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Vascular diseases are major causes of death, yet our understanding of the cellular constituents of blood
vessels, including how differences in their gene expression profiles create diversity in vascular structure and
function, is limited. In this paper, we describe a single-cell RNA sequencing (scRNA-seq) dataset that defines
vascular and vessel-associated cell types and subtypes in mouse brain and lung. The dataset contains 3,436
single cell transcriptomes from mouse brain, which formed 15 distinct clusters corresponding to cell (sub)
types, and another 1,504 single cell transcriptomes from mouse lung, which formed 17 cell clusters. In order
to allow user-friendly access to our data, we constructed a searchable database (http://betsholtzlab.org/
VascularSingleCells/database.html). Our dataset constitutes a comprehensive molecular atlas of vascular
and vessel-associated cell types in the mouse brain and lung, and as such provides a strong foundation for
future studies of vascular development and diseases.
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Sample Characteristic(s) Mus musculus • brain vasculature • lung vasculature
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Background & Summary
The blood vasculature is built from two principal cell classes: endothelial cells, which line the blood
vessel lumens, and mural cells, which surround and/or stretch along the endothelial tubes. Mural cell
is a collective term for pericytes and vascular smooth muscle cells (SMCs). Pericytes are broadly
defined as the mural cells of microvessels, whereas SMCs occupy arteries and veins. In spite of clear
differences in anatomical location and cell morphology, insight into the molecular and functional
differences of mural cell subtypes is still limited1,2. Concerning other vessel-associated cell types, large
arteries and veins harbor a clearly distinguishable outer layer–the adventitia–that contains fibroblast-like
cells and extracellular matrix (ECM). However, a more exact definition of the adventitial ECM-producing
cells, functionally as well as transcriptomically, is still missing. The presence of adventitial cells along
smaller arterial and venous branches is also poorly understood. In the mouse brain, a new type of
perivascular/leptomeningeal cell was recently pinpointed3, but a more exact anatomical and molecular
description of these cells was still missing. In order to achieve a molecular understanding of the
constituent cell types, using single cell RNA sequencing (scRNA-seq), we transcriptionally profiled
vascular and vessel-associated cells in brain and lung4. Here, we provide a Data Descriptor for this dataset
(Fig. 1a).

To capture vascular and vessel-associated cell types from the adult mouse brain, we used a set
of transgenic reporter mice: Cldn5(BAC)-GFP for endothelial cells, Pdgfrb(BAC)-eGFP;Cspg4-DsRed
for mural cells and Pdgfra-H2BGFP for perivascular fibroblast-like cells (Fig. 1b). We also took
advantage of an unexpected reporter gene expression in vessel-associated astrocytes from the Tagln-Cre;
R26-stop-tdTomato mouse to capture vessel-associated astrocytes. To capture vascular and vessel-
associated cell types from the adult mouse lung, we used Cldn5(BAC)-GFP for lung endothelial
cells, Pdgfrb(BAC)-eGFP;Cspg4-DsRed and Pdgfrb(BAC)-eGFP for mural cells. Single fluorescent
cells were sorted into 384-well plates, lysed, and the mRNA was converted into cDNA libraries using
the SmartSeq2 protocol and sequenced4. We generated scRNA-seq transcriptomes from 3,436 single
cells from the brain and 1,504 single cells from the lung (Data Citation 1). For each organ, the single
cell transcriptomes were clustered using BackSPIN (Fig. 1c–e). After manual inspection and annotation,
we defined 15 cell clusters in the brain, which following annotation using known canonical markers
for the established vascular cells types along with validation of cell subtypes using immunofluorescence
and in situ hybridization methods were found to correspond to: pericytes, three types of vascular
smooth muscle cells (venous, arteriolar and arterial), microglia, two types of fibroblast-like cells,
oligodendrocyte-lineage cells, six types of endothelial cells (venous, capillary, arterial and three others)
and astrocytes (Fig. 2a). In the lung, we defined 17 cell clusters. Because our main objective with the
lung dataset was to compare brain and lung pericytes, the annotation process of lung cells other
than pericytes and endothelial cells was less extensive, but nevertheless indicated the existence of
several subtypes of fibroblasts (split in four clusters) and cartilage/perichondrium-related cells
(two clusters), pericytes (one cluster), vascular smooth muscle cells (one cluster), and at least two
distinct types of endothelial cells (split into eight clusters) (Fig. 2b). To allow the scientific community
to contribute to the further annotation of these cell types by assessing their gene expression, we provide
user-friendly access to our data in the form of a searchable database http://betsholtzlab.org/
VascularSingleCells/database.html, in which any gene can be searched by acronym, and its expression
across the analyzed cell types in brain and lung displayed as single-cell bar-plots as well as
diagrams displaying average values for the expression in the different cell types (see Fig. 3a-d for an
example).

The dataset in this Data Descriptor provides a first comprehensive molecular profile of vascular and
vascular-associated cell types in mouse brain, and a preliminary analysis of vascular and mesenchymal
cell types in the lung, the latter complementing recently published single cell data on lung
mesenchyme5,6. Our dataset provides a foundation for future studies of vascular development,
homeostasis and diseases.

Methods
The descriptions of the method protocols below are reproduced and extended from our related research
publication4, with added details on computational data processing steps.

Isolation of single cells
The preparation of the heart and lung tissue for single cell analysis has been described in our
related publication4, as well as in the following three papers in Protocol Exchange: Brain cell isolation:
DOI: 10.1038/protex.2017.159; Perivascular single cell isolation: 10.1038/protex.2018.005; Lung single
cell isolation: 10.1038/protex.2018.006. In short, all tissues were disintegrated into single cell
suspensions using a combination of enzymatic digestion and mechanical dissociation, followed
by selection of the cells of interest using Fluorescence-Activated Cell Sorting (FACS; BD FACSAria
III, BD Bioscience). Selected cells were deposited as single cells in 384-well plates, each well
containing 2.3 μl of lysis buffer (0.2% Triton-X (Sigma, cat: T9284), 2U/μl RNase inhibitor
(ClonTech, cat: 2313B), 2 mM dNTP’s (ThermoFisher Scientific, cat: R1122), 1 μM Smart-dT30VN
(Sigma), ERCC 1:4 × 107 dilution (Ambion, cat: 4456740)) prior to library preparation using the Smart-
Seq2 protocol.
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Preparation of single cell sequencing libraries
An extended description of the Smart-Seq2 protocol can be found in Picelli et al.7. Briefly, mRNA was
converted into cDNA through a reverse transcription (RT) reaction based on an oligo(dT) primer and the
SuperScript II RT enzyme (ThermoFisher Scientific, cat: 18064-071). SuperScript II adds 2-5 untemplated
cytosine nucleotides to the 3’ end, which enables the use of a Template-Switching Oligo (TSO) binding to
the 3’ end of the first strand cDNA initiating the synthesis of full-length double-stranded cDNA. This
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Figure 1. Work flow. (a) Flowchart of the procedure of generating the single cell dataset. (b) Whole adult

mouse brains from the indicated mouse reporter lines were mechanically and enzymatically digested, and single

cells were isolated by FACS, cDNA libraries prepared and sequenced. (c) Single cell transcriptomes were

clustered by BackSPIN. The black bar-plot shows Actb expression (sequence counts) in the 38 clusters (0–37)

generated at split-level 6: these clusters were given a preliminary cell class assignment (black-colored bars)

using canonical cell type-specific markers. (d) After cluster consolidation, a final annotation was provided for

individual cells. (e) The average expression (+/− standard error) of each cluster is summarized. Gene-by-gene

expression figures are available at http://betsholtzlab.org/VascularSingleCells/database.html. Figure c–d overlap

with Extended Data Figure 1b–c,i in our related publication (ref. 4).
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cDNA was amplified with 22 cycles of PCR and the quality and quantity of the cDNA was assessed with a
DNA high sensitivity chip on a BioAnalyser or TapeStation 4200 (Agilent Biotechnologies). When the
sample plate passed the quality control, the cDNA was fragmented and tagged (i.e. tagmented) with the
Tn5 transposase (Nextera XT library kit, Illumina, cat: FC-131-1096)8, and individual wells indexed using
the Illumina Nextera XT indexing kits (Set A-D, Illumina, cat: FC-131-2001, FC-131-2002, FC-131-2003
and FC-131-2004). All libraries prepared for this study were sequenced on a HiSeq2500, using single 50
base pair reads and dual indexing.

Alignment and generation of counts
The RNA-seq aligner, Spliced Transcripts Alignment to a Reference (STAR, version 2.4.2a) was used to
align the short reads to the mouse reference genome (mm10)9. The aligner is available for downloading at
https://github.com/alexdobin/STAR. Two-pass alignment was chosen to have improved performance of
de novo splice junction reads, filtered for only uniquely mapping reads. The STAR parameters are as
follows:

STAR --runThreadN 1 --genomeDir mm10 --readFilesIn XXX.fastq.gz --readFilesCommand zcat
--outSAMstrandField intronMotif --twopassMode Basic

The expression values were computed per gene as described in Ramsköld et al.10, using uniquely aligned
reads and correcting for the uniquely alignable positions using MULTo57(ref. 11). As QC threshold, cells
with less than 100,000 reads were discarded, as well as cells that had a Spearman correlation below 0.3.
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Figure 2. Overview of the single cell data in the adult mouse brain and lung. (a) The 3,418 brain single cells
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coded according to its classified cell types from BackSPIN result annotation. (b) The same analysis of the 1,504

lung single cells as in panel a.
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Our analyses and cell type annotations were based on 3,186 brain vascular-associated cells, 1,504 lung
vascular-associated cells and 250 brain astrocytes, which were obtained in parallel experiments using
different reporter mice and partly different procedures to obtain the cells (see ref. 4). Therefore, in order
to compare the gene expression counts across different cells, the total gene counts for each cell were
normalized to 500,000. The R code used for the normalization is available in the Supplementary File 1.
The R tsne packages (version 0.1.3) was applied to visualize the 2D t-SNE map and GGally packages
(version 1.3.1) was used to make gene pairs plot.

Cell type classification with BackSPIN
As a clustering method, the BackSPIN algorithm12 was applied to classify the cells into different cell types.
The BackSPIN software was downloaded from https://github.com/linnarsson-lab/BackSPIN (2015
version). BackSPIN was run with the following parameters:

backspin -i input.CEF -o output.CEF -v -d 6 -g 3 -c 5
This iteratively splits the cells into six levels. After manual inspection and annotation, we defined 15 cell
clusters in the brain and 17 cell clusters in the lung4.
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Figure 3. A screenshot of the database search outputs. An example search of ribosomal gene Rpl13a in the

online database http://betsholtzlab.org/VascularSingleCells/database.html. Four figures are displayed. (a) The

detailed expression in each cell in the brain dataset. (b) The average expression level in each of the 15 clusters in

the brain. (c) The detailed expression in each cell in the lung dataset. (d) The average expression level in each of

the 17 clusters in the lung.
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Online database construction
The expression database was constructed using html and javascript. For each gene, four figures were
pre-made and stored on the server for faster display (see Fig. 3a-d for an example), including: the
detailed expression in each cell in the brain dataset (Fig. 3a); the average expression level in each of the
15 clusters in the brain (Fig. 3b); the detailed expression in each cell in the lung dataset (Fig. 3c) and
the average expression level in each of the 17 clusters in the lung (Fig. 3d). The gene symbol auto-
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complete function was implemented using the jquery.autocomplete.min.js and jquery-1.9.1.min.js plugin
(available from https://github.com/devbridge/jQuery-Autocomplete/). The html page source
and javascript code of the online database is available online at http://betsholtzlab.org/VascularSingle-
Cells/database.html.

In order to identify enriched genes in specific brain cell type(s), the average expression for each cell
types was stored in a MySQL (version 5.0.12-dev) database table and user queries were passed through a
PHP (version 7.0.23) script to the MySQL database.

Code availability
The R code used to process the sequencing data and visualize the results is available in the Supplementary
File 1 (R version 3.3.2).

Data Records
The information table for all the cells used in this study is available on Figshare (Data Citation 1). All
sequence data and counts matrixes have been deposited in Gene Expression Omnibus database (Data
Citation 2–4).

Technical Validation
Quality control of single cell sequencing cDNA and libraries
For each experiment, two different plate layouts were used for the FACS-based sorting. One plate (termed
the ‘sample plate’) received one cell in each well of a 384 well plate and was used to obtain the data. The
other plate (referred to as the ‘validation plate’) only contained lysis buffer in the first two columns, and
received cells in the following pattern: Twenty cells in A1 and A2, no cells in P1 and P2, and one cell in
the rest of column 1 and 2. The validation plate was used both as a quality control for sorting efficiency as
well as allowing cDNA amplification optimization prior to proceeding with all 384 cells of the
sample plate.

It is impossible to reliably measure mRNA quantity and quality of a single cell without prior
amplification of the minute amount of RNA, and thus the first quality control check was done on the
validation plate after cDNA synthesis and 22 PCR cycles of amplification. The cDNA quality and
concentration were assessed using a DNA high sensitivity assay on a TapeStation 4200 or BioAnalyzer
(Agilent Technologies) (Fig. 4a). A major size distribution around 1,500 base pairs indicated intact
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mRNAs and good quality of cDNA synthesis, sufficient for library preparation. A large cDNA size
distribution between 100 and 500 base pairs indicated mRNA degradation and was not processed for
library synthesis (data not shown). If the validation plate passed the quality control, the sample plate was
processed in the same way as the validation plate. If needed, the PCR cycles could be increased to enrich
the cDNA further, yet this has proven unnecessary in this study. After tagmentation and indexing of the
cDNA, the libraries were pooled and assessed for quantity and quality with a High Sensitivity DNA chip
on a BioAnalyzer (Agilent Biotechnologies) (Fig. 4b).

Technical validation of the data
Beyond the quality control measures described above, additional steps were taken to ensure the validity of
the data. To validate the clustering result based on BackSPIN result, the brain and lung single cell data
were independently analyzed by the T-Distributed Stochastic Neighbor Embedding (t-SNE) method
(Fig. 2a,b). In both the brain and lung data, the t-SNE result spread the single cells in 2-D space and
revealed several cell groups. When overlaying and color-coding the cluster result from BackSPIN analysis
on t-SNE result, the two methods showed good concordance in general. To check the possible batch effect
for the major cell classes in the dataset (endothelial cells and mural cells), two sample plates were sorted
per mouse, allowing assessment of technical variation between sample processing. As exemplified for the
four plates of endothelial cells (Fig. 5a) and four plates of mural cells (Fig. 5b), the mouse origin as well as
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panels shows the pair-wise comparison of genes in each cell and the correlation coefficients are indicated on the

upper right panels.
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the technical replicates were color-coded. No significant differences could be found between the different
plates or different animals when visualizing the data with t-SNE and displaying expression barplot of cells
order by BackSPIN.

In our dataset, it is common to see a strong variation in gene expression levels between individual cells.
These most likely reflect stochastic events from either biological origin (i.e. burst expression of genes) or
experimental origin (incomplete capture rate of mRNA by Smart-Seq2 and strong PCR amplification). In
order to rule out that inter-cellular differences in gene expression could be a reflection of library quality,
we hypothesized that library quality would be correlated to gene expression. Therefore, we analyzed 5
highly expressed pericyte specific genes for correlation of expression of these genes within the cluster
(Fig. 6). No correlation could be found, suggesting that inter-cellular differences of expression are not
related to library quality. In addition, we also analyzed 5 genes that were broadly expressed in the whole
dataset, and again, no correlation could be found (Fig. 7). Thus, we complement the QC on our dataset
with a new type of analysis indicating that cell-to-cell variation of gene expression within the same cell
population is a stochastic event.
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