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SUMMARY

Chemical modifications of RNA provide an addi-
tional, epitranscriptomic, level of control over cellular
functions. N-6-methylated adenosines (m6As) are
found in several types of RNA, and their amounts
are regulated by methyltransferases and demethy-
lases. One of the most important enzymes catalyzing
generation of m6A on mRNA is the trimer N-6-meth-
yltransferaseMETTL3-14-WTAP complex. Its activity
has been linked to such critical biological processes
as cell differentiation, proliferation, and death.
We used in silico-based discovery to identify small-
molecule ligands that bind to METTL3-14-WTAP
and determined experimentally their binding affinity
and kinetics, as well as their effect on enzymatic
function. We show that these ligands serve as activa-
tors of the METTL3-14-WTAP complex.
INTRODUCTION

Chemical modifications of RNA have recently been identified

to have an increasing, unprecedented, and species-wide

conserved impact on several critical cellular functions, such as

proliferation, survival, and differentiation, mostly through the

regulation of RNA stability (Helm and Motorin, 2017; Mauer

et al., 2017; Xiang et al., 2017). The most abundant modification

in eukaryotic mRNA is N-6-methyladenosine (m6A) (Roundtree

et al., 2017; Meyer and Jaffrey, 2017). In addition to mRNA,

this modification also appears in long non-coding RNAs (Pan,

2013) and microRNAs (Alarcón et al., 2015), thus covering the

whole epitranscriptome. The abundance of m6A-modified

RNAs is associated with the control of cell fate decisions of

both stem and somatic cells (Yoon et al., 2017; Guo et al.,

2017; Wu et al., 2016a; Chen et al., 2015; Batista et al., 2014)

and essential for the development and functions of several

tissues, including liver, kidney, and brain (McGuinness and

McGuinness, 2014; Meyer et al., 2012).
3762 Cell Reports 26, 3762–3771, March 26, 2019 ª 2019 The Autho
This is an open access article under the CC BY-NC-ND license (http://
The methylation of N-6-adenosine in RNA is a dynamic and

reversible process. Formation of m6A is catalyzed by a methyl-

transferase complex that contains methyltransferase-like 3

(METTL3), methyltransferase-like 14 (METTL14), and Wilm’s-

tumor-1-associated protein (WTAP) (Ping et al., 2014). Recently,

recombinant proteinswere used formapping the binding surfaces

within the METTL3-14-WTAP complex (Schöller et al., 2018).

Moreover, a single enzyme METTL16 was identified as another

active m6A methyltransferase in human cells (Warda et al.,

2017). The reverse reaction—namely,m6Ademethylation—is car-

ried out by two enzymes: the fat-mass- and obesity-associated

protein also known as a-ketoglutarate-dependent dioxygenase

(FTO) (Jia et al., 2011) and the RNA demethylase ALKBH5 (Zheng

etal., 2013).TheRNAmethylation isalso regulatedbyYTHdomain

family proteins widely expressed in eukaryotes (YTHDF1-3,

YTHDC1, and YTHDC2) (Wu et al., 2016a; Patil et al., 2018).

It has been shown that thousands of mRNAs have increased

half-lives (2-fold or more) in mammalian cells from which METTL3

expression has been knocked out (Ke et al., 2017). The dynamic

nature of m6A modifications in RNA has been well evidenced by

the differential, phenotype-dependent effects in METTL3 knock-

down cells. For example, in naive pluripotent cells, low METTL3

expression leads to a ‘‘hyper-naive’’ pluripotent state, whereas

during a differentiation-primed state, it promotes cell differentia-

tion (ZhaoandHe, 2015). Thus, small-molecule ligands thatmodify

the amount of m6A in RNA can be expected to serve as invaluable

tools for deciphering the functional biological roles of this major

epitranscriptomic chemical modification. Furthermore, such li-

gandsmayhavesignificant implications for regenerativemedicine,

as the safety andefficacyof embryonic andother stemcells for tis-

sue regeneration depend on guiding cell differentiation as fully as

possible toward the desired therapeutic phenotype.

Interestingly, activity-modifying ligands of METTL3-14-WTAP

can also have anticancer effects (Deng et al., 2018a, 2018b;

Wang et al., 2018; Boriack-Sjodin et al., 2018). Overexpression of

METTL3 or inhibition of the RNA demethylase FTO suppresses

the growth and self-renewal of glioblastoma stem cells and tumor-

igenesis (Wu et al., 2016b). The activators of METTL3-14-WTAP

could, therefore, be potential anticancer agents against glio-

blastoma. Dysregulation of METTL3 expression has also been
rs.
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Figure 1. The Results of Molecular Docking

(A) The binding of SAM to METTL3 according to

AutoDock modeling. The most essential intermo-

lecular interactions are hydrogen bonds between (1)

SAM adenine N1 and Ile378 bridge NH; (2) SAM

a-NH2 and Asp395 carboxylate group; and (3) the

SAM carboxylate group and Lys513 ammonium

group. This structure is in accordance with the

experimentally measured crystal structure of the

SAM-METTL3 complex (Extended Data Figure 8d in

Wangetal., 2016b),whichshows thebindingofSAM

with Aps395 and Asp377 residues of METTL3.

(B) The binding site of methylpiperidine-3-

carboxylate (1).

(C) The compound structures with the highest

docking free energiesDG and docking efficiencies

DE to METTL3-METTL14 complex.
implicated in the growth control of human lung cancer cells (Lin

et al., 2016; Du et al., 2017; Martin and Park, 2018). The role of

the m6A methylation in the development of myeloid leukemia is

less understood. It has been shown that FTO, as anm6Ademethy-

lase, plays a critical oncogenic role in acute myeloid leukemia (Li

et al., 2017). On the other hand, downregulation of METTL3 can

result in cell cyclearrest,differentiationof leukemiccells, and failure

to establish leukemia in immunodeficient mice (Barbieri et al.,

2017). In addition, m6A modifications in viral transcripts have

been implicated in thecontrol of virusgeneexpression in host cells.

Recent data generated using HIV-1 as a model system strongly

suggest that increasedmethylation of N-6-adenosine enhances vi-

rus replication (Kennedy et al., 2017). Likewise, m6A residues in

influenza A virus (IAV) transcripts promote viral gene expression

(Courtney et al., 2017). Therefore, controlling the activity of the

METTL3-METTL14 methyltransferase is considered as a drug

target tosuppressHIV-1or IAV replicationoreven toactivate latent,

hiding viruses. In contrast, depletion of m6A methyltransferases

has been shown to increase production of infectious hepatitis C vi-

rus (HCV) particles (Gokhale et al., 2016). Thus, the activation of

METTL3-METTL14 would have the antiviral effect against HCV.

Pharmacological modulation of epitranscriptomic pathways—

RNA methylation, in particular—by small-molecule modulators

(inhibitors and/or activators) holds immense therapeutic poten-

tial and promise for advancing traditional and regenerative

medicine. We describe here the discovery of the first ligands

by virtual screening of molecular libraries for the RNA methyl-

transferase METTL3-14-WTAP complex and characterize their

binding properties as well as effects on enzymatic activity.
Cell Rep
RESULTS

Virtual Screening Enabled to
Identify METTL3-METTL14
Complex Small-Molecule Ligands
The crystal structure of the METTL3-

METTL14 complex with S-adenosyl-L-

homocysteine (SAH) (PDB: 5K7W)

(Wang et al., 2016a) was chosen for the

molecular modeling by removing the

native ligand from the structure. The bind-
ing site of S-adenosyl-L-methionine (SAM) was thus selected as

the target area for potentialMETTL3-METTL14RNAmethyltrans-

ferase complex ligands. As reported byWang et al. (2016a), there

are several distinct regions of probable interactions between the

ligand and enzyme. First, the amino group of the adenosyl frag-

ment of SAM is hydrogen bonded with Asp377 of the METTL3

of the enzyme. This interaction is confirmed by our molecular

docking calculations (cf. Figure 1A). The binding is further sup-

ported by another bond between the adenine N1 atom and an

adjacent peptide bond NH group. The adenine ring is sand-

wiched between Phe534 and Asn595, while many polar contacts

help to hold the hydroxyl groups on the ribose as well as the

amino and carboxyl groups of SAM (Wang et al., 2016b). The ter-

minal amino group of SAM acts as a hydrogen bond donor to the

Asp395 of the catalytic center of the enzyme.

Based on this structure, we proceeded with the search of

effectively binding small-molecule fragments. The compounds

were selected based on the configuration of the protein residues

that are hydrogen bonded to the tail part of SAM. A virtual

screening on ZINC (Irwin and Shoichet, 2005) and DrugBank

4.0 (Law et al., 2014) databases was carried out using diverse ni-

trogen-containing heterocycles as base structures. Remarkably,

we found a series of compounds with piperidine and piperazine

rings having exceptionally high docking efficiencies. The dock-

ing free energies and docking efficiencies of the best com-

pounds are given in Figure 1C. Similarly to SAM itself, these

compounds tend to be bound to the region of the METTL3 pro-

tein involving Asp295, Phe534, Arg536, and Asn539 (cf. Fig-

ure 1B for compound 1).
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The molecular dynamics simulations were thereafter carried

out for two compounds, representing the two different promising

scaffolds, compounds 1 (piperidine derivative) and 4 (piperazine

derivative), respectively.

In the case of compound 1, a 50-ns simulation involved the

ligand in protonation that is present at physiological pH values.

In this simulation, after 30 ns, an instability was observed in the

ligand position root-mean-square deviation (RMSD). Therefore,

only the first 25 ns were taken into account in the further trajec-

tory and energy analysis (Figure S1A). Another hydrogen bond

was detected between the ligand carbonyl group and the termi-

nal ammonium group of Lys513 (Figure S1B). The simulation

interactions diagram (cf. Figure S1C) indicates that the most

important interactions for this compound are hydrogen bonds

between the protonated nitrogen atom of the ligand and the

Asp395 and Lys513 residues of the METTL3-METTL14 protein.

The bar heights in this diagram characterize the fraction of simu-

lation time that the specific interaction was maintained. The

instability in the ligand trajectory after some time is apparently

caused by moving out from a very tight specific pocket close

to the SAM binding site (Figure S1D).

The results of the molecular dynamics simulation of methyl

piperazine-2-carboxylate (4) are summarized in Figure S2.

The simulation was carried out for 25 ns, and the trajectory

analysis shows the stability of the system during the calcula-

tion (Figure S2A). Similarly to the compound 1, there is another

hydrogen bond between the ligand carbonyl group of com-

pound 4 and Arg536 of the protein (Figure S2B). The simula-

tion interactions diagram (cf. Figure S2C) reveals a very strong

hydrogen bonding between the hydrogen piperazinyl-4-

ammonium group and carboxylate group of the Asp395 resi-

due of METTL3-METTL14 protein. The compound is bound

to the same tight specific pocket at the SAM binding site

(Figure S2D).

A completely different binding mode was established for

compound 3. Due to the methyl group in the para-position to

the ester functionality at the piperidine ring, the binding in the

pocket shown in Figures S1 and S2 is hindered. Instead, a

strong binding with the aspartate residue Asp571 is preferred,

having both hydrogen bonding and ionic interaction compo-

nents (Figure S3). This may explain the difference in the surface

plasmon resonance (SPR) data, shown in the following text, as

compared to other compounds. However, compound 3 still has

an increasing effect on the METTL3-14-WTAP methylating ac-

tivity; thus, the pocket proposed for other compounds may still

be competitive.

To further specify the nature of the ligand-protein interactions,

the molecular mechanics energies combined with the general-

ized Born and surface area (MM/GBSA) continuum solvation

method (Genheden and Ryde, 2015) binding energy calculations

were carried out using data from molecular dynamics simula-

tions. In the MM/GBSA, the free energy of a state (ligand or

enzyme) is estimated from the following sum:

G=Ebnd + Eel +EvdW +Gpol +Gnp � TS; (1)

where the first three terms are standard molecular mechanics

energy terms from bonded (bond, angle, and dihedral), electro-
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static, and van der Waals interactions. Gpol and Gnp are the polar

and non-polar contributions to the solvation free energies. Gpol is

typically obtained by solving the Poisson-Bolzmann equation or

by using the generalized Born (GB) model (giving the MM/GBSA

approach), whereas the non-polar term is estimated from a linear

relation to the solvent accessible surface area. The last term in

Equation 1 is the absolute temperature, T, multiplied by the en-

tropy, S, estimated by a normal-mode analysis of the vibrational

frequencies. The results for the lowest binding energy states are

given in Table S1.

The total binding energies are large for both compounds and

predict possibly significant biological effects. However, it is

instructive to compare the contributions arising from different

physical interactions to the binding energies. For compound

1, the electrostatic interaction energy between the ligand and

enzyme and the polar (de)solvation energy almost exactly

cancel each other out. The binding energy is thus primarily

determined by large van der Waals and nonpolar solvation

terms. Consequently, this relatively small compound is strongly

bound to the enzyme due to specifically oriented van der Waals

and nonpolar solvation (lipophilic) interactions. For compound 2

having the additional hydrocarbon t-butyl-group, the contribu-

tion from the van der Waals interactions is expectedly higher.

Compound 4, with two nitrogen atoms in the piperazinyl ring,

has electrostatic interaction as the leading term into the free

energy of binding. This is consistent with the results of the mo-

lecular dynamics simulation that showed the strong bonding

between the positively charged piperazinyl-4-ammonium group

and carboxylate group of the Asp395 residue of METTL3-

METTL14.

METTL3-14-WTAP Binding Affinity and Kinetics of
Small-Molecule Ligands
The interaction between the small-molecule ligands and

METTL3-14-WTAP complex was studied using the enzyme-

catalyzed RNA methylation and the SPR using a Biacore

T100 (GE Healthcare Life Sciences) instrument (cf. STAR

Methods). All compounds demonstrated METTL3-14-WTAP

binding in a concentration-dependent manner. As determined

by the Biacore assay, carried out as duplicate independent

series on two separate chips, the compounds’ dissociation

constants, KDs, are in the ascending order 3 < 1 < 4 < 2.

Smoothed ligand association-dissociation curves are shown

in Figure 2.

The ligand association rate constant (ka), dissociation rate

constant (kd), and KD values were calculated from fitted curves

based on the Biacore association-dissociation values (cf. Fig-

ure 2). Compound 2 demonstrated the weakest binding, and

compound 3 demonstrated the strongest binding to the purified

and Biacore chip-conjugated METTL3-14-WTAP m6A writer

complex.

Due to the compounds’ unexpectedly strong binding energies,

we selected to test the effect of compounds 1 and 4 at variable

concentrations on SAM binding to the METTL3-14-WTAP

enzyme. A constant concentration of compound 1 (1 nM to

100 nM) or 4 (25 mM) in the running buffer was used in separate

Biacore experiments to determine their effects on the KD for SAM

binding (Figure 3).



Figure 2. Surface Plasmon Resonance Sensorgrams for the Interactions between METTL3 and Small-Molecule Ligands

(A–E) Compound 1 (A); compound 2 (B); compound 3 (C); compound 4 (D); SAM (E); and SAH (F).
The efficacy of SAM binding showed a clear increase with

already at the lowest concentration of the added com-

pound 1 (Figure 3A). The effect of this compound on SAM bind-

ing was then compared to that of the piperazinyl derivative 4 at

a higher concentration (the compounds have similar molecular

weight). Both compounds significantly increased SAM binding

to the METTL3-14-WTAP enzyme. The KD value for SAM bind-

ing in the presence of compound 1 was 4.7 ± 1.5 nM, and in

the presence of compound 4 at a 25-mM concentration, the

KD value for SAM binding was 13.7 nM (Figure 3D). In compar-

ison, in the absence of the compounds, SAM exhibited a KD of

1.92 mM, suggesting that the studied small-molecule ligands

act by enhancing the binding of SAM by several orders of

magnitude.

Methyl transfer from the 3H-SAM to the reported METTL3-14-

WTAP-methylatable RNA oligonucleotide sequence 50-uaca-
cucgaucuggacuaaagcugcuc-biotin-30 (Liu et al., 2014; Lin

et al., 2016) was utilized in a radioactivity-based assay to eval-

uate the effect of the designed ligands on the activity of

HEK293-cell-expressed and FLAG-tag-purified METTL3-14-

WTAP complex (Figure 5). In order to validate the enzymatic

assay’s radioactive signal readout, we utilized unlabeled non-

tritiated (non-3H) SAM to achieve competitive incorporation of

both unlabeled and 3H-labeled methyl groups to the substrate

oligonucleotide probe. As expected, the non-3H SAM concen-

tration-dependently reduced the radioactive signal, causing a
pseudoinhibitory effect in the assay with a half maximal inhibi-

tory concentration (IC50) of 0.537 mM (Figure 4A). We then

further validated our METTL3-14-WTAP enzymatic assay by

testing the effect of the demethylated SAM analog and a known

methyltransferase inhibitor, SAH. The enzymatic reaction, as

evaluated by 3H-methyl group incorporation into the METTL3-

14-WTAP-specific oligonucleotide probe, was concentration-

dependently inhibited by SAH with an IC50 of 0.281 mM

(Figure 4B).

As an additional control for the validation of the assay, we

utilized the structurally SAM-related nucleoside methyltransfer-

ase inhibitor sinefungin. Sinefungin expectedly inhibited the

METTL3-14-WTAP activity, with an IC50 of 2.36 mM (Figure 4C).

The observed IC50 concentrations of SAM, SAH, and sinefungin

correspond to those inhibitory IC50 concentrations as reported in

the literature for these compounds on different methyltrans-

ferases (Aktas et al., 2011).

We then evaluated the effect of the computationally predicted

strong ligands on METTL3-14-WTAP complex function in the

enzymatic assay. Importantly, the results presented in Figures

5A–5D indicate that the tested compounds are not acting as

inhibitors of the catalytic reaction but significantly increase

the METTL3-14-WTAP complex activity. As evaluated from

the enzymatic assay results, the EC50 values for all tested com-

pounds are given in Figure 5. In terms of their increasing EC50s,

the order of the activating compounds was 1 < 4 < 3 < 2.
Cell Reports 26, 3762–3771, March 26, 2019 3765



Figure 3. Surface Plasmon Resonance Sensorgrams for the Interactions between METTL3 and SAM in the Presence of the Small-Molecule
Ligands

(A–D) Compound 1 at 1 nM (A); compound 1 at 10 nM (B); compound 1 at 100 nM (C); and compound 4 at 25 mM (D).
Thus, compound 4 showed the most potent METTL3-14-WTAP

enzyme activating effect (cf. Figure 5D).

Compared to the other compounds tested, compound 3 ex-

hibited unique and robust binding behavior to METTL3-14-

WTAP complex (Figure 2C). This type of binding is comparable

to the effect compounds 1 and 4 have on SAMbinding to the pro-

tein complex (Figure 3). In the enzymatic assay, compound 4

emerges as the most potent activator of the METTL3-14-

WTAP RNA-methylating complex.

In order to validate the predicted binding site for the small-

molecule ligands, the binding experiments were carried out for

two mutant proteins of METTL3. Those were the singly mutated

1xmut1 (W373A), 1xmut2 (D395A), and 2xmut (W373A and

K513A) proteins, respectively. The binding of the small-mole-

cule ligand 4 was measured using Bio-Layer Interferometry

technology with streptavidin sensors (cf. STAR Methods). The

binding of compound 4 to the METTL3 protein itself was very

similar to the binding to the METTL3-14-WTAP complex

measured using SPR (KD = 3.92 ± 0.26 , 10�5 M). The binding

of compounds to the mutated proteins 1xmut1, 1xmut2, and

2xmut was not detectable within the sensitivity of the instrument

(Figure S4).
A B C
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Cellular Assays
In order to evaluate the cytotoxicity of the METTL3-14-WTAP

complex activators, HEK293 cells were treated with increasing

concentrations of the compounds 1–4 for 24 h. No cytotoxicity

was observed at up to 100-mMconcentrations for all compounds

(Figure 6A). Compound 1 was also tested at a very high, 10-mM

concentration, and at this concentration, it demonstrated a cyto-

toxic effect on the HEK293 cells (data not shown).

In order to extend the in vitro enzymatic assay results to the

cellular level, we quantified the levels of m6A in RNA after a

2-h treatment with or without the compounds. Compound 1

increased the relative m6A amount by 21.4% ± 12.9%; com-

pound 2, by 16.1% ± 5.2%; and compound 3, by 20.3% ±

15.5% as compared to the vehicle-treated controls (Figure 6B).

Compound 4 did not significantly affect the m6A in the total

RNA sample at the selected 2-h time point. The results suggest

that activation of METTL3-14-WTAP, as observed in silico and

in vitro experiments, is biologically translatable on the cellular

level in HEK293 cells.

Cell-cycle analysis using propidium iodide staining of DNA in

compound-treated HEK293 cells showed a proliferative effect

with compounds 3 and 4. Incubation of HEK293 cells with
Figure 4. METTL3-14-WTAP Assay Signal in

the Presence of SAM, SAH, and Sinefungin

(A–C) SAM, N = 8 (A); SAH, N = 8 (B); sinefungin, N =

14 (C). The results, measured as 3H-methyl group

incorporation into the substrate RNA oligonucleo-

tide probe, are presented as percentages of

methylation compared to vehicle control. SAM, as

the unlabeled methyl donor substrate, as well as the

methyl transferase inhibitors SAH and sinefungin

compete with 3H-SAM for the enzyme binding, re-

sulting in decreased transfer of tritiated methyl

groups to the substrate oligonucleotide probe in the

enzymatic assay.



Figure 5. The Influence of the Small-Mole-

cule Ligands of the METTL3-14-WTAP Com-

plex on the Substrate RNA Methylation

(A–D) The graphs represent the percentage of the

methylation as compared to the reference reaction

(no small-molecule ligand added): (A) compound 1

(N = 16); (B) compound 2 (N = 8); (C) compound 3

(N = 16); and (D) compound 4 (N = 16).
compound 3 shifted the cell-cycle profile toward the mitotic

phase after 24 h (Figure 6C). Compound 4 demonstrated a

concentration-dependent increase in the number of cells at the

S-phase of the cell cycle. The early-stage m6A increase in com-

pound 3 translated to an increase in mitotic cells, whereas all

compounds 1–3 that increased RNA m6A produced an overall

significant change in cells at the G0 and G1 phase as compared

to control cells. At G0 and G1, treatment with these compounds

diminished the overall variation in staining intensity, suggesting

a cell-cycle harmonizing effect with these compounds. Com-

pound 4 increased the amount of DNA-synthesizing cells after

24 h, suggesting a similar but delayed effect on cell proliferation

as that of compound 3.

The compounds’ effect on adenosine N-6 methylation in RNA

was evaluated in unstressed HEK293 cells by liquid chromatog-

raphy-tandem mass spectrometry (LC-MS/MS). The cells were

incubated for 2 h in the presence of 1-pM to 10-mM concentra-

tions of the compounds, vehicle control, or 1 mM meclofena-

mate—an FTO inhibitor. RNA was isolated and fractionated,

followed by m6A and total adenine quantification in both

poly(A)-enriched (mRNA) and poly(A)depleted (predominantly

rRNA) fractions. The relative m6A values represent the percent-

age of total m6A normalized to total adenine.

At 1-nM and 1-mM concentrations, compound 3 produced

a significant increase in the mRNA fraction’s m6A abundance

as compared with vehicle- or meclofenamate-treated control

(1 nM: 41% and 21%; 1 mM: 8.2% and 26%, respectively; Fig-

ure S5A). At 10 mM, all four compounds decreased mRNA m6A

values. Increasedm6A amounts, as compared to vehicle-treated

control cells, were measured from the rRNA fraction with 1-pM

concentrations of all compounds (45%, compound 1; 49%,

compound 2; 57%, compound 3; and 55%, compound 4; Fig-

ure S5B). For compounds 2 and 4, this effect remained signifi-

cant up to 1-mM concentrations. Figure S5C shows the relative

selectivity of the compounds toward mRNA or rRNA. Overall,
Cell Re
the compounds demonstrated selectivity

for rRNA at low concentrations, whereas

at 1 nM or higher concentrations, no pref-

erential selectivity over mRNA or rRNA

was observed for compounds 2 and 3.

Notably, a significant decrease in m6A

amount relative to total adenine was

observed at the 10-mM concentration.

This effect was uniformly seen for all com-

pounds studied. It is feasible to assume

that cells thriving for homeostasis can

react to activating compounds with the in-

duction of counteracting pathways, as is
suggested by the effect of higher concentrations of the

METTL3-14-WTAP-activating compounds in the cellular assays.

Interestingly, the high concentration treatment of the com-

pounds resulted in reduced m6A in both mRNA and rRNA frac-

tions. It is possible that this effect reflects an as-yet-unknown

crosstalk in RNA m6A decoration and further underscores the

need for charting the essential biological pathways taking part

in chemical modifications to RNA. The small molecules pre-

sented here can be helpful in elucidating the dynamics of m6A

regulation by methyltransferases and demethylases (Rosa-Mer-

cado et al., 2017; Nachtergaele and He, 2018) and in deciphering

the roles and crosstalk of these enzymes in the regulation of m6A

in the various RNA species (Nachtergaele and He, 2017).

DISCUSSION

We present here the in silico discovery and experimental valida-

tion of METTL3-14-WTAP enzyme activators. Taken together

with the experimental data, the modeling results provide further

insight into the mechanism of enzyme activation by the studied

compounds. The docking of active compounds shows that the

piperidine and piperazine rings of these small ligands are deeply

embedded into the structure of METTL3-METTL14 protein

(cf. Figures S1D and S2D). The simultaneous docking of com-

pound 4 and SAM to the protein displays the close proximity of

these two compounds in the active center of the protein (Figures

7 and S6). The binding site is also confirmed by studying the

binding of this compound to the single- and double-mutated

METTL3 (cf. above). The interaction between the carbonyl oxy-

gen atoms of the studied series of ligands and the methylation

reaction center at the sulfur atom of the methionine group of

SAM increases the binding affinity of the latter and may also

lower the energy barrier of the substrate RNA methylation reac-

tion. It has been shown by density functional theory calculations

that there is a significant stabilizing non-covalent stabilizing
ports 26, 3762–3771, March 26, 2019 3767
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Figure 6. Effects of Compounds 1–4 on Cytotoxicity, Cell Cycle, and Total RNA m6A in HEK-293

(A) Quantification of propidium iodide (PI)-negative, live cells after a 24-h incubation of HEK293 cells with the compounds 1–4 (50,000 events).

(B) Amount of m6A in total RNA isolated fromHEK293 after a2-h incubation with the compounds 1–4 (N = 3; for compound 3, N = 9) as compared to the amount of

m6A in total RNA of vehicle-treated HEK293 cells.

(C) Analysis of cell-cycle stages in serum-starved cells after a 24-h treatment with compounds 1–4 (50,000 events). Cntrl, vehicle-treated control cells; Sine, cells

treated with 150 mM sinefungin.
interaction between the sulfonium ions and the carbonyl group

(Hussain et al., 2015).

This remarkable activation of the METTL3-14-WTAP-cata-

lyzed RNA methylation by the small-molecule ligands opens a

fascinating possibility to regulate this process in a much more

controlled way by using the concentration-controlled influence

of the activator compounds. Them6Awriter complex is a hetero-

mer composed of METTL3, METTL14, and WTAP (Liu et al.,

2014). InteractionwithWTAP enables effectivem6Amodification

and controls the complex’s localization to specific nuclear loci.

Other interacting proteins that can further modify the complex’s

nuclear targeting include RNA polymerase II (RNAPII) (Slobodin

et al., 2017), ADP-ribose polymerase (PARP), DNA polymerase

kappa (Pol k) (Xiang et al., 2017), KIAA1429 (Schwartz et al.,

2014), zinc finger protein 217 (ZFP217) (Aguilo et al., 2015),

and RNA binding motif protein 15 (RBM15) (Patil et al., 2016).

An additional level of control on the amount of m6A in the cell

is then exerted by m6A eraser proteins or demethylases such
3768 Cell Reports 26, 3762–3771, March 26, 2019
as FTO (Jia et al., 2011) and alkB homolog 5 (ALKBH5) (Zheng

et al., 2013). Interestingly, the message conveyed by specific

m6A modification is then translated by m6A readers (Batista,

2017), the specific functions of which are currently unveiling.

N-6 methylation of adenosine in RNA transcripts has been

shown to modify the binding and affinity of RNA binding proteins

(Batista, 2017).

In the HEK293 cellular assay, treatment with compound 3 pro-

duced an increase in m6A at 2 h that was associated with cell

proliferation at the 24-h time point. Compound 4 increased the

amount of DNA-synthesizing cells after a 24-h incubation, sug-

gesting that both compounds 3 and 4 are modulators of cell pro-

liferation. The effect of compound 4 on RNA methylation at 2 h,

however, remained at the baseline level, suggesting a more de-

layed effect. Dynamic methyltransferase-demethylase activities

control the cellular concentrations of m6A in both mRNA and

rRNA. When the compounds were used to activate METTL3-

14-WTAP in cells, a significant increase over 40% in mRNA



Figure 7. The Binding of SAM and Compound 4 during Their

Simultaneous Docking to METTL3

(A and B) There is a close interaction between the sulfur atom of SAM (A) and

the carbonyl group of compound 4 (B).
m6A was observed with 1 nM of compound 3. This result sug-

gests that compound 3 may act as the lead for further develop-

ment of more potent biologically active METTL3-enzyme

complex activators. The cellular effects of these discovered

compounds require further studies and depend most likely not

only on cell type and phenotype but also on the activity of RNA

demethylating enzymes such as FTO or ALKBH5. It is feasible

to assume that cells thriving for homeostasis can react to acti-

vating compounds with the induction of counteracting

pathways.

The discovery of activators of the m6A writer complex pro-

vides an important upstream means for increasing cellular m6A

amounts. In contrast to FTO inhibitors that rely on the baseline

activity of m6A writing to be effective, these small-molecule

m6Awriter activators can be envisioned to help, for example, tar-

geted guidance of cells to specific phenotypes or control of cell

viability and pluripotency. Although the precise cell-type-spe-

cific and temporal differentiation phase-dependent events and

specific targets of RNA methylation still remain largely elusive,

recent research indicates that controlling the activity of RNA

adenosine-modifying enzymes with small-molecule drugs holds

promise for therapeutic modulation of cell differentiation-dedif-

ferentiation-redifferentiation pathways (Meyer and Jaffrey,

2017). Recently, the increased m6A and activity of METTL3

were reported to be associated with DNA repair and cell survival

after UV-light-induced DNA damage (Xiang et al., 2017). More-

over, a critical role for active methyltransferase and m6A was

described in driving axonal regeneration (Weng et al., 2018). In

general, the variety of potential therapeutic applications for the

small-molecule m6A writer activators ranges from cancer to viral

diseases (Cui et al., 2017; Du et al., 2015; Jaffrey and Kharas,

2017; Lichinchi et al., 2016). Further research and development

of small-molecule compounds that activate adenosine N-6

methylation of RNA for, for example, driving or activating tis-

sue-regenerative responses or modifying cellular responses to

stress can yield control over the m6A transcriptional landscape

to open new possibilities in m6A-targeted pharmacotherapeu-

tics. Importantly, the role of m6A writer activators in metabolic
diseases (possibly combined with, e.g., FTO inhibition) warrants

further studies. The discovery of small-molecule activators, as

presented here, opens up a new avenue in epitranscriptomics.
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J.H., Black, D.L., Darnell, J.E., Jr., and Darnell, R.B. (2017). m6A mRNA mod-

ifications are deposited in nascent pre-mRNA and are not required for splicing

but do specify cytoplasmic turnover. Genes Dev. 31, 990–1006.

Kennedy, E.M., Courtney, D.G., Tsai, K., and Cullen, B.R. (2017). Viral epitran-

scriptomics. J. Virol. 91, e02263–e16.

Killian, B.J., Kravitz, J.Y., Somani, S., Dasgupta, P., Pang, Y.-P., and Gilson,

M.K. (2009). Configurational entropy in protein-peptide binding: computational

study of Tsg101 ubiquitin E2 variant domain with an HIV-derived PTAP nona-

peptide. J. Mol. Biol. 389, 315–335.

Law, V., Knox, C., Djoumbou, Y., Jewison, T., Guo, A.C., Liu, Y., Maciejewski,

A., Arndt, D., Wilson, M., Neveu, V., et al. (2014). DrugBank 4.0: shedding new

light on drug metabolism. Nucleic Acids Res. 42, D1091–D1097.

Li, F., Kennedy, S., Hajian, T., Gibson, E., Seitova, A., Xu, C., Arrowsmith, C.H.,

and Vedadi, M. (2016). A radioactivity-based assay for screening human

m6A-RNA methyltransferase, METTL3-METTL14 complex, and demethylase

ALKBH5. J. Biomol. Screen. 21, 290–297.

Li, Z., Weng, H., Su, R., Weng, X., Zuo, Z., Li, C., Huang, H., Nachtergaele, S.,

Dong, L., Hu, C., et al. (2017). FTO plays an oncogenic role in acute myeloid

leukemia as a N6-methyladenosine RNA demethylase. Cancer Cell 31,

127–141.

Lichinchi, G., Zhao, B.S., Wu, Y., Lu, Z., Qin, Y., He, C., and Rana, T.M. (2016).

Dynamics of human and viral RNA methylation during Zika virus infection. Cell

Host Microbe 20, 666–673.

Lin, S., Choe, J., Du, P., Triboulet, R., and Gregory, R.I. (2016). The m6A meth-

yltransferase METTL3 promotes translation in human cancer cells. Mol. Cell

62, 335–345.

Liu, J., Yue, Y., Han, D., Wang, X., Fu, Y., Zhang, L., Jia, G., Yu, M., Lu, Z.,

Deng, X., et al. (2014). A METTL3-METTL14 complex mediates mammalian

nuclear RNA N6-adenosine methylation. Nat. Chem. Biol. 10, 93–95.

Martin, G.H., and Park, C.Y. (2018). Meddling with METTLs in normal and leu-

kemia stem cells. Cell Stem Cell 22, 139–141.

Martyna, G.J., Klein, M.L., and Tuckerman, M. (1992). Nosé-Hoover chains:
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BD Accuri C6 Plus BD Biosciences RRID:SCR_014422

Biacore T100 Control Software v. 2.0.3 GE Healthcare N/A

Biacore T100 Evaluation Software v. 2.0.3 GE Healthcare N/A

Other

Millex Syringe Filter, Durapore� (PVDF) Millipore Cat #SLGVR04NL

FlashPlate Plus, Streptavidin Perkin Elmer Cat #SMP103A001PK

4–20% Mini-PROTEAN� TGX Precast Protein Gels BIO-RAD Cat #4561093

Amicon� Ultra 2 mL Centrifugal Filters Merck Cat # UFC200324

Superdex 200 10/300 GL GE Healthcare Life Sciences Cat # 17517501

Biacore T100 GE Healthcare Life Sciences RRID:SCR_008424

BD Accuri C6 flow cytometer BD Biosciences N/A

Strep-Tactin�XT protein purification system IBA GmbH Cat # 2-4090-002

Odyssey CLx Imaging System LI-COR Biosciences RRID:SCR_014579

Bio-Layer Interferometry instrument Octet K2 Pall ForteBio LLC N/A
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for reagents should be directed to the Lead Contact, Mati Karelson (mati.karelson@ut.ee). Sharing

of reagents may require MTA agreements.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell cultures
Female HEK293 cells were cultured in DMEM, supplemented with 10% FBS (GIBCO) and penicillin-streptomycin at 37�C and 5%

CO2. Spodoptera frugiperda Sf9 cells (female) were grown in EX-CELL� 420 Serum-Free Medium for Insect Cells in shaker culture

at 27�C.
Cell Reports 26, 3762–3771.e1–e5, March 26, 2019 e2

mailto:mati.karelson@ut.ee


METHOD DETAILS

Molecular modeling
Several crystal structures of the METTL3-METTL14 complex are available at the Protein Data Bank, reported by different groups

(Wang et al., 2016a, Wang et al., 2016b; �Sled�z and Jinek, 2016; Zhou and Pan, 2016). We selected the structure of the METTL3-

METTL14 complex with the S-adenosyl-L-homocysteine (SAH) as describing the potential target binding site for a small-molecule

ligand. The crystal structure of this complex (PDB: 5K7W) had been measured by X-ray diffraction with resolution 1.65 Å. It has

been suggested that METTL3 may be the only active methyltransferase in the heterodimeric complex (Wang et al., 2016a).

The raw crystal structures were corrected and hydrogen atoms were automatically added to the protein using Schrödinger’s Pro-

tein Preparation Wizard of Maestro 10.7 (Sastry et al., 2013).

AutoDock 4.2 (Morris et al., 2009) was used for the docking studies to find out bindingmodes and binding energies of ligands to the

receptor. The number of rotatable bonds of ligand was set by default by AutoDock Tools 1.5.6 (Morris et al., 2009). However, if the

number was greater than 6, then some of rotatable bondsweremade as non-rotatable, otherwise calculations can be inaccurate. The

active site was surrounded with a grid-box sized 653 653 65 points with spacing of 0.375 Å. The AutoDock 4.2 force field was used

in all molecular docking simulations. The docking efficiencies (DE) were calculated as follows

DE =
DGdock

N
(2)

where DGdock is the docking free energy and N is the number of non-hydrogen (‘‘heavy’’) atoms in the ligand molecule.

The structure of ligand molecules was optimized using the density functional theory B3LYP method (Stephens et al., 1994) with

6-31G basis set.

The molecular dynamics simulations were carried out using Desmond simulation package of Schrödinger LLC (Bowers et al.,

2006). The NPT ensemble with the temperature 300 K and pressure 1 bar was applied in all runs. The simulation lengths were

25 ns and 50 ns with relaxation time 1 ps. The OPLS_2005 force field parameters were used in all simulations (Banks et al., 2005).

The long range electrostatic interactions were calculated using the Particle Mesh Ewald method (Toukmaji and Board, 1996). The

cutoff radius in Coulomb’ interactions was 9.0 Å. The water molecules were described using SPC (simple point charge) model (Ziel-

kiewicz, 2005). The Martyna-Tuckerman-Klein chain coupling scheme (Martyna et al., 1992) with a coupling constant of 2.0 ps was

used for the pressure control and the Nosé-Hoover chain coupling scheme (Banks et al., 2005) for the temperature control. Non-

bonded forces were calculated using an r-RESPA integrator where the short range forces were updated every step and the long

range forces were updated every three steps. The trajectories were saved at 4.8 ps intervals for analysis. The behavior and interac-

tions between the ligands and enzyme were analyzed using the Simulation Interaction Diagram tool implemented in Desmond

molecular dynamics package. The stability of molecular dynamics simulations was monitored by looking on the root mean square

deviation (RMSD) of the ligand and protein atom positions in time. For a system involving N atoms, RMSD is defined as follows:

RMSD=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
a= 1

ð r!aj � r!aiÞ2
vuut (3)

where r
!

ai and r
!

aj are the position vectors of atom a at the consecutive time moments i and j, respectively. We have carried Multiple

Molecular Dynamics Simulations with 10 and 25 ns lengths. This methodology is widely accepted and can sample enough confor-

mational space as longer, single trajectory simulations (Park et al., 2006; Killian et al., 2009). This sampling is expected to give more

stable results than one longmolecular dynamics simulation. The graphs in respective Figures are given for representative 25 ns runs.

Cytotoxicity and cell cycle analyses
For these assays, HEK293 cells were exposed to the four compounds of varying concentrations or 150 mMsinefungin for 24h. For the

cytotoxicity assay live cells were collected, washed and stained with propidium iodide (PI). The cell cycle assay cells were collected

washed and fixed with ice-cold 70% ethanol at �20�C and subsequently stained with PI. The PI-treated samples underwent a flow

cytometric analysis with the BD Accuri C6 flow cytometer, using excitation and emission wavelengths lEx = 488nm and lEm = 540nm.

RNA work
Semi-confluent cultures of HEK293 cells were incubated with the compounds 1-4 for 2h and the total RNA was collected using the

TRIzol reagent. The purification of RNA was done according to the manufacturer’s protocol.

For LC-MS/MS the total RNA of approx. 3 million compound-treated HEK293 cells were collected. 0.1% DMSO and 1 mMmeclo-

fenamate were used as controls. Processing purified RNA with PolyATtract mRNA Isolation Systems IV yielded mRNA (Poly-A en-

riched) and rRNA (Poly-A depleted) fractions. 300 ng of each RNA fraction was digested with 2 U of nuclease P1 in 25 mM of

NaCl and 2.5 mM ZnCl2 at 37
�C for 2h, followed by an incubation with 0.5 U alkaline phosphatase and 3 mL of 1 M NH4HCO3 for

2h at 37�C. All RNA concentrations were measured with NanoDrop. In preparation for LS-MS/MS analysis, sample was diluted to

50 mL and filtered with 0.22 mm pore size, 4mm diameter PVDF syringe filter.
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RNA dot blots
Approx. 250 ng of total RNA was loaded onto a positively charged nylon membrane in triplicates, crosslinked and stained with 1%

Methylene blue for the RNA loading control. After washes and 1h blocking, the blots were then incubated with rabbit-anti-m6A anti-

body overnight. For signal detection the goat-anti-rabbit-IRDye 800CW antibody was used and fluorescent signal was detected with

the Odyssey CLx system (LI-COR). The resulting images were analyzed with ImageJ software.

METTL3-14-WTAP protein complex production in HEK293
The plasmids for METTL3 and METTL14 proteins, pcDNA3/Flag-METTL3 and pcDNA3/Flag-METTL14 (Liu et al., 2014), were a gift

from Prof. Chuan He. Functional Genomics Unit (Helsinki, Finland) performed plasmid DNA amplifications and purification. HEK293,

grown to semi-confluence on 10cm culture plates, were transiently co-transfected with 25 mg of each METTL3 and METTL14 plas-

mids using Lipofectamine� 2000. Isolation of the METTL3-14-WTAP complex comprised of lysis of HEK293 cells 48h post-transfec-

tion and purification of the lysate with the ANTI-FLAG�M2Affinity Gel. Endogenously expressedWTAP protein was co-purified in the

complex. The complex was eluted with 150 ng/mL 3x FLAG� peptide.

Western blotting of the Flag-tagged proteins
The anti-flag purified proteins were denaturized and run on Mini-PROTEAN precast 4%–20% gels (Bio-Rad), 1 mg per well. Precision

Plus Protein Dual Color Standard from Bio-Rad was used as a ladder. The proteins were transferred onto an Immobilon FL PVDF

membrane and blocked with the blocking buffer in PBS. The membrane to be probed with mouse-anti-FLAG, was blocked in 5%

non-fat milk in TBST (20 mM Tris, 150 mM NaCl, pH 7.4, 0,1% Tween 20), the same solution was used for mouse-anti-FLAG

(1:1000) primary antibody dilution. Rabbit-anti-METTL3 (1:2000), rabbit-anti-METTL14 (1:200) and mouse-anti-WTAP (1:200) were

diluted in blocking buffer. Blocking was done at RT on shaker for 1h and primary antibody incubations at +4�C on shaker O/N.

The membranes were washed three times with PBST (137 mMNaCl, 2.7 mMKCl, 4.3 mMNa2HPO4, 1.47 mMKH2PO4, 0.1% Tween

20), and placed into the secondary antibody solution. In case of anti-Flag antibody all the washes were done with TBST. Secondary

antibodies goat-anti-rabbit IRDye 800CW and goat-anti-mouse IRDye 680LT were diluted in blocking buffer 1:10000. Membranes

were incubated with secondary antibody for 1h at RT in the dark. After three subsequent washes, themembranes were imaged using

Odyssey CLx (Figure S7).

Production of METTL3 protein mutants
The three protein mutants of the METTL3 protein were produced using baculovirus expression system. The mutants were 1xmut1

(W373A), 1xmut2 (D395A) and 2xmut (W373A; K513A) respectively.

Cloned cDNAswere ordered from and synthesized byGENEWIZ. All the open reading frameswere codon optimized for expression

in Spodoptera frugiperda Sf9 tissue culture cells and were designed to contain an additional N-terminal strep-II affinity tag

MASAWSHPQFEKSG. cDNAs were subcloned between BamHI and HindIII restriction sites in the multicloning site of the pFastBac1

plasmid vector and initial verification of the resulting plasmid clones was carried out with restriction enzyme analysis. The coding

regions of all plasmid constructs that where picked for subsequent baculovirus construction were then also fully sequenced. Transfer

of the expression cassettes from pFastBac1 vectors to the baculovirus genomic DNAwas carried out using Bac-to-Bac protocol and

reagents. Resulting genomic DNA preparations of recombinant baculoviruses were then transfected into the Sf9 cells using the 007

transfection reagent and following the protocol provided by manufacturer. The resulting P1 generation baculoviruses were passed

through two additional amplification rounds (P2-P3) to obtain virus quantities and titers that would be sufficient for subsequent large-

scale protein expression experiments. Preliminary small-scale protein purification tests to verify the successful expression were car-

ried out with 50 mL of Strep-Tactin XT beads from the extracts of the infected Sf9 cells used in P3 viral amplification round. For large

scale protein expression and purification, 1L of suspension culture of Sf9 cells at concentration 2x106 cells/mL was infected with the

high titer P3 generation virus at approximate MOI (multiplicity of infection) 5. Cells were harvested after three days and the Strep-

Tactin XT affinity chromatography was carried out subsequently.

The mutant METTL3 proteins eluted from the Strep-Tactin column had relatively low protein concentration. Concentrating these

preparations in Amicon centrifugal filter units resulted in the formation of soluble aggregates according to the following Superdex 200

chromatography. Because of this reason, the purification of METTL3 1xmut1, 1xmut2 and 2xmut, proteins was limited to the Strep-

Tactin XT affinity chromatography step. Eluted fractions from this step were pooled together and dialyzed into the final storage buffer

(25 mM HEPES pH 7.6 / 150 mM NaCl) to remove 50 mM biotin that the elution buffer contains.

METTL3-14-WTAP enzymatic assay
The enzymatic assay wasmodified from Li et al. (2016). The experiments were conducted in reaction buffer (20 mMTris pH 7.5, 1mM

DTT, 0.01% Triton X-100, 40U/100ml buffer RNaseOUT). The reaction mixture contained 200 nM unmethylated N6-adenine single-

stranded-RNA probewith a biotin tag (50-uacacucgaucuggacuaaagcugcuc-biotin-30, Integrated DNA Technologies), 500 nM tritiated

S-(50-adenosyl)-L–methionine (3H-SAM) and 5nM purified METTL3-14-WTAP complex. DMSO content, as a solvent for small mole-

cules in the enzymatic reaction, constituted 0.1%. Enzymatic assay reactions were incubated for 20h at 21�C on shaker, transferred
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to wells on streptavidin-coated 96-well plate and incubated for additional 1h at room temperature. After that, the plate was washed

with sterile 20mMTris pH 7.5 2x, the results were acquired using 2450MicroBeta� liquid scintillation counter. The scintillation counts

were proportional to amount of methylated RNA.

SPR measurements of ligand-protein binding
SPR measurements were performed with a Biacore T100 at 25�C. The instrument was cleaned using an in-build ‘‘desorb’’ protocol

before a new CM5 series S sensor chip was docked and primed at least three times with a 1.02x PBS-P+ buffer (10x PBS-P+). After

the priming, the sensor chip was preconditioned with two 20 mL injections, each of 50mMNaOH, 100mMHCl and 0.05%SDSwith a

flow rate of 100 mL/min. After preconditioning, the detector signal was normalized with 70% glycerol and the system was re-primed.

All used glassware was rinsed with 50mMNaOH and filtered, deionized water before use and all used buffers were sterile filtered and

degassed before each experiment.

a2-Macroglobulin (10 mg/mL) and METTL3-METTL14 (100 mg/mL) diluted in 10 mM sodium acetate with and without 50 mM NaCl

(pH 4.0), were immobilized on reference and active flow cells, respectively, to a surface density of approximately 12000 RU by using

standard amine coupling (Johnsson et al., 1991). The carboxymethyl dextran surface was activated with a 7-min injection of a 1:1

ratio of 0.4 M EDC ((1-ethyl-3-(3-dimethylaminopropyl) carbodiimide) and 0.1 M NHS (N-hydroxysuccinimide). Immobilized proteins

were injected onto the flow cells using a flow rate of 10 mL/min for 420 s and remaining amine-reactive NHS-esters were blocked with

1 M ethanolamine-HCl (pH 8.0) using 1.02x PBS-P+ as a running buffer.

Protein mutant binding study using Bio-Layer Interferometry
The binding of compound 4 to the METTL3 protein mutants was carried out using Bio-Layer Interferometry instrument Octet K2 with

Streptavidin sensors. Sensors were equilibrated offline in PBS for 10 min and then monitored on-line for 60 s for baseline establish-

ment. For binding measurement, sensors were loaded with METTL3 or its mutants for 180 s, afterward they were transferred to PBS

for 60 s for baseline establishment and then to ligand solutions for association for 180 s. Afterward sensors were transferred to PBS

for 5min for off-rate measurement. Kinetics data were fit using a 1:1 binding global model of data analysis software provided by Forte

Bio.

LC-MS/MS analysis of RNA fractions
Analysis of nucleosides was performed with Nexera X2 UHPLC instrument with triple quadrupole (MS/MS) system 8050, both from

Shimadzu. Injected sample volume was 5 mL. Chromatographic separation of adenosine and 6-methylated adenosine was done with

reversed phase column (2.1x100 mm, 1.7 mm Waters). UHPLC eluent were A, 10 mM ammonium formate at pH 5 and B, methanol.

Gradient elution was from 5% to 25%B in 5minutes, followed 4minutes at 5%MeOH total flow being 400 mL/min. Retention times of

monitored adenosines were 3.6 and 5.6 minutes respectively. Mass spectrometer was set to positive electrospray ionization mode

with daughter ion analysis mode (MS/MS) (Ade 268 - > 136 m/z and 6mAde 282- > 150 m/z) using collision energy 7 and 21 respec-

tively. Ion optimization was done using automatic tuning with source capillary temperature at 400�C and 250�C was used as transfer

line temperature. Amixture of Nitrogen andAir was used as electrospray ionization gases and Argonwas used as collision gas. Quan-

titation of sample analysis was done with instruments quantitation program for adenosine at 1 to 10,000 nM and for 6-methylated

adenosine at 0.5 to 3,000 mM concentration ranges.

QUANTIFICATION AND STATISTICAL ANALYSIS

Enzymatic assay curve-fitting analysis (Figures 4 and 5) and determination of the IC50 and EC50 values were performed using Graph-

Pad Prism software (version 7). This software was also used for graphical representation of smoothed Biacore association-dissoci-

ation curves (Figures 2 and 3) as well as for the graphs for dot-blot and LC-MS/MS. In Figures 2 and 3 the per second values were

smoothened by averaging values per five-second intervals. Statistical significance was assessed using one-way ANOVA and un-

paired t test with the GraphPad Prism software. Results were considered statistically significant at p values lower than 0.05. SEM

denotes standard error of the mean, and N values represent the numbers of replicates in each experiment.
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