduction of metal ions (BhardwajYadav et al.,
2020). The advantage of using a plant is that every part consists of
these metabolites; therefore, fruit, root, leaves, and bark can be used
(Alamgir and Alamgir, 2017). Different constituents of extracts of
blueberry, turmeric, and pomegranate when used for nanoparticle
synthesis produced nanoparticles that have shown use in
antioxidant therapy and cancer management as well (Gour and
Jain, 2019). Many plants have applications in the synthesis of gold
and silver nanoparticles, and most of them are medicinal plants such
as Aloe vera, Alfalfa (Medicago sativa), Tulsi (Ocimum sanctum),
Neem (Azadirachta indica), and Lemon grass (Cymbopogon
flexuosus) (Singh et al., 2018). Extracts of leaves and fruits of
Aloe vera, Mangifera indica, and Eucalyptus, bark extracts of
Boswellia ovalifoliolata and Cinnamomum zeylanicum, and seed
extracts of Jatropha curcas can reduce metals such as silver, gold,
platinum, copper, cadmium, iron and zinc (Soni et al., 2021). Leaf
extracts ofMagnolia Kobuswere found to be useful for the successful
synthesis of copper and copper oxide nanoparticles (Lee et al., 2013).
Aqueous extracts of Gloriosa superba and Prosopis fractal were used
for the synthesis and stabilization of cerium oxide nanoparticles,
which have applications in the treatment of obesity, and they were
also used to immobilize cholesterol oxidase and glucose oxidase
(Rocca et al., 2015). The generation of the first platinum
nanoparticles was confirmed by Diospyros kaki leaf extract.
Different phytochemicals present in plant extracts act as
functional groups for reducing metals. The most common are
flavonoids, which have lower molecular masses and are present
in all parts of plants. The presence of flavonoids is an important
factor in the use of plants for biogenic synthesis. Flavonoids decrease
toxicity and stabilize nanoparticles (Shafey, 2020). Other significant
phytochemicals participating in green synthesis are phenolic
compounds, vitamins, and enzymes. Plants are nonpathogenic
and the most suitable candidates in comparison to microbes for
biogenic synthesis and can produce a variety of nanoparticles
(Shobha et al., 2014).

2.2 Microorganisms

2.2.1 Fungi
The use of fungi has some advantages compared to bacteria;

fungi-mediated nanoparticle synthesis is environmentally friendly,
the process is easy to scale up and economically viable, and the
produced nanoparticles are very efficient, monodispersed, and have
good morphologies (Kitching et al., 2015). Fungi contain enzymes
that are more advantageous in biosynthesis than other
microorganisms. The enzyme reductase in fungal cells carries out

most of the metallic nanoparticle formation by the reduction
process. Fungal cultures are preferred in the biogenic synthesis of
nanoparticles due to their high biomass production. The handling of
fungi is easier, and they show high tolerance toward various metals.
Fungi secrete many proteins that impart stability to nanoparticles
during biogenic synthesis. The fungal mass can easily tolerate high
pressure and agitation and provides an advantage in scale-up.
Adjustment of the culturing environment can execute controlled
metabolism of fungi, which results in the synthesis of nanoparticles
with desired characteristics (Guilger-Casagrande and de Lima,
2019).

Silver nanoparticles biosynthesized using fungi show wide
applications as antimicrobial, antioxidant, and anticancer agents
(Kaliammal et al., 2021). Multiple previous studies have emphasized
the fungus-mediated synthesis of silver and other metal oxide
nanoparticles. Few studies have demonstrated the use of
Cladosporium cladosporioides in the synthesis of gold
nanoparticles (Bhargava et al., 2016). Fusarium oxysporum
fungus is widely used due to its potential for intracellular and
extracellular synthesis of nanoparticles. Recent studies have
shown the production of copper, magnesium oxide, gold, and
platinum nanoparticles (Mukherjee et al., 2002).

Fungi are also capable of producingmetallic oxide nanoparticles,
and magnetite is a magnetic property containing iron oxide
nanoparticles that can be produced by a fungus such as
Aspergillus (Khandel and Shahi, 2018). These nanoparticles have
found a variety of applications, such as MRI and position sensing.
Zinc oxide nanoparticles synthesized by Aspergillus niger have
shown exceptional antibacterial properties (Kalpana et al., 2018).
Similar to bacteria, the use of fungi in biosynthesis also has some
drawbacks regarding safety, and fungi such as Fusarium oxysporum
are harmful because they are pathogenic. Nevertheless, the use of
several nonpathogenic fungi has added benefits to green synthesis.

2.2.2 Bacteria
Bacteria are abundantly available in the environment, and they

can adapt to different environmental conditions, which helps them
in the production of reduced metal ions. The production ability of
nanoparticles using bacteria can be increased effectively with
changes in the environmental conditions of bacterial cultures,
such as pH, oxygen concentration, and temperature (Bahrulolum
et al., 2021). Changes in bacterial culture conditions result in the
formation of nanoparticles of different sizes. Bacteria are known for
their ability to produce many unique nanostructures, such as
nanomaterials and magnetic and metal oxide nanosystems. In
particular, magnetotactic bacteria are adapted to build
magnetosomes, which are nanocrystals of iron oxide and iron
sulfide that are suitable for the production of magnetic radicals
(Yan et al., 2017). These are applicable in molecular imaging,
biosensors, and cancer therapy. Multiple bacteria have promising
potential in metal ion reduction. The nanoparticles synthesized
using bacteria show better stability and less agglomeration. The
proteins obtained from bacteria act as capping agents and improve
stability. Extremophilic bacteria can survive under extreme
conditions and produce high-end nanoparticles (Atalah et al., 2022).

Many bacteria are known for the synthesis of silver nanoparticles
with varying shapes and sizes, such as Lactobacillus casei, Bacillus
cereus, Arthrobacter gangotriensis, Pseudomonas proteolytic, and

Frontiers in Bioengineering and Biotechnology frontiersin.org04

Kulkarni et al. 10.3389/fbioe.2023.1159193

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1159193


many others (Thakkar et al., 2010). Similarly, several bacterial species
known for the bioreduction of gold nanoparticles, such as
Pseudomonas aeruginosa and Rhodopseudomonas capsulate, are
broadly used (Singh and Kundu, 2014). Actinomycetes are a
heterogeneous group of Gram-positive bacteria that have gained
significant recognition due to their commercial necessity and
ability for better intracellular production than any other
biosynthesis contender. Streptomyces, Rhodococcus, and Nocardia

have been identified for the synthesis of gold nanoparticles (El-Batal
and Al Tamie, 2015). Cyanobacteria are the most abundantly present
photosynthetic bacteria, and they primarily help stabilize
nanoparticles. The cyanobacterium Oscillatoria limnetica has been
successfully used in the synthesis of silver nanoparticles and further
stabilization (Hamouda et al., 2019). There are certain limitations in
the bacterial synthesis of nanosystems in purification and controlling
the shape and size of produced monodispersed particles.

TABLE 1 Sources for biogenic synthesis of nanoparticles.

Sources Nanoparticle type Application Intracellular/Extracellular synthesis References

Bacteria

Escherichia coli Ag Antimicrobial agent Extracellular Saeed et al. (2020)

Cupriavidus sp. Ag Antibacterial activity Extracellular Markus et al. (2016)

Lactobacillus acidophillus Ag Gene toxicity Extracellular Namasivayam et al. (2010)

Lactobacillus kimchicus Au Antioxidant Intracellular Markus et al. (2016)

Paracoccus haeundaensis Au Antioxidant Extracellular Patil et al. (2019b)

Pseudomonas stutzeri Ag Antimicrobial agent Intracellular Klaus et al. (1999)

Staphylococcus aureus ZnO Antibacterial Intracellular Rauf et al. (2017)

Desulfovibrio vulgaris Platinum Catalysts Extracellular Martins et al. (2017)

Bacillus subtilis Fe3O4 Antimicrobial agent Extracellular Sundaram et al. (2012)

Desulfovibrio vulgaris Palladium Catalysts Extracellular Martins et al. (2017)

Fungi

Cladosporium cladosporioides Ag Antioxidant Extracellular Zhang et al. (2020)

Cladosporium cladosporioides Ag Antimicrobial agent Extracellular Zhang et al. (2020)

Aspergillus niger Ag Antifungal agent Extracellular NevcihanGürsoy (2020)

Cladosporium cladosporioides Au Antioxidant Extracellular Bhargava et al. (2016)

Cladosporium oxysporum Au Catalysts Extracellular Bhargava et al. (2016)

Fusarium oxysporum Cu Antibacterial Extracellular Ghosh et al. (2021)

Fusarium oxysporum Pt Nanomedicine Extracellular Chatterjee et al. (2020)

Aspergillus niger Cu Antidiabetic Extracellular Zhang et al. (2019)

Penicillium chrysogenum Pt Cytotoxicity Extracellular NevcihanGürsoy (2020)

Yeasts

Candida guilliermondii Au Antimicrobial agent Extracellular Mishra et al. (2011)

Candida guilliermondii Au Antibacterial Intracellular Agnihotri et al. (2009)

Saccharomyces cerevisiae ZnS Antibacterial Intracellular Sandana Mala and Rose (2014)

Candida albicans CdS Bactericidal Intracellular Patil et al. (2019b)

Baker’s yeast Fe2O3 Detection of Glucose Extracellular Mishra et al. (2011)

Algae

Tetraselmis kochinensis Au Antiviral — Senapati et al. (2012)

Spirulina platensis Ag Antiviral Intracellular Muthusamy et al. (2017)

Spirulina platensis Ag Antiviral Extracellular Muthusamy et al. (2017)

Chlorella Vulgaris Pd Adsorbent Extracellular Arsiya et al. (2017)

Chaetomorpha linum Ag Anticancer — Acharya et al. (2021)

Plants

Azadirachta indica Ag Cytotoxicity — Potara et al. (2015)

Artemisia annua Ag Antibacterial — Khani et al. (2018)

Brassica oleracea Au Antimicrobial — Kumari et al. (2020)

Tribulus terrestris Au Antiulcer agent — Gopinath et al. (2019)

Cassia occidentalis Cu Hemolytic activity — Gondwal and Joshi nee Pant (2018)
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2.2.3 Yeast
Yeasts are single-celled and eukaryotic types of fungi. Yeasts

have also shown the conversion of toxic metal ions into nontoxic
complex polymer compounds; these nanoparticles are present in the
vicinity of yeasts, and they are referred to as “quantum
semiconductor crystals” (Dameron et al., 1989). Yeast shows
abundant secretion of extracellular enzymes responsible for the
reduction of metal ions. The growth of multiple species of yeast
is rapid, so it is easy to collect and preserve in the laboratory. The
yield of nanoparticles obtained using yeast is large compared to
bacteria, which is one of the prime advantages of using yeast as a
source of biogenic nanoparticle synthesis (Boroumand Moghaddam
et al., 2015). Several studies have demonstrated the synthesis of silver
nanoparticles from Pichia capsulata, Candida utilis (Waghmare
et al., 2015), Rhodotorula glutinis (Cunha et al., 2018), and a
silver-tolerant strain of the yeast Saccharomyces cerevisiae.
Hansenula anomala can also be used as a catalyst in biofuels
(Kalathil et al., 2013).

2.2.4 Algae
Algae has an advantage in the synthesis of nanoparticles due to

its significant potential for metal accumulation and metal reduction.
The presence of bioactive compounds such as proteins in algae
extract stabilizes the metallic nanoparticle, and they also act as a
reductant. The live as well as dead biomass of algae is useful in the
biogenic synthesis of nanoparticles. (Fawcett et al., 2017; Mukherjee
et al., 2021). Algae has a rapid growth rate and high carbon dioxide
sequestration, which makes it the candidate of choice for
nanoparticle synthesis. Minimum energy inputs are required
when algae are used for the fabrication of nanoparticles. One of
the prime advantages of algae as a biogenic material for the synthesis
of metallic nanoparticles is the generation of nontoxic byproducts.

Multiple enzymes and pigments obtained from algae play important
roles in bioreduction (Khan et al., 2022a).

Some brown algae secrete a polysaccharide called fucoidans,
which is useful for synthesizing gold nanoparticles and provides an
alternative to chemical methods. The use of Sargassummuticumwas
reported to decrease angiogenesis in HepG2 cells (Sanaeimehr et al.,
2018). Various strains of algae, such as Acanthophora spicifera,
Laminaria japonica, Tetraselmis kochinensis, and Turbinaria
conoides, have potential applications for synthesizing gold
nanoparticles (Senapati et al., 2012). Biosynthesis of
nanocomposites from Chlorella vulgaris has shown bactericidal
activity against multidrug-resistant Staphylococcus aureus
(Kahzad and Salehzadeh, 2020). Algae are also an important
green approach toward the synthesis of nanoparticles.

2.2.5 Other sources
Microorganisms from marine sources are known for their

tolerance to high salt concentrations and very extreme
atmospheric pressure. Marine microorganisms reduce metallic
ions and transform them into sulfides, carbonates, phosphates, or
phytochelatins (Baker et al., 2013). Many metal nanoparticles have
been produced using marine algae and marine plants. The synthesis
of silver nanoparticles from brown seaweed Padina tetrastromatica
showed promising antibacterial properties (Rajeshkumar et al.,
2012). Similarly, regarding gold nanoparticles, brown seaweed
(Fucus vesiculosus) showed gold nanoparticles of different sizes
and morphologies (Mata et al., 2009). In addition to gold and
silver nanoparticles, lead sulfide nanoparticles were also reported
from a marine yeast, Rhodosporidium diobovatum (Seshadri et al.,
2011). Several nanoparticles synthesized from marine sources have
shown a better and more promising advantage toward multidrug-
resistant bacterial infections, which are a major global health risk.

FIGURE 2
The synthesis of nanoparticles includes the extraction of various primary and secondary metabolites and subsequent reduction processes using
appropriate ion concentrations. Depending on the process parameters used, the produced particles may have different shapes. Adapted from Ref
(AliAhmed et al., 2020). CC BY license.
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The variety and biodiversity in life forms in the marine environment
along with the terrestrial environment guide researchers to utilize
more sources in search of applications. Table 1 illustrates various
sources for the biogenic synthesis of nanoparticles. The natural
sources used for the synthesis of nanoparticles have advantages and
disadvantages. The availability, efficiency, scale-up possibilities and
safety are the parameters considered when selecting the biogenic
source.

3 Synthesis of biogenic nanoparticles

Two distinct fundamental synthesis principles (i.e., top-down
and bottom-up) are used to fabricate nanomaterials with the
required sizes, shapes, and functions (Biswas et al., 2012).
Bottom-up methodologies have received significant interest in
synthesizing biogenic nanoparticles. A variety of biological
components, such as bacteria, algae, fungi, and plants, are useful
for the synthesis of metallic nanoparticles (Begum et al., 2022).

The solution of metal ions and a reducing biological agent are
the two essential components needed for biogenic nanoparticles to
be synthesized in a green manner. It is rarely necessary to introduce
stabilizing and capping agents from outside because reducing agents
or other components are by default available in the cells (Pal et al.,
2019). Various methods of producing NPs utilizing plants and

microorganisms have been reported in a variety of studies
(Figure 2). Although there are many different green synthesis
techniques for NPs, most of them depend on reacting organisms
and biological reducing agents for the synthesis of metallic
nanoparticles.

3.1 Plant-mediated biogenic synthesis of
nanoparticles

In addition to its reduction ability, the plant extract acts as a
capping and stabilizing agent. Plant-based NPs are suitable for
photothermal therapy, biosensing, antioxidants, antimicrobials,
and drug administration because they are biocompatible and
exhibit distinctive chemical and optical properties (Begum et al.,
2022). The advantages of plant materials in green synthesis are that
they are nontoxic, inexpensive, readily available, and safe.

Bioreduction and biosorption are two important mechanisms
for the synthesis of biogenic nanoparticles (Durán et al., 2011).
Bioreduction is a method of chemically reducing metal ions to more
stable forms via biological processes. This produces ineffective
metallic nanoparticles as a result. It could be recovered from a
compromised sample safely. In biosorption, the metal ions adhere to
the biological organism, either from an aqueous sample or a soil
sample. Some plants produce metal ions that bind to the cell wall and

FIGURE 3
SEM images of biogenic ZnO NPs in the presence of aqueous extracts of leaves (A) and fruits (B). The comparative DPPH scavenging antioxidant
activity of control and ZnONPs from (C) leaf and (D) fruit extracts ofC. colocynthis. Themean ± SD is expressed as */#p < 0.05, **p < 0.01. Modified from
(Kiani et al., 2023) CC BY license.
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interact with a mixture of fungi, bacteria, and artificial peptides,
creating a long-lasting nanoparticle structure (NadafJadhav et al.,
2022; Sidhu et al., 2022). Khan et al. (2014) demonstrated the
fabrication of palladium nanoparticles from P. glutionsa. In this
process of synthesis, the reaction mixture was created by mixing
palladium (II) chloride (PdCl2) solution with P. glutionsa plant
extracts after stirring with a magnetic stirrer, and the pale-yellow
color of the solution turned dark brown. There was no additional
change observed even after stirring the mixture at 90°C for 2 h. The
mixture was allowed to cool for 2 h before centrifugation
(9,000 rpm). A black powder was formed after rinsing with
distilled water, which was then dried overnight at 80 °C in the
oven to obtain nanoparticles. The nanoparticles obtained from
experimentation showed a particle size of 20–25 nm and were
characterized by high-resolution transmission electron
microscopy (TEM). FTIR analysis demonstrated the presence of
various phytomolecules that act as capping agents, imparting
stability to nanoparticles (Khan et al., 2014).

Kiani et al., (2023) synthesized ZnO NPs using leaf and fruit
extracts of Citrullus colocynthis. These biogenic NPs resulted in a
spherical surface morphology with a size range between 64 and
82 nm, as confirmed by SEM analysis (Figure 3). The 2,2-
diphenylpicrylhydrazyl (DPPH) scavenging antioxidant study
confirmed the highest activity in the aqueous extract compared
to the n-hexane, ethyl acetate, and methanol extracts. In another
study, Barzinjy et al. demonstrated the synthesis of zinc oxide
nanoparticles from Punica granatum (pomegranate) juice extract
(Alnehia et al. 2022; Barzinjy et al. 2020). The important chemical
constituent present in pomegranate is polyphenol. A seed
pulverization technique was used to prepare the pomegranate
juice, which was further mixed with zinc nitrate (Zn (NO3)2) at
80 °C under controlled pH conditions with the gradual addition of

sodium hydroxide (NaOH). The interaction between plant
phytochemicals and metal salts results in a change in the color of
the reaction mixture, which is an indication of nanostructure
synthesis brought on by SPR’s appearance indicators compared
to UV‒vis spectroscopy. In this study, the pink-colored solution
changed to white, which shows the formation of zinc oxide (ZnO)
NPs. The powder was obtained after centrifugation and cleaned
using deionized water and methanol. The nanoparticles obtained by
Barzinjy and coworkers show a particle size of 55 nm in SEM
analysis. The synthesized nanoparticles were further subjected to
the fabrication of a thin film. The fabricated film was found to be
efficient with better crystallinity (Alnehia et al. 2022; Barzinjy et al.
2020).

3.2 Microorganism-mediated biogenic
synthesis of nanoparticles

Microorganisms are important biofactories for the biogenic
synthesis of metallic nanoparticles. This area has received
significant attention because of its necessity and technological
significance (Płaza et al., 2014). A wide variety of
microorganisms react with metal ions to produce metallic
nanoparticles in multiple ways. There are two different pathways
for the synthesis of biogenic nanoparticles: intracellular and
extracellular mechanisms (Figure 4). To counter various
challenges, bacteria are developing a variety of defense
mechanisms, such as internal sequestration, pumping efflux and
modifying the metal ion concentration and extracellular
precipitation (Naik and Dubey, 2013). These bacterial methods
can be used in the environmentally friendly synthesis of
nanoparticles.

FIGURE 4
Mechanism of extracellular and intracellular biogenic synthesis of metal nanoparticles Adapted from Ref (Bahrulolum et al., 2021). CC BY license.
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Extracellular biosynthesis involves trapping metal ions on the
cell wall and reduction in the presence of enzymes. Intracellular
biosynthesis involves the transfer of metal ions into the cell
cytoplasm and subsequent reduction.

Bacterial and fungal cells, as well as sugar molecules, play a vital
role in the intracellular mechanism of metal bioreduction. Metal
ions are primarily taken up by intracellular enzymes through
interactions with positively charged groups, which leads to a
decrease inside the cell (Ovais et al., 2018). The biomass is
cultured with microorganisms under optimal growth conditions
and then incubated with a metal ion solution to facilitate
intracellular production. The color change indicates the synthesis
of NPs. Furthermore, using ultrasonication, centrifugation, and
washing, NPs are collected (AliAhmed et al., 2020). It is well
known that microbial enzymes found extracellularly play an
important role as reducing agents in the synthesis of metallic
nanoparticles (Ovais et al., 2018). According to studies, cofactors
such as nicotinamide adenine dinucleotide (NADH) and the
reduced form nicotinamide adenine dinucleotide phosphate
(NADPH)-driven enzymes have potential as reducing agents
through the transfer of electrons from NADH (Guedes da Silva
LeonorOlavarria Gamez et al., 2020).

The centrifuged culture filtrate is combined with an aqueous
metallic salt solution for extracellular production (Luangpipat et al.,
2011). The change in color of the combined solution is used to
monitor NP synthesis. For instance, the color ranges from bright
yellow to dark brown, indicating the production of silver
nanoparticles (Jalab et al., 2021). Streptomyces griseoruber
obtained from soil was cultured, and the supernatant was used to
synthesize gold (Au) NPs extracellularly.

3.2.1 Fungi-mediated biogenic synthesis of
nanoparticles

Fungi are one of the prime biogenic sources for the synthesis of
silver nanoparticles due to significant protein formation, high yield,
and less toxic residues (Roy et al., 2019). Fungi play a key role in the
reduction and stabilization of nanoparticles. Fungi are useful for the
synthesis of extracellular and intracellular biogenic nanoparticles
(Siddiqi and Husen, 2016). For intracellular synthesis, mycelial
culture is incorporated with metal precursors and absorbed in
the biomass. After synthesis, the nanoparticles are extracted by
centrifugation, filtration, or chemical processing of biomass. In
extracellular synthesis, the metal precursor is incorporated into
the aqueous filtrate, which possesses fungal biomolecules in
extracellular synthesis (Guilger-Casagrande and de Lima, 2019).

Dias et al. demonstrated the synthesis of zinc oxide
nanoparticles from Cordyceps militaris (mushroom fungus). The
obtained nanoparticles were characterized by FTIR, SEM, and XRD
analysis along with polydispersity index, and the results were
satisfactory. The particle size analysis demonstrated that the
particle size was 1.83 nm with a PDI of 0.29, which shows the
synthesis of quality nanoparticles. The zeta potential of −6.42 mV is
an indication of the moderate stability of the nanoparticles.
Biological evaluation revealed antidiabetic, antibacterial, and
antioxidant potential (DiasAyyanar et al., 2022). Ameen et al.,
(2022) reported the synthesis of gold nanoparticles from
Alternaria chlamydospora (marine fungus). The characterization
supported the optimized synthesis of nanoparticles. This was the

first study of gold nanoparticle synthesis performed using Alternaria
chlamydospora at the international level. Spherical nanoparticles
were obtained and confirmed with SEM. The synthesized
nanoparticles exhibited antibacterial, anticancer, and antioxidant
activity (Ameen et al., 2022). Bagur and coworkers synthesized silver
nanoparticles from the endophytic extract of Tinospora cordifolia.
The characterization and evaluation showed the successful synthesis
of nanoparticles. The SEM and TEM analysis demonstrated a
particle size of 25–35 nm with a spherical shape. DLS was
performed to determine the hydrodynamic diameter, which was
65.2 nm. The zeta potential of −32.1 mV demonstrates the high
stability of the nanoparticles due to abundant capping. The
synthesized nanoparticles demonstrated antioxidant, antibacterial,
and anti-inflammatory potential. The synthesized nanoparticles also
showed antiproliferative potential against breast and cervical cancer
cells (Bagur et al., 2022). Fungi are known to produce a variety of
enzymes and metabolites that can act as reducing agents and
stabilize nanoparticles. In addition, fungal-derived nanoparticles
exhibit unique properties, such as increased stability, enhanced
biocompatibility, biological activity, and low toxicity of the
residues (Guilger-Casagrande and de Lima, 2019).

3.2.2 Bacteria-mediated biogenic synthesis of
nanoparticles

Bacteria are a promising choice for biogenic nanoparticles.
Additionally, bacteria are capable of surviving in a variety of
adverse circumstances, including extremes of alkalinity or acidity,
high salt concentrations, and high- or low-temperature peaks.
Because such compounds can be extracted from cells through cell
filtration, which is thought to be advantageous, bacteria’s capacity to
precipitate those chemicals out of cells makes it easier for them to
produce nanoparticles biologically. The production of silver
nanoparticles (AgNPs) by five different Bacillus strains was
investigated, and only Bacillus subtilis has shown a stronger
capacity for the production of these various compounds among
these distinct Bacillus species AgNP (Alsamhary, 2020). The cell wall
is used in intracellular synthesis to transport metal ions, where the
positively charged ions interact with the negatively charged cell wall.
These ions are converted to metal NPs in the cells by enzymes. Using
the bacterium Lactobacillus kimchicus to synthesize gold
nanoparticles, the process begins with the nucleation of
chloroauric acid (HAuCl) ions, which results in the formation of
nanoclusters via electrostatic interactions. Nanoclusters are then
progressively transported across the bacterial cell wall. Metal ion
accumulation on the surface of the cell and the involvement of
reducing ions via enzymes are two aspects of the synthesis of
nanoparticles extracellularly (Mughal et al., 2021).

The various isolates under examination were cultivated
aerobically. On an orbital shaker, the microbial cultures were
incubated at 37 °C with constant 200 rpm agitation. After 24 h of
growth, the microbial biomass was collected, and centrifugation was
performed at 10,000 rpm for 10 min. For the preparation of AgNPs,
two solutions were prepared first, and some mL of supernatant was
combined with 1 mL of silver nitrate (AgNO3) solution (1 mM) for
the synthesis of AgNPs. The second reaction combination, which
served as the control test, was made without AgNO3. For 24 h, the
proposed solutions were incubated at 30 °C. To prevent any
photochemical reversal throughout the experiment, all solutions
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were kept in the dark. The solutions then changed color from yellow
to brown. The silver nanoparticles were collected for
characterization after being purified by centrifugation twice for
5 min at 10,000 rpm. By measuring the optical density of silver
nanoparticles produced by various cell supernatants, the most
effective Bacillus strains for microbiologically synthesizing silver
were identified. Within 18 h of incubation, the aqueous silver ions
(Ag+) were converted to AgNPs when introduced to the cell-free
supernatant of B. subtilis. The control showed no color change over
the incubation time, whereas the yellow color turned brown
(Kabeerdass et al., 2021). The bacterial synthesis of nanoparticles
has limitations. The purification of nanoparticles and difficulty in
controlling geometry as a result of a partial understanding of
mechanisms are the key problems (Mughal et al., 2021).

3.2.3 Virus-mediated biogenic synthesis of
nanoparticles

Interest in the synthesis of nanomaterials by utilizing a virus as
the aid template is growing. Due to their nanosize (20–500 nm),
viruses are considered self-sufficient nanoparticles. Plant virology is
the most explored subject to study the possible uses of plant viruses
in nanotechnology. Plant viruses show no harmful effects on
humans; therefore, they are most exploited for the fabrication of
nanoparticles. The virus-mediated synthesis of nanocrystals has
been studied by former researchers. The capsid protein present
on the outer side of the virus plays a vital role in the biogenic
synthesis of nanoparticles. The capsid protein provides a binding
surface for metal ions with high reactivity (PanditRoy et al., 2022).
Animal viruses also show a capacity for nanoparticle synthesis, but

they are not studied very much due to safety concerns. The specific
properties of viruses, such as their ability to produce nanoparticles in
greater quantities, their biosimilarity, and easy gene manipulation
for required properties, make them favorable agents for green
chemistry-mediated synthesis (Mandhata et al., 2022).
Bacteriophages are viruses that parasitize and reproduce only
inside bacterial cells; because of their easy handling in
laboratories, they are also used to study molecular biology.

Cowpea mosaic viruses (CPMV) are plant viruses with
icosahedral symmetry (30 nm diameter). Due to their
noninfectious nature toward mammals, they are used for
nanoparticle synthesis. The absence of outer envelopes on the
structure makes them perfect for nanomaterial production
because the functionalities present on the capsid proteins are
prone to direct contact with the coating material. The capsid of
CPMV contains approximately 60 copies of both small and large
proteins, and two ss-RNAs are also present in the same cavity
(Sainsbury et al., 2010).

CPMVs are compatible with organic solvents and feasible for
many hours at approximately 60 °C (Steinmetz and Evans, 2007). In
situ vaccination of these viruses has shown a potent response against
tumors in mouse models of glioma melanoma, ovarian cancer, and
colon cancer. CPMV-Gold nanoparticles have shown potential
applications in the immunotherapy of ovarian cancer (Kerstetter-
Fogle et al., 2019). They have shown good efficacy against ovarian
tumors (Gautam et al., 2021). Tobacco mosaic virus (TMV) has been
used as a model for understanding the characteristics of viruses for
over a century. It contains ss-RNA, which is present inside an
assembly of capsid proteins. This assembly is tubular and is

FIGURE 5
Experimental diagram of the synthesis of Ag nanoparticles from the yeast strain. Adapted from (Liu et al. 2021) CC BY license. Various steps include
isolation of two yeast strains, HX-YS and LPP-12Y, and analysis of their activity on the human lung cancer cell lines A549 and H1975, as well as the normal
human lung epithelial cell line Beas 2B.
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produced by the joining of 2,130 capsid proteins in a right-handed
helical structure. Nanoparticles produced via TMV-mediated
synthesis carrying cisplatin (an antineoplastic agent) have shown
promise in the treatment of ovarian cancer (Franke et al., 2018).

M13 phage is a filament-like bacterial virus consisting of circular
ss-DNA (Yacoby et al., 2006). Bacteriophages are viruses that have
infected bacteria, due to which they can be easily multiplied in
laboratories using E. coli. In the synthesis of barium titanate
nanoparticles, M13 phages were the only support used (Jeong
et al., 2013). The M13-Magnetic nanoparticles exhibit peptide
targeting in prostate cancer, which is of very importance in
Magnetic Resonance Imaging (MRI). Bacteriophage nanoparticles
combined with chloramphenicol have shown promising action
against Staphylococcus aureus (Yacoby et al., 2006).

3.2.4 Yeast-mediated biogenic synthesis of
nanoparticles

Yeast has additional advantages over bacteria due to the high yield
of NPs as well as the ease of manipulating yeasts in available
laboratory settings, the synthesis of multiple enzymes, and the
quick development using simple nutrients (Süntar et al., 2021).
The synthesis has been the subject of some investigations used to
create metallic nanoparticles using yeast. The synthesis of silver
nanoparticles from yeast extract is reported in this study.
Saccharomyces cerevisiae powder was dissolved in deionized water
to prepare a solution (Roy et al., 2015). The silver nitrate solution was
also prepared in deionized water. The yeast extract solution
(Saccharomyces cerevisiae) was used to decrease the silver ions in
the AgNO3 solution to create silver nanoparticles. With exposure to
the fungal extracts, the yeast extract solution was added dropwise to
the AgNO3 solution, which resulted in the formation of silver
nanoparticles, which were visually observed by the change in color
(Liu et al., 2021). Yeast strains of HX-YS and LPP-12Ywere also found
to be useful in the synthesis of biogenic nanoparticles. The strains HX-
YS and LPP-12Y were isolated from Crataeguspinnatifida and Vitis
vinifera. The addition of silver nitrate solution to the yeast extract
resulted in the synthesis of biogenic nanoparticles by bioreduction.
Centrifugation was performed to obtain the nanoparticles from
biomass (Figure 5) (Liu et al., 2021).

Salem (2022) demonstrated the use of baker’s yeast for the
synthesis of selenium nanoparticles. Saccharomyces cerevisiae
(baker’s yeast) showed promising results in this green synthesis,
and the resulting nanoparticles had potential antimicrobial activity
against pathogens.

3.2.5 Algae-mediated biogenic synthesis of
nanoparticles

The development of nature-friendly techniques has been
sparked using several species of algae for synthesizing metallic
NPs (Lateef et al., 2016a). The synthesis of biogenic nanoparticles
utilizing algae as a biological template or reducing agent is known as
algae-mediated synthesis. The process can be carried out using
various algal species, including green algae, diatoms, and
cyanobacteria. The synthesis of biogenic nanoparticles from algae
typically involves the addition of a metal salt solution to an aqueous
suspension of algae, followed by incubation under specific
conditions (Mishra et al., 2020; Sinha et al., 2015). Algae-
mediated silver NPs are gaining much attention because of their

powerful antibacterial properties. As a result, synthesis occurs when
microalgae are present, and the metabolites that the algal culture
excretes lead to a decrease in silver ions (Merin et al., 2010). Algae
usage is beneficial for the synthesis of nanoparticles because they
have a negative charge on the surface of the cell, which leads to rapid
nucleation and crystal formation, and they are extremely affordable
for large-scale synthesis (Jena et al., 2014). It was discovered that the
synthesis of calcium carbonate (CaCO3) took place due to the
charged surface of microalgae cells. The positively charged Ca2+

ions aggregated on the surface of negatively charged algae cells and
resulted in the start of the nucleation process. The level of Ca2+ ions
also had a significant impact on the dimensions of the microspheres,
and the CaCO3 crystal size increased with concentration. Keeping
the number of algal cells stable and promoting heterogeneous
nucleation. The obtained microspheres were found to be useful
for the synthesis of Ag NPs (Sahoo et al., 2014).

According to reported research, ZnO NP synthesis was carried
out by combining dried powder of S. muticum algae with distilled
water and heating it until it was well mixed (Uzair et al. 2020). By
adding zinc acetate salt solution and then stirring the mixture for
hours, NPs were produced. The synthesized ZnO NPs displayed a
hexagonal shape, had bioactive functional groups such as sulfate,
amine, hydroxyl, and carbonyl groups, and ranged in size from 35 to
57 nm (Chaudhary et al. 2020). Bharathi et al. (2022) demonstrated
the applications of brown seaweed algae in the synthesis of silicon
dioxide (SiO2)–ZnO nanocomposites. Dictyota bartayresiana
(brown algae) extract was used in this green synthesis. The
resulting nanoparticles demonstrated potential anticancer,
antibacterial and antioxidant activity.

The green nanoparticles synthesized from algae also showed
antiviral potential. The study reported the biogenic synthesis of
silver and gold nanoparticles. Blue‒green algae, namely, Oscillatoria
sp. and Spirulina platensis were used for synthesizing these
nanoparticles (Mandhata et al., 2022). The proteins and
polysaccharides in algae exhibit bioreduction, stabilization, and
capping in the synthesis of nanoparticles. These biogenic
nanoparticles were found to be useful against herpes simplex
virus (El-Sheekh et al., 2022).

3.3 Enzyme- and vitamin-mediated biogenic
synthesis of nanoparticles

Biomolecules such as proteins, enzymes, and
polysaccharides are frequently used in the biological synthesis
of nanoparticles. Enzymes have very distinctive structures, and
they can catalyze reactions without interfering. Enzymes show
reducing and stabilizing effects on nanoparticle synthesis. The
biogenic nanoparticles obtained using enzymes show high
stability and less agglomeration (Ovais et al., 2018). Gold
nanoparticles synthesized by using keratinase enzyme
produced by bacteria inhibit E. coli and S. aureus. Similarly,
the synthesis of AgNPs with antifungal activity was developed
by sulfite reductase enzymes (Gholami-Shabani et al., 2015).
Sensor applications of silver nanoparticles were also detected,
and they were synthesized by redox enzymes. These
nanoparticles worked as the electron-transmitting agent
between electrodes and the biocatalyst.
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Vitamin B2 showed capping and reducing properties in
nanoparticle production. A combination of chitosan and vitamin
C (ascorbic acid) can be utilized for the fabrication of
nanostructures, and the ability of chitosan to form chelates has
encouraged the mass production of ‘chitosan-metal complexed
nanoparticles’. The H+ ions in plants are accompanied by NAD,
and they show promising reducing activity, which can be favorable
in the synthesis of gold nanoparticles (NadafJadhav et al., 2022). The
stability of biogenic nanoparticles is affected by factors such as pH,
temperature, and ionic strength, which can cause the capping agents
to detach from the nanoparticle surface and lead to aggregation
(Patil and Chandrasekaran, 2020).

3.4 Gum, resin, and molasses-mediated
biogenic synthesis of nanoparticles

Plant waste materials are being researched for their potent use in
nanotechnology, which can be useful for nontoxic and
biodegradable nanoparticle synthesis (Saratale et al., 2018;
Chhabra et al., 2020). The different byproducts of plant
metabolism can be applied for the synthesis of nanoparticles
such as gums, resins, and biowaste of sugar crystallization
“molasses.” Asafoetida and Acacia can be employed in the green
synthesis of stable silver nanoparticles, which show applications in
the treatment of resistant antimicrobial infections and periodontal
diseases (Devanesan et al. 2020). Asafoetida is an herb derived from
dried latex of the rhizome of ferula foetida. The main composition of
this latex is resin and gum 60% and 25%, respectively. Silver
nanoparticles blended with asafoetida powder result in a
therapeutic complex of nanoparticles and asafoetida, which can
be very useful to stop the growth of both Gram-negative and Gram-
positive bacteria. They also found their effectiveness in the treatment
of periodontal disease (Devanesan et al. 2020). Acacia gum can also
be incorporated in the stabilization of silver nanoparticles, and these
nanostructures have found applications against Candida albicans
(Alqarni et al. 2022). Molasses is a byproduct acquired from the
crystallization stage in the sugar cane refinery. Molasses is the thick,
viscous, and dark brown secondary waste in sugar refineries.
Abundant polyphenol content is liable for antioxidant properties.
These unwanted materials can be used in silver nanoparticle
synthesis. It is a very cost-efficient method for the preparation of
silver nanoparticles. There are abundant sensor applications for
these fabricated bio nanoparticles, mainly to detect the
concentrations of metallic ions in the environment (Vonnie et al.
2022). The biogenic synthesis of nanoparticles is based on the
reaction between biogenic and metallic precursors. Bioreduction
is an important reaction that takes place during synthesis.
Intracellular and extracellular mechanisms depend on the type of
biogenic source for synthesis. The biochemicals acting as capping
agents impart stability to the synthesized nanoparticles.

4 2D biogenic nanoparticles

Biogenic 2D nanomaterials are produced using natural sources that
are readily available and eco-friendly. The synthesis process is less toxic,
less expensive, and less energy-intensive than synthetic methods.

Biogenic 2D nanomaterials are inherently biocompatible, making
them suitable for biomedical applications. Plants can be used to
synthesize a wide range of 2D nanomaterials, including graphene,
graphene oxide, and metal oxide nanoparticles. The process involves
the use of plant extracts as reducing agents and stabilizers, which can be
obtained through simple extraction methods (Ullah and Lim, 2022).
Bacterial microorganisms can be used as an aid to produce 2D
nanomaterials, including graphene oxide, by exploiting their
potential to reduce metal ions. Fungi can also be used to synthesize
nanomaterials by using their extracellular enzymes to reduce metal ions
(Rai et al., 2023). Other materials used for synthesis are rice husk
leftover, tea tree extract, waste food, onion sheathing, dead leaves, etc.

One of the most popular ways to prepare nanomaterials is
through hydrothermal synthesis. It is simply a solution reaction-
based method. Hydrothermal synthesis is a method that involves the
use of high temperature and pressure conditions to promote the
synthesis of 2D nanomaterials. The process involves the use of
natural precursors such as plant extracts, which act as reducing
agents and stabilizers. The synthesis is typically carried out in a high-
pressure reactor, and the reaction conditions are optimized to
promote the growth of the desired 2D nanomaterial. Some
examples of hydrothermally synthesized 2D nanomaterials
include carbon quantum dots (CQDs), ZnO-ZrO2
nanocomposites, and nickel ferrite (NiFe2O4) nanoparticles (Gan
et al., 2020). For instance, the synthesis of chitosan-MoS2 hybrid
nanocomposites involves the dissolution of chitosan in acetic acid
solution and the addition of MoS2 nanosheets followed by
sonication and centrifugation to obtain chitosan-MoS2 hybrid
nanocomposites (Kasinathan et al., 2020).

2D nanomaterials and current developments are influencing
biomedical science through various applications (Marian et al.,
2022). With their capacity to adsorb several drug molecules and
give users more control over release kinetics, 2D nanomaterials are
being investigated for application in drug delivery systems. They are
also helpful for enhancing the mechanical characteristics of
biomedical nanocomposites, even at low concentrations, due to
their extraordinary surface area-to-volume ratio and often high
modulus values (Chimene et al., 2015). For multimodal imaging
of tumors, 2D nanomaterials may potentially be created as
nanoprobes. Chitosan, MoS2, and their hybrid nanoconjugates
show antibacterial activity against Escherichia coli and
Streptococcus species. The inhibition rate of S. aureus was lower
than that of the E. coli species. Similarly, the anticancer activity of the
chitosan-MoS2 nanomaterial was investigated. The green
synthesized chitosan and MoS2 composites were minimally toxic
with high biocompatibility (Fan et al., 2015). The anticancer
property was evaluated against breast cancer cells (MCF-7), and
the evaluation resulted in the finding that the activity was dose-
dependent (Lu et al., 2017). Metal nanoparticles are frequently used
on 2D platforms to attach antibodies and improve signal quality for
electrochemical biomarker detection (Koyappayil et al., 2023).

5 Characterization of biogenic
nanoparticles

Nanoparticles have characteristics that make them valuable in a
wide range of applications. For biomedical applications in particular,

Frontiers in Bioengineering and Biotechnology frontiersin.org12

Kulkarni et al. 10.3389/fbioe.2023.1159193

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1159193


it is essential to characterize them thoroughly to determine whether
they are suitable for the intended use. This is accomplished by
utilizing several techniques and equipment that can provide the
required information (Aljeldah et al., 2023).

Field emission scanning electron microscopy (FESEM) is a
microscope that employs negatively charged electrons opposite of
light. These electrons can scan things in a zig-zag manner. An
emission source frees electrons propelled by a high electric field
gradient (Ebrahimzadeh et al., 2023). Approximately all of the NPs
in the FESEM micrograph should be perfect round spheres, which
seems to be a frequently noticed characteristic of biosynthesized NPs
(Nile et al., 2023).

UV visible microscopy is useful to determine surface plasmon
resonance. The change in color of the reaction mixture from light
yellow to brown was induced by the formation of AgNPs because of
AgO reduction from Ag+ ions. The surface plasmon resonance
absorption band is produced by mutual vibrations of free electrons
of AgNPs concerning the metal lattice in resonance with the
electromagnetic field of light waves, which oscillates (Judefeind
et al., 2009).

Auger electron spectroscopy (AES) provides information about
a nanoparticle by describing Auger electrons in atoms at various
depths and provides elemental maps and depth profiles. Except
when depth profiling necessitates surface scraping, it is often
nondestructive (Singh, 2016). Secondary ion mass spectrometry
(SIMS) is one of the most often used imaging techniques in
desorption/ionization mass spectrometry. The SIMS approach is
fundamentally surface sensitive, with information often coming
from the first few atomic layers, equating to depth information
of only a few nanometers (2–5 nm range) (Schaepe et al., 2020).

Fourier transform infrared spectroscopy (FT-IR) was also used to
confirm the potential role of NP production. It determines the
functional groups on the surface of nanoparticles by detecting
chemical bond excitations. The molecular data obtained give
structural and conformational changes. Wavenumbers showed the
interaction between the capping agent and the NPs (Salem et al., 2022).

Powder XRD is a prominent approach to examining the
physicochemical composition of unknown materials. XRD is a
straightforward method for identifying the size and shape of a
unit cell in any substance. This technique is useful for qualitative,
quantitative, and other forms of analysis. Peak locations reflect
translational symmetry, especially the unit cell’s size and form.
On the other hand, peak intensities offer data on electron density
within the unit cell, i.e., where the atoms are situated (Thakar et al.,
2022). The XRD analysis confirmed the nature of the biologically
generated NPs. The particular spectrum displayed peaks from XRD.
The XRD peak patterns and different diffraction peak values, which
show the reflection planes, demonstrate the nature of the produced
materials (Oves et al., 2023).

Dynamic light scattering (DLS) analysis is an intensity-based
method that places more focus on particles with a large particle size
in mixed solutions. DLS analyses the hydration sphere diameter of
the NP and is a gradual analysis approach that measures thousands
of nanoparticles in the mixed solution (Das et al., 2023). Selected
area electron diffraction (SAED) is a method that may be used with
TEM to discriminate between crystalline and amorphous materials,
and it can be used to validate the findings of XRD analysis
(Mahakham et al., 2016).

The colloidal stability of the NPs is tested using zeta potential
measurements, and it is thought that the results recorded over
30 mV in magnitude show that the nanoparticle sample is mostly
stable in terms of colloidal stability (Alzubaidi et al., 2023). Using
zeta Sizer, a high-performance molecular size analyzer, one may
determine the stability and charge of nanoparticles at a pH of 7 by
measuring their zeta potential (Pete et al., 2023).

The polydispersity index (PDI) is used to obtain a measure of the
width of a molecular weight distribution. The size distribution of a
particle sample directly corresponds to the PDI values. Monodisperse
samples have PDI values below 0.05, while samples with a wide range of
particle sizes are more likely to have PDI values above 0.7. The high
negative charge of the biogenic NPs indicated that the surface of these
nanoparticles was negatively charged (Aljeldah et al., 2023). Using
Brookhaven Zeta Plus and dynamic light scattering (DLS)
measurements, the hydrodynamic size of the phytofabricated NPs
and PDI were assessed using nanoparticle-tracking analysis. The zeta
potential was used to calculate the net surface charge (Ebrahimzadeh
et al., 2023).

When nanoparticles are taken into account for drug delivery
purposes, they are first checked for drug loading and entrapment
efficiency. Drug loading is the procedure in which the drug is
contained in the polymer matrix or the core of the nanoparticle.
The amount of the drug that is incorporated and by the means it is
included in the nanoparticle governs the performance of the drug
release. Drug release is the opposite process of drug loading; in drug
release, the entrapped drug becomes available for absorption after
being released from the core. Therefore, the drug-carrier
relationship can be influential in predicting the in vivo
performance of the drug.

The drug is loaded into the nanoparticle core by different drug
loading methods, such as hydrogen bonding, ionic bonding,
covalent bonding, dipole interaction, and physical methods, such
as encapsulation, or it can be adsorbed on the surface of the
nanoparticle. There are two ways to entrap a drug: entrapment
during the synthesis of nanoparticles and entrapment after
synthesis. The interaction between the drug and carrier system is
taken into consideration before drug loading, as it increases the
entrapment efficiency and drug loading, but a decrease in the release
rate can be seen (Bhattarai et al., 2006).

The entrapment efficiency of the nanoparticles is a variable used
to estimate the percent drug loading. Entrapment efficiency is the
method used to evaluate the total percentage of the drug that has
been loaded into the nanoparticle. The higher the entrapment
efficiency is, the greater the drug loading capacity (Judefeind
et al., 2009). Table 2 illustrates the various general
characterization techniques for nanoparticles.

Drug loading %( ) � Mass of drug in Nanoparticles

Mass ofNanoparticles
× 100

Entrapment efficiency %( ) � Experimental drug loading

Nominal Drug loading
× 100

6 Biomedical applications

Nanotechnology involves the understanding and control of
matter at the nanoscale. Their smaller size and unique qualities
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TABLE 2 General characterization techniques for biogenic nanoparticles.

Sr.
No.

Techniques Principle Purpose

1 UV‒Vis Spectroscopy (UV‒Vis) Measurement of distinct spectra produced after the absorbance of the
ultraviolet and visible light

Identification of compound and
concentration determination

2 X-ray Diffraction (XRD) Irradiation of X-rays on a sample and then measuring the scattering
angle and intensity of X-ray

Crystal structure determination, Particle size
determination

3 Differential Scanning Calorimetry (DSC) Measure the change in physical properties of a substance, with change
in temperature along with time

Measurement of change in glass transition
temperature and melting point

4 Fourier Transform Infrared Spectroscopy
(FTIR)

Covalent bonds of the sample absorb infrared radiation and the
transmitted radiation is measured

Determination of functional groups and
chemical composition

5 Transmission and Scanning Electron
Microscopy (TEM and SEM)

Transmission and scanning using electrons and detection by detectors To determine surface morphology of
nanoparticles

6 Field Emission Scanning Electron
Microscopy (FESEM)

Particles emitted by the field emission gun scan the sample object
according to a zig-zag pattern

Determination of microstructures

7 Auger Electron Spectroscopy (AES) Analyzing the element constituting the sample surface Elemental and chemical characterization

8 Secondary IonMass Spectrometry (SIMS) The primary ion beam spits the secondary ion from the sample surface
and examination of secondary ions

Analyze the composition of surface

9 X-ray Photoelectron Spectroscopy (XPS) Sample electrons absorb specific energy photons and are emitted and
then kinetic energy analysis is done to study electronic states

Elemental as well as chemical composition

10 Dynamic Light Scattering (DLS) Evaluating the light interference based on the Brownian motion of
nanoparticles

Evaluate nanoparticle size

11 Zeta potential Investigation of surface charge by simple attraction and repulsion study
between counter and coions

Determination of surface charge

FIGURE 6
Antimicrobial mechanism of silver nanoparticles. Adapted from (Jain et al., 2021) CC BY license.
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make them more useful in multidisciplinary applications in
optoelectronics and photovoltaic, biomedical, and thermoelectric
spinning (Roco et al., 2011). Biogenic nanomaterials have multiple
advantages due to their friendly approach along with diverse
biomedical applications, such as antimicrobial (Benko et al.,
2023), biosensor, anti-filarial, antioxidant, and antileishmanial
applications.

6.1 Antibacterial applications

High-yield gold nanoparticles developed from the extraction of
banana peels can be used in biomedical applications and against
some harmful bacteria, such as E. coli (SI et al., 2020). Researchers
have demonstrated the antibacterial applications of biogenic iron
nanoparticles (BINPs) obtained from spinach leaf extract and
banana peel extract against E. coli and B. subtilis. The
bactericidal activity of banana peel extract-based iron
nanoparticles (FeNPs) and spinach leaf extract-based SLE-FeNPs
did not differ noticeably. Additionally, it has been shown that these
NPs penetrate microbial membranes and result in electrolyte
leakage, which eventually results in cell death. Nanomaterials can
increase the permeability of bacterial cell membranes, prevent
bacterial protein denaturation and DNA replication and release
silver ions (see Figure 6 for various mechanisms) (Tyagi et al., 2021).

Antimicrobial properties are beneficial to silver nanoparticles.
AgNPs (silver nanoparticles) were synthesized using a Daucus
carota extract, and ceftriaxone was added to increase their
antibacterial potency (Shanmuganathan et al., 2018; Talank et al.,
2022). The antibacterial activity of biogenic AgNPs was evaluated
using the good disc diffusion technique. The experiment was run
against Gram-positive and Gram-negative bacteria as controls. The
discrete, spherical-shaped AgNPs containing ceftriaxone-
polydispersed aggregates displayed smooth, agglomeration-free
surfaces (Shanmuganathan et al., 2018). To determine the
potential antimicrobial use, cinnamon tamala leaf extract was
employed. The MIC value was calculated. The biosynthesized
AgNPs were tested for antimicrobial applications against
multidrug-resistant E. coli and Klebsiella pneumonia as well as
Gram-positive S. aureus. Treatment with AgNPs showed
concentration-dependent bacteriostatic activity against all three
bacterial strains. In this nanocomposite, several plants,
phytochemicals, and proteins were useful as capping agents. A
time-dependent reduction in bacterial population growth was
achieved using AgNPs. It is also an effective inhibitor of biofilm
formation (Dash et al., 2020). Piper nigrum (black paper) leaf extract
is used as a reducing and stabilizing agent along with silver nitrate as
a precursor in the biogenic synthesis of silver nanoparticles. The
moderate particle size and shape of the generated nanoparticles
depend on the molar content of the silver nitrate solution used. It is
demonstrated that the generated nanoparticles have numerous
amide-containing compounds. The evaluation showed the
crystalline nature of the generated nanoparticles. The results of
this study were equivalent to those investigations where chemical-
reducing agents such as sodium citrate were used (Augustine et al.,
2014). Silver nanoparticles from cola nitida showed antimicrobial
effectiveness against E. coli, P. aeruginosa,A. niger,A. fumigatus, and
A. flavus. The use of innovative nanomaterials, such as

nanoparticulate silver, in the paint industry may profit from
improving the quality of the paint with antimicrobial activity.
This is indicated by the possible application of nanoparticles as
additives in paints (Jain et al., 2021).

The synthesis of copper nanoparticles (40–100 nm) is reported
from Magnolia leaf extract, which acts as a reducing agent. The
resulting nanoparticles showed significant antibacterial activity
against E. coli. Foam sprayed with biologically synthesized copper
nanoparticles showed greater antibacterial activity than untreated
foam (Rubilar et al., 2013). Nanoparticles show intrinsic toxicity to
bacteria as a result of their high surface area to volume ratios, which
makes their entry into bacterial cells easier and facilitates their
interaction with functioning biomolecules such as DNA and
proteins (Jacob et al., 2019). Fenugreek, or Trigonella foenum
graecum (L.), is a fragrant leguminous plant. The silver
nanoparticles produced by fenugreek seed extract have a
significant antibacterial effect against E. coli. Notable antibacterial
activity was also detected against B. cereus and S. aureus. It was
found to be effective against both Gram-positive and Gram-negative
bacteria, which is consistent with other results. When the
nanoparticles are connected to the membrane of the cell, they
interact with membrane proteins that contain sulfur to cause
them to permeate the bacterial cell wall. This is similar to how
bacteria interact with phosphorus-containing substances such as
DNA, inhibiting DNA replication and cell reproduction (Awad et al.
2021).

6.2 Anti-malarial applications

Biogenic nanoparticles have significant applications in the
prevention and treatment of malaria. Zornia diphylla aqueous
extract proved harmful to the mosquito vector larvae Anopheles
subpictus, Culex tritaeniorhynchus andAedes albopictus (Ga’al et al.,
2018; Govindarajan et al., 2016). The percentage of fatality was
proportionate to the lethal concentration assessed, according to the
toxicity data. AgNP produced from Gmelina Asiatica leaf extract
was found to be effective against numerous mosquito vectors, with
Anopheles stephensi showing the maximum larval mortality,
followed by Aedes aegypti and Culex Quinquefasciatus. Silver
nanoparticles derived from Drypetes roxburghii fruit extract
exhibit some promising properties for mosquito biocontrol,
particularly during the larval stage. The nanoparticles produced
from putranjiva have a substantially higher lethal concentration
value for Anopheles stephensi. The AgNPs pass through the larval
membrane, causing the fragile larvae to die. The linearity between
the dose of AgNPs and the mortality of larval mosquitoes shows the
dose-dependent antimalarial potential and larvicidal activity. The
study revealed the linear relationship between the concentration of
silver nanoparticles and associated larvicidal action in the case of
both mosquitos (Aedes aegypti and Culex Quinquefasciatus) (Haldar
et al., 2013).

6.3 Anti-leishmanial applications

Leishmaniasis is a parasite disease produced by Leishmania species
that is one of the most serious (Singh and Sivakumar, 2004). Green
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nanoparticle-based therapeutic approaches for cutaneous leishmaniasis
are being developed to combat both promastigote and amastigote types
(Shah and Gupta, 2019). The antileishmanial activities of Cuminum
cyminum-based biogenic silver nanoparticles in macrophages were
driven to create NO, which eliminates Leishmania parasites.
Additionally, in addition to their ability to kill parasites directly, they
have the power to cause immune cells to suppress parasites. Studies
have demonstrated that metal oxide nanoparticles are quite successful
in treating leishmaniasis. When assessing the infection index, L. tropica
parasites were exposed to Bio-AgNPs at a dose of 1.75 g/mL, and their
infectivity rates were reduced. The findings showed that whereasAgNPs
caused a notable decrease inmacrophage cell viability values at the same
doses, Bio-AgNPs had no appreciable cytotoxicity toward them at lower
concentrations (0.25–0.75 g/mL). The antileshminial activity observed
is the result of inhibition of promastigote viability and disturbance in the
metabolism of amastigotes along with enhanced release of nitric oxide
from host macrophages (Bagirova et al., 2020).

6.4 Anti-filarial applications

Culex quinquefasciatus is a vector that spreads lymphatic
filariasis. AgNPs have larvicidal action (Shanmugasundaram and
Balagurunathan, 2015). Actinobacterial isolates have also been
reported to have high larvicidal action against Anopheles
mosquito larvae (Sutthanont et al., 2019). Actinomycetes also
have significant efficiency against C. quinquefasciatus (Tanvir
et al., 2014). Because of their distinctive shape-dependent
chemical capabilities, these biological entities may be used to
create nanoparticles, which is significant for nanobiotechnology.
In these scenarios, a novel approach employing biologically
generated AgNPs with considerable effectiveness against
mosquito larvae was assessed. A substitute for current chemical
larvicides is the biogenic nanoparticles produced by fungi and
bacteria. Multiple bacterial and fungal isolates have been tested
for their ability to produce silver nanoparticles in previous studies.
The larvicidal activity of nanoparticles of biogenic origin has been
evaluated in the past. The isolates of A. bisporus, E. coli, Penicillium
sp., and Vibrio sp. showed considerable larvicidal activity
(Dhanasekaran and Thangaraj, 2013). The aqueous extracts of L.
aspera were very vulnerable to the L. aspera AgNP concentration,
with 100% mortality reported. The nanosized silver particles
generated from the leaves of L. aspera and H. suaveolens were
found to be very stable and have considerable mosquito larvicidal
action against Aedes aegypti, Aedes stephens, and C. quinquefasciatus
larvae. This demonstrates AgNP potency as a robust larvicidal agent.
Capping enables surface reactivity, which makes these
functionalized nanoparticles important against these vectors. In
combination with mosquito-repellant formulations, these
biogenic silver nanoparticles can have promising applications in
the prevention and treatment of malaria and filariasis (Elumalai
et al., 2017).

6.5 Dental applications

AgNPs are regarded as potential antibacterial agents for dental
materials in dentistry, and their inclusion in resin materials is

considered a viable option to increase the longevity of dental
restorations (Bapat et al., 2018). Even at low doses, AgNPs
demonstrate antibacterial activity against Streptococcus mutans,
which causes dental caries. Camellia sinensis (green tea plant)
extract was used to create AgNPs. Camellia sinensis contains a
high concentration of polyphenolic chemicals, particularly catechin,
which serves as a reducing and capping agent. A light-colored SiO2

coating was applied to the surfaces of AgNPs to enable their
prospective use in dentistry (Rajan et al., 2015).

The red seaweeds Solieria robusta and Halymenia
porphyriformis were found to be useful in the green synthesis of
silver nanoparticles (Khan et al., 2022b). These nanoparticles from
biogenic origin were investigated for their ability to inhibit oral
pathogenic microorganisms that cause cavities or tooth decay.
Smaller particles have a higher surface-to-volume ratio, which
causes them to release more silver ions and actively kill more
bacteria. Because of their reduced size, easy penetration of these
nanoparticles through the peptidoglycan layer of the bacterial cell
wall damages the respiratory chain by interfering with the chain
reaction. The zone of inhibition was calculated for dental pathogens
against silver nanoparticles made from red algae. A larger zone of
inhibition was observed at low concentrations. Additionally, low
doses have greater therapeutic potential (Khan et al., 2022b).

Syzygium aromaticum (clove) has multiple applications as an
analgesic and anesthetic in dentistry. It is also useful in the biogenic
synthesis of silver nanoparticles. The resulting nanoparticles were
found to be effective against various dental pathogenic
microorganisms. Long-lasting bactericidal and bacteriostatic
activity, biocompatibility, and minimal in vivo toxicity are the
advantages of these biogenic nanoparticles (Jardón-Romero et al.,
2022). An ethnobotanical substance, gum arabica, is derived from
Acacia Senegal. The use of this herbal remedy to regulate the
development of silver nanoparticles as components plays the role
of capping and stabilizing agent in synthesis (Islam et al., 2021). The
use of Arabic-moderated AgNPs is beyond the control of dental
pathogens. These nanoparticles control SARS-CoV-2 viral infection.
Both the oral cavity and the upper respiratory tract have been
documented to be impacted by COVID-19. To eliminate
respiratory-related viruses and the dental carcinogen S. mutans,
AgNPs can be administered as a nasal spray or mouthwash (Al-
Ansari et al., 2021). Ag-NPs of A. vera demonstrated antimicrobial
potential against E. faecalis, S. mutans, and C. albicans, which are
commonly associated with dental caries (Rodrigues et al., 2020).

6.6 Biosensing applications

The aggregation of gold nanoparticles enables the creation of
colorimetric diagnostic techniques due to this abrupt color change.
Semiconductor nanoparticles known as quantum dots (QDs)
produced by zinc sulfide have applications in biosensing.
Aspergillus sp. was used to create zinc sulfide (ZnS) QDs. It is a
fungus with heavy metal tolerance and detoxifying routes found in
fungi and the simplicity with which the entire biosynthetic reaction
can be managed. Fungus systems would make great biofactories for
the production of nanoparticles. The absorbance of ZnS QDs was
examined in the absence and presence of heavy metals (Cd, Zn, Cr,
and Pb). The absorbance maximumwas found to be quenched in the
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presence of the heavy metal, resulting in a significant drop. Another
aspect of the study also demonstrated the comparative efficiency of
biogenic ZnS QDs over synthetic ZnS QDs (Jacob et al., 2019).

6.7 Anticancer applications

Artemisia turcomanica leaf extract is used in the green
fabrication of silver nanoparticles (22 nm), and the gastric cancer
cell line anticancer activity and induction of apoptosis are studied.
The MTT test and biomass analysis findings demonstrated that the
quantities of both commercial and photosynthesized AgNPs
increased the inhibitory effect. Impact on the growth of AGS and
L-929 cell lines. In comparison to commercial nanoparticles,

photosynthesized AgNPs needed a lower dosage to limit cell
development. According to research, silver nanoparticles interfere
with signaling pathways and interact with membrane proteins to
restrict cell development. Through fusion or endocytosis,
nanoparticles enter a cell and disrupt the mitochondria’s electron
transport chain (Mousavi et al., 2018).

The synthesis of silver palladium bimetallic nanoparticles (AgPd
NPs) from aqueous T. chebula fruit extract is reported in this research
study. These nanoparticles have significant anticancer potential against
lung cancer cells (A549). T. chebula fruit extract contains glycosides,
alkaloids, phenols, flavonoids, saponins, carbohydrates, steroids,
reducing sugars, terpenoids, and proteins, which play an important
role as capping and reducing agents in the synthesis of bimetallic AgPd
NPs (Sivamaruthi et al., 2019). AgPd bimetallic nanoparticles have

TABLE 3 Applications of Biogenic Nanoparticles in biomedical science.

Nanoparticles Material used Applications References

Anti-microbial applications

Au Banana peel extract Activity against E. coli SI et al. (2020)

Fe Spinach leaf extract Activity against B. subtilis Tyagi et al. (2021)

Fe Banana peel extract Effective against B. subtilis and E. coli Tyagi et al. (2021)

Cu Magnolia leaf extract Effective against E. coli Rubilar et al. (2013)

ZnS Aspergillus sp. Effective against Gram-negative bacteria Jacob et al. (2019)

Ag Fenugreek seed extract Effective against Gram-positive and Gram-negative bacteria Awad et al. (2021)

Ag Fruit pod of Cola nitida Activity against Klebsiella granulomatis and P. aeruginosa Lateef et al. (2016b)

Ag Cinnamon tamala leaf extract Effective against drug-resistant E. coli and Klebsiella pneumoniae Shanmuganathan et al. (2018)

Ag P. nigrum leaf extract Antimicrobial activity Augustine et al. (2014)

Ag Fruit pod of Cola nitida Activity against A. fumigatus and A. flavus Lateef et al. (2016b)

Anti-Parasitic applications

Ag Agaricus bisporus isolate Larvicidal action Dhanasekaran and Thangaraj (2013)

Ag E. coli isolate Larvicidal action Dhanasekaran and Thangaraj (2013)

Ag Penicillium sp. Isolate Larvicidal action Dhanasekaran and Thangaraj (2013)

Ag Vibrio sp. isolate Larvicidal action Dhanasekaran and Thangaraj (2013)

Ag Extract of L. aspera Mosquito larvicidal action Elumalai et al. (2017)

Ag Extract of H. suaveolens Mosquito larvicidal action Elumalai et al. (2017)

Ag Extract of Cuminum cyminum Anti-leishmanial activity Bagirova et al. (2020)

Anti-Malarial Applications

Ag Gmelina asiatica leaf extract Activity against Aedes aegypti and Anopheles stephensi Govindarajan et al. (2016)

Ag Drypetes roxburghii fruit extract Mosquito biocontrol Haldar et al. (2013)

Ag Leaf extract of Camelia sinesis Against Dental caries Rajan et al. (2015)

Ag Extract of Halymenia porphyriformis Inhibit cavities and tooth decay Khan et al. (2022b)

Ag Extract of Solieria robusta Inhibit tooth decay Khan et al. (2022b)

Ag Aqueous extract of Syzygium aromaticum Strong antibacterial activity against oral pathogens Jardón-Romero et al. (2022)

Ag Extract of Acasia senegal Against Dental carcinogen and respiratory-related viruses Al-Ansari et al. (2021)

Anticancer applications

Ag Leaf extract of Artemisia turcomanica Anticancer activity (Gastric) Mousavi et al. (2018)

AgPd Aqueous Terminalia chebula fruit extract Anticancer activity (Lung) Sivamaruthi et al. (2019)

Other Applications

Cu Extract of Calotropis procera L Antioxidant activity Rubilar et al. (2013)

ZnS Aspergillus sp. Detection of Hg, Cu, and Mn ions Jacob et al. (2019)
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anticancer potential because they stimulate the formation of reactive
oxygen species through respiratory chain dysfunction, which causes
DNA damage. This triggers the apoptotic cascade pathway, which
ultimately results in cell death (Sivamaruthi et al., 2019). NPs produced
by microorganisms have excellent properties that make them effective
against many cancer cells. Currently, to stop cancer cells from dividing,
many pathways are used, such as chemotherapy, radiotherapy,
immunotherapy, and therapy, but they all have some side effects,
such as chemotherapy, which can develop resistance to drugs with
90% failure during metastasis. The synthesized particle size and
monodispersity of the final product are influenced by the
concentration of the raw materials, the bacterial strain, the metallic
salts, and various components of the bacterial media. Nanomaterials
can be used for cancer; they have multiple mechanisms of action to
increase the effect and control and have become an alternative solution
as anticancer agents. Microbial-synthesized NPs are being used to
manage cancer in a green, ecologically benign, safe, and efficient
manner. The primary raw materials for nanoparticles, metal ions,
are trapped within or on the surface of microbial cells by
electrostatic forces with enzymes such as reductases and NADH-
dependent reductase that are both engaged in cellular processes and
the formation of nanomaterials. Metal ions are among the harmful
substances that may be removed from cells via efflux pumps. These
metal ions can be handled by bacteria using energy-dependent ion
effluxes. Biomineralization, biosorption, complexation, and
precipitation are some of the pathways for the microbial synthesis of

NPs. Size affects the anticancer effect. Smaller NPs aremore effective for
deep tumor tissue penetration. The caspase-3 enzyme was activated by
the AgNPs, resulting in cytotoxicity to DLA cells and the induction of
death. In the presence of AgNPs, the viability of themurinemacrophage
cell line and the human breast cancer cell line (MCF-7) was noticeably
decreased. Human colon cancer andDalton’s lymphoma (DL) cells had
lower survival rates after exposure to theNPs. In research, AgNPswith a
mean size of approximately 13 nm were produced using the
actinobacterial strain SF23. magnetosomes, which are microbially
derived NPs produced by magnetotactic bacteria. Magnetosomes are
microbially derived NPs produced by magnetotactic bacteria. Iron-
containing, lipid-bound nanocrystal structures are comparable to a
polymeric shell, iron oxide core, and nanoparticles. Hepatic cancer cells
were more effectively destroyed by doxorubicin-loaded magnetosomes.
With applications in drug administration, immunostimulation,
radiosensitization, and photothermal enhancement, NPs can also
assist in other therapeutic modalities. Laboratory research has
demonstrated the advantages of these nanoparticles in the
administration of anticancer medications. Surprisingly, alteration of
the drug surface affinity affects the rate of drug release by surface
functionalization of these nanocarriers by increasing or lowering their
surface hydrophobicity (Saravanan et al., 2021). Cervical cancer is one
of the leading global causes of death in women. In this study,
comprehensive information on the efficacy of biologically
synthesized AuNPs against cervical cancer arising from cervix cells
was given. According to the study, the ANPs treated cervical cancer by

FIGURE 7
Summary of various applications of metal nanoparticles in biomedical and environmental fields. Adapted from Ref. (Singh et al, 2016).
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increasing intracellular ROS production and inducing apoptosis. The
size of the AuNPs was found to be less than 100 nm. Themetabolites in
biological systems are crucial for the transformation of Au ions into
AuNPs. Human cervical cancer cells have been found to overexpress
folate receptors. According to research, adding folic acid to
chemotherapy nanoformulations improved their ability to target
cervical cancer cells. Applications of Biogenic Nanoparticles in
biomedical science are summarized in Table 3.

In recent times, researchers have focused on the synthesis of gold
nanoparticles by biological as well as chemical methods toward
cancerous (HeLa, MCF-7, A549, and H1299) and normal (HEK293)

cell lines with the comparative analysis of biologically synthesized
gold nanoparticles using extracts of the tulsi (Ocimum sanctum)
plant with chemically synthesized citrate-capped particles for their
anticancer behavior. Chemical reduction is the most frequently used
method for the synthesis of gold nanoparticles. Trisodium citrate
was used as a reducing agent to synthesize citrate-capped GNPs. The
Brust–Schiffrin method was employed for two-phase synthesis by
chemical modes, and leaf extracts of the tulsi (Ocimum sanctum)
plant have been used for biogenic synthesis, which has excellent
bioreduction properties due to its metabolite constituents. A
comparative evaluation of the anticancerous properties of

TABLE 4 The patent scenario of biogenic nanoplatforms.

Patent number Description Biomedical applications

US9403688B1 Method for preparing biogenic silica nanoparticles from seed hulls
of cultivated plants

Biosilica is a selective inducer of osteoprotegerin, which results in the inhibition of
osteoclast differentiation and activation that results in reduced resorption of bone.
It’s also used for various other purposes such as thermal insulation, pesticides, food
additives, drug delivery, gene therapy, dietary supplement for women to increase
bone mineral density via osteoblast differentiation

EP2671450A1 Method of preparing nanoparticles from the extract of algae Silver Nanoparticles obtained by this method demonstrate antibacterial potential
against both Gram-negative and Gram-positive bacteria and can be used in
household items, food packaging, cosmetics, and pharmaceuticals

WO2013143017A1 Synthesis of gold nanoparticles from fungi Botrytis Cineria Photoluminescence, medical diagnosis, used in therapy against some types of
cancers

US20100055199A1 Synthesis of silver nanoparticles from Trichoderma fungi Used as an antibacterial against various types of bacteria, fungi, and viruses

WO2016106466A1 Synthesis of gold nanoparticles from plant extracts obtained from
seeds, leaves, stem, fruit, and flower

Medical diagnosis imaging, solar energy conversion, semiconductor
manufacturing, catalysts, water treatment, and in the therapy of some types of
cancers

US20160263657A1 Preparation of stable metal nanoparticles in a one-step process This procedure has the uniqueness of producing extremely small metal
nanoparticles which allows them to be dispersed in water for after 6 months at
room temperature. Since these nanoparticles are made in an aqueous solution, it
provides a greater range of applications in the field of diagnostics, medicine, etc.

WO2011041458A1 Preparing metal nanoparticles from solutions of fruit extract (juice,
pulp, skin, seed etc.)

Removing contaminants from soil and groundwater—they can act by chemical or
biological reduction process or a combination of both to detoxify the
contamination. They can be used for catalysis, wastewater treatment, and water
treatment

CN103949658A Synthesis of silver nanoparticles from the aqueous extract of bark
of eucommia ulmoides

Bioanalytical chemistry, industrial catalysis, food security checks

US9789146B1 Synthesis of nanoparticles from the plant powder of adansonia
digitata

Recommended for pregnant women due to its high content of vitamin C.
Additionally, used as a hepatoprotective, antiviral, antimicrobial, antioxidant,
hypoglycemic and anti-inflammatory agent

US10856559B1 Procedure for producing eggshell derived nanoparticles Useful as an anticancer agent for human breast cancer and lung cancer

US9700512B1 Preparation of Hesperetin nanoparticles Treatment of lead-induced oxidative stress in various organisms

US9974750B1 Method for the preparation of ifflaionic acid nanoparticles It possesses potent antitumor activity against lung cancer cells, cervical cancer
cells, human colon cancer cells

US10947266B2 A method for the synthesis of ursolic acid nanoparticles Anticancer, anti-inflammatory, immunomodulatory activity. Antibacterial against
Gram-positive and Gram-negative bacteria and fungi

CN103406548A Obtaining silver nanoparticles from tapioca starch Controls pathogenic bacteria (S. aureus and E. Coli) and acts as a disinfectant

US6783963B2 Preparation of metal sulfide nanoparticles using fungi (Fusarium
Oxysporum sp.)

Used as markers in drugs, catalysis, gene sequencing

CN106513707A Preparation of silver nanoparticles from the extract solution of
leaves of blueberry

Bacteriostatic, fungistatic, reducing agent

KR102292488B1 Manufacturing of silver nanoparticles from Citrus fruits Used in cosmetics, quasidrugs, food, catalysis, and sterilization processes.
Additionally, used as an antibacterial agent

US20050009170A1 Preparation of metal nanoparticles in plants Used for Catalysis. Used for making water-resistant products (sunscreens)
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biogenic and chemically synthesized GNPs was performed by ROS
determination, DNA fragmentation, mitochondrial functions,
protein extraction, and western apoptosis. Biogenic GNPs were
found to be more cytotoxic on cancerous cells than chemical
GNPs in cell proliferation and IC50 determination; additionally,
in the case of normal cells, bGNPs were comparatively less cytotoxic
and potentially nontoxic toward HEK293 cells based on the MTT
assay (Virmani et al., 2020). Significant applications of biogenic
nanomaterials in cancer theranostics are illustrated in Figure 7
(Singh et al, 2016).

6.8 Drug delivery applications

Nanoparticles synthesized from biological sources are prime
nanocarriers for drug delivery. The modulation of their physical
properties makes them suitable candidates for drug delivery (More
and Deshmukh, 2020). Large biomolecules may be delivered by gold
nanoparticles. They serve as an effective scaffold for the identification
and distribution of biomolecules due to their functional versatility and
tunable size (Sharifzadeh and Hosseinkhani, 2017). Peptides, proteins,
and nucleic acids such as DNA and RNA have all been delivered
successfully. By using noncovalent conjugation, gold nanoparticles for
nucleic acids may be delivered. They may produce a high surface-to-
volume ratio, enhancing the payload/carrier ratio. Gold nanoparticles
functionalized with cationic quaternary ammonium groups are bound
to plasmid DNA by electrostatic interactions, and the bound DNA is
then released by GSH treatment. In mammalian 293T cells, these
noncovalent DNA-nanoparticle conjugates offer an efficient method
of gene delivery. Using covalent bonding, gold nanoparticles can carry
nucleic acids. To graft onto nanoparticles, thiols (-SH) might readily
modify nucleic acid strands. To transport siRNA that has been thiolated
(SH-siRNA) to cells, Nagasaki and others coupled it with gold
nanoparticles. Endocytosis is triggered by the adsorption of many
serum proteins onto the surface of the DNA-NP particle (Nagasaki,
2008). The ability of functionalized gold nanoparticles to transport
insulin was recently established by Pokharkar, Sastry, and others
(Bhumkar et al., 2007). Chitosan is a biopolymer that stabilizes
particles. The distribution of insulin across mucous membranes is
made possible by chitosan-coated particles, which firmly bind
insulin to their surfaces (Ghosh et al., 2008). Biogenic nanoparticles
have widespread applications in the area of biomedical sciences.
Metallic nanoparticles synthesized from biogenic sources are used
for theranostic as well as drug delivery purposes. It is one of the
trending areas of research in green nanotechnology. Biogenic
nanocarriers are a trending area of research worldwide. Various
patents are filed for research based on the biogenic synthesis of
nanomaterials for biomedical applications. Table 4 illustrates the
various patents and patent applications in the proposed area.

7 Disadvantages of biogenic metallic
nanoparticles

A wide variety of metallic and metallic oxide nanoparticles are
synthesized by applying green nanotechnology. Different applications
of these nanoparticles are investigated after studying the limitations and
issues that these synthesized nanoparticles pose to human health. The

main issues with environmentally friendly synthesized nanoparticles are
related to biosafety, cytotoxicity, difficulty in controlling the shape and
size of the produced nanocomposites, and purification. Nanoparticles
produced by different mechanisms produce nanoparticles of different
sizes. In many organisms, such as fungi, the intracellularly yielded
particles are smaller than those fabricated extracellularly. In this case, it
is difficult to create monodisperse nanoparticles (Pantidos, 2014).
Biosafety is also a crucial concern about biogenic nanoparticles. The
use of viruses, certain fungi, and bacteria can be dangerous to human
health, as it can lead to an immunogenic response. Viral
nanocomposites from the hepatitis B virus (Steinmetz et al., 2009)
and bacteriophages (Prasuhn et al., 2008) and from fungi F. oxysporum
(Syed and Ahmad, 2012) are the most likely candidates for such
immunogenic reactions. Similarly, cytotoxicity is one of the biggest
drawbacks of metallic nanoparticles and a prime consideration for
nanotechnology. Nanotoxicology is a branch to study the long-term
exposure effect of these particles on human tissue. Studies suggest that
half of the cytotoxicity concerns are the result of vulnerability tometallic
nanoparticles (Wang et al., 2012). Metallic oxide nanoparticles tend to
aggregate inside cells and around organelles, interfering with their
normal function and disturbing homeostasis (Iavicoli et al., 2012).
Nanotoxicological reports of a wide range of metallic oxide
nanoparticles have shown that nanocomposites such as copper oxide
(CuO), silica nanoparticles, cobalt oxide (Co3O4), iron oxide (Fe2O3),
zinc oxide, and titanium dioxide nanoparticles (TiO2) are capable of
inducing toxic reactions in human cells. When CuO nanomaterials
were exposed to the human lung epithelium and evaluated by Comet
assay, oxidative lesions and damage to epithelial DNA were observed
(Karlsson et al., 2008). Additionally, bacterial magnetite was found to
induce ROS-induced oxidative stress (Wu et al., 2014). A study
conducted on silica nanoparticle-induced nanotoxicity showed the
effect of the release of reactive oxidative species adding to apoptosis
(McCarthy et al., 2012). Similarly, a cytotoxic effect was also shown by
zinc oxide nanoparticles synthesized from the leaf extract of
Tabernaemontana divaricate, and this effect was seen in MCF-7
breast cancer cells (Sivaraj et al., 2014).

Other than the composition of the nanomaterials, many other
things govern the toxicity to humans and other living systems, such as
the shape, size, and dose of nanoparticles administered. A high dose is
associated with increased cytotoxic effects. To make these biogenically
produced nanoparticles safe and effective, it is important to perform
nanotoxicological investigations and study the mechanisms of
cytotoxicity to standardize the toxicity protocols.

8 Factors influencing the biological
properties of biogenic metallic
nanoparticles

The biological properties of biogenic nanoparticles are affected by
several critical factors, such as size, shape, surface coating, and surface
charge. The permeability characteristics as well as interaction at the
biological interface differ based on variabilities in theirmorphology. The
crystalline structure of biogenic metallic nanoparticles is slightly
different from that of chemically synthesized metal nanoparticles.
The change in crystalline nature progressively increases the
percentage of permeability for biogenic metallic nanoparticles. The
morphological characteristics include size, shape, surface texture, etc.
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For biomedical applications, a size of less than 100 nm is desirable to
provide a prompt biological response (Patil et al., 2018). Metal
nanoparticles have a size below 50 nm, which is effective for
applications. Another disadvantage associated with metal ions is that
deposition may deteriorate normal cell behavior. Chemically
synthesized metal nanoparticles have higher deposition in normal
cells than biogenic metal nanoparticles. Even the rate of elimination
of biogenic nanoparticles is high due to their unique size and surface
characteristics. The PEGylated NPs provide high blood circulation time
Virmani et al. (2020). Compared the performance of chemically
synthesized metal nanoparticles and biogenic nanoparticles on
cancer cell lines (HeLA, MCF-7, A549, H1299, and HEK293). The
size of biogenic nanoparticles (2–10 nm) was slightly less than that of
chemically synthesized nanoparticles (5—20 nm). The lowest particle
size shows high inhibition potential against cancer cell lines. Chemically
synthesized nanoparticles have less cytotoxic effects than biogenic
nanoparticles with relatively lower relative oxygen generation
capacity. Many scientists utilize surface engineering approaches to
modulate or add features to the physicochemical and biological
behavior of nanoparticles. The surface charge of bare or modified
nanoparticles principally affects the stability of metal ions in dispersion
media. The highly negatively charged or positively charged ions repel
each other and form a stable dispersion. However, in the case of the
metal core, they start aggregating in the solution and are suspended at
the bottom of the dispersion. Additionally, the surface charge of metal
ions shows variable absorption at the biological interface. Different
grades of surfactants, biopolymers, and natural extracts are used to coat
or encapsulate biogenic nanoparticles. In most cases, the in situ
synthesis protocol leaves the coating over biogenic nanoparticles and
acts as a stabilizer. Spinacia oleracea extracts show synergistic
therapeutic potential during the synthesis of biogenic silver
nanoparticles. The extract possesses good anticancer and antioxidant
activity and acts as a capping agent for silver nanoparticles. Biogenic
silver nanoparticles show no toxic effect, but the presence of S. oleracea
leaf extracts shows high performance against leukemia cells (Zangeneh,
2020). Plant extracts act as reducing and capping agents and promote
therapeutic outcomes in cancer therapy. Multiple biomolecules serve as
stabilizing and capping agents during the synthesis of NPs, and greenly
generated metallic NPs exhibit stronger antibacterial potential than
conventionally manufactured NPs (Bahrulolum et al., 2021). The effect
of capping agents on biogenic nanoparticles and their therapeutic
potential are extensively elaborated in a recent review[219].

9 Conclusion and future perspectives

Nanoparticles are produced through several physical and chemical
processes, but these techniques have drawbacks such as high prices and
the need for high temperature and pressure. Much focus is now shifted
to recent advances in nanotechnology and the environmentally
sustainable manufacturing of nanomaterials using plants and
microorganisms. Biosynthesis procedures for nanoparticles are rapid,
simple, inexpensive, eco-friendly, safe and impart high stability with
efficiency. Green nanoparticles can help sustainable development
because they can be synthesized using renewable materials and can
be easily recycled, reducing the environmental impact of nanoparticle
synthesis and waste formation. Scientists have focused their energy on

natural resources because of their abundant nature, environmental
friendliness, scale-up, and affordability. The green synthesis of
nanoparticles has many advantages, such as the use of nontoxic
solvents, efficient production processes and microbiome-friendly
synthesis. The synthesis parameters influence the production yield of
most metallic nanoparticles. However, most studies use extracts or
solvent compositions without proper quantitation of each component
to create a nonreproducible synthetic route that is difficult to scale
up. Furthermore, the species type creates variable extracts that are
impossible to control in unit operations. The biostability of the
nanoparticles depends on their surface charge and shape, and the
charge is influenced by enzymes and vitamins in the production
medium. We observed that the studies typically follow synthesis,
characterization, and in vitro evaluation on either cell lines or
microbes. Some researchers have demonstrated wound-healing
abilities but have often used topical applications. The percentage of
reports with in vivo particle kinetics and biodistribution profiles is
dismal, and this is an essential criterion for regulatory approval formost
nanomedicines. Additionally, degradation pathways need special focus,
just demonstrating in vitro degradation is not sufficient. In certain
conditions, simulation studies are useful to a limited extent. Although
the green synthetic production and biomedical applications of
biofabricated nanoparticles are exciting, the discussed issues need
special attention in future studies.
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