Universal or targeted cardiovascular screening? Modelling study using a sector-specific distributional cost effectiveness analysis

Brendan Collinsa,⁎, Chris Kypridemosa, Richard Cooksonb, Paula Parvulescuc, Philip McHalea, Maria Guzman-Castillod, Piotr Bandosze, Helen Bromleya, Simon Capewella, Martin O’Flahertya

a University of Liverpool, Department of Public Health and Policy, United Kingdom
b Centre for Health Economics, University of York, United Kingdom
c Liverpool City Council, United Kingdom
d University of Helsinki, Helsinki, Finland
e Medical University of Gdansk, Poland

ARTICLE INFO

Keywords:
Public health
Mass screening
Cardiovascular diseases
Socioeconomic factors

ABSTRACT

Distributional cost effectiveness analysis is a new method that can help to redesign prevention programmes by explicitly modelling the distribution of health opportunity costs as well as the distribution of health benefits. Previously we modelled cardiovascular disease (CVD) screening audit data from Liverpool, UK to see if the city could redesign its cardiovascular screening programme to enhance its cost effectiveness and equity. Building on this previous analysis, we explicitly examined the distribution of health opportunity costs and we looked at new redesign options co-designed with stakeholders. We simulated four plausible scenarios: a) no CVD screening, b) ‘current’ basic universal CVD screening as currently implemented, c) enhanced universal CVD screening with ‘increased’ population-wide delivery, and d) ‘universal plus targeted’ with top-up delivery to the most deprived fifth. We also compared assumptions around whether displaced health spend would come from programmes that might benefit the poor more and how much health these programmes would generate. The main outcomes were net health benefit and change in the slope index of inequality (SII) in QALYs per 100,000 person years. ‘Universal plus targeted’ dominated ‘increased’ and ‘current’ and also reduced health inequality by −0.65 QALYs per 100,000 person years. Results are highly sensitive to assumptions about opportunity costs and, in particular, whether funding comes from health care or local government budgets. By analysing who loses as well as who gains from expenditure decisions, distributional cost effectiveness analysis can help decision makers to redesign prevention programmes in ways that improve health and reduce health inequality.

1. Introduction

There is an international agenda around cardiovascular disease (CVD) prevention, with substantial screening programmes in many countries including Japan, Scotland and the United States. However, the optimal composition and implementation of a CVD screening programme remains unclear. One such example is in England ("NHS Health Checks") where there is a debate over whether the programme is cost effective and/or equitable. There are concerns that screening programmes may tend to increase health inequalities, insofar as uptake is disproportionately higher among people from socially advantaged groups, a phenomenon known as ‘intervention generated inequality’ (Lorenc et al., 2013).

1.1. NHS Health Checks

The English cardiovascular screening programme (NHS Health Checks), has been implemented in England from April 2009 onwards and around 5.8 million people in England participated from April 2014–May 2018, 37% of those eligible (Public Health England, 2018). Cardiovascular screening is offered on a cycle, with people invited once every five years starting from their 40th birthday. Most local government public health teams commission this programme from local General Practitioners (GPs, family doctors).

One of the objectives of cardiovascular screening is to tackle health inequalities but the true equity impact of these programmes has not been established. In the present study we looked at equity impacts as well as overall effectiveness, as recommended by several methods.
Table 1
Detail of Modelled Health Check scenarios with 4 sets of alternate assumptions around health production costs.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Main assumptions</th>
<th>Intervention costs</th>
<th>Health production costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current (all assumptions were based on</td>
<td>Coverage: 13.8% Uptake: 32.3%</td>
<td>£5.11 per invitation</td>
<td>1a. £13000/QALY unadjusted for deprivation</td>
</tr>
<tr>
<td>evidence from local audit)</td>
<td>Prescription rate: 9.1% (low risk) 25.8% (middle risk) 41.7% (high risk)</td>
<td>£13.28 per participant</td>
<td>1b. £13000/QALY adjusted for deprivation</td>
</tr>
<tr>
<td>Increased (coverage and uptake assumptions</td>
<td>Coverage increased from 13.8% to 20% Uptake increased from 32.3% to 66%</td>
<td>£5.11 per invitation</td>
<td>2a. Hybrid of £13000/QALY NHS medical spend</td>
</tr>
<tr>
<td>were based on existing targets)</td>
<td>Prescription: 9.1% (low risk) 25.8% (middle risk) 41.7% (high risk)</td>
<td>£15.00 per participant</td>
<td>and £2000/QALY Public Health spend, adjusted</td>
</tr>
<tr>
<td>Universal plus targeted (includes current)</td>
<td>Coverage: 20% for the most deprived national IMD fifth and 13.8% for all other</td>
<td>£5.11 per invitation</td>
<td>for deprivation</td>
</tr>
<tr>
<td>(based on existing targets to deprived areas)</td>
<td>fifths and 13.8% for all other fifths Assumes risk profile of attendees in the most</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>deprivation national IMD fifth and 32.3% for all other fifths</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prescription: 9.1% (low risk) 25.8% (middle risk) 41.7% (high risk)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

guides (Claxton et al., 2014; Sanders et al., 2016). Cookson et al. (2017) outlined the main methodologies for incorporating equity impacts into cost effectiveness analysis (CEA): equity impact analysis, where distributional impacts on different groups are analysed; and equity trade-off analysis, where trade-offs between improving total health and reducing health inequality are explicitly quantified, for example by counting the total health opportunity cost of pursuing a more equitable policy or by using an equity parameter that represents commissioners' degree of concern for reducing health inequality. There are examples of equity trade-offs with programmes like bowel cancer screening being a 'win-lose' - cost effective but increasing inequalities (Asaria et al., 2015), while treatments for mesothelioma may be a 'lose-win', having a high incremental cost per QALY, but reducing inequalities (Shah et al., 2013). The challenge is identifying whether current or future Health Checks scenarios are 'win-wins', 'win-lose', 'lose-win', or 'lose-lose'.

In the present analysis, we build on our previous study which found that targeting health checks to deprived populations would be more cost effective and equitable than having a universal offer (Kypridemos et al., 2016). Our previous study modelled change in slope index of inequality (SII) and incremental cost effectiveness ratios (ICERs) but did not factor in health foregone from healthcare spend. The present study goes further by including sector-specific estimates of health foregone from taking money away from other medical and public health programmes. In England, this health production cost ratio may be around £2000/QALY for public health programmes (Owen et al., 2011, 2017) which are typically commissioned by local government, and around £13000/QALY for medical interventions in the NHS (Claxton et al., 2013). However, few studies consider differential sectoral health production costs in this way. Health production costs may also be adjusted for deprivation as people from deprived areas use more health resources, for example NHS spending is 20% higher in the most deprived quintile group, so for every unit of cost diverted, a greater proportion of the health foregone may fall to this group (Asaria et al., 2016). We wanted to test whether assumptions about sector-specific health production costs, and socioeconomic group-specific health production costs would change the results of which scenario was most cost effective. Often, health foregone from diverted spend is not factored into cost effectiveness analysis in this way, including in our previous study (Asaria et al., 2016).

This study therefore aims to show how this novel set of methods can be used in practice to redesign a city-wide cardiovascular screening programme.

2. Methods

2.1. Overview

The IMPACT_NCD model is a dynamic, stochastic, microsimulation model with health economic outcomes (costs and QALYs) measured across socioeconomic groups (deprivation quintiles or fifths). It has been described and validated previously (Kypridemos et al., 2016).

2.2. Data sources

The IMPACT_NCD model was populated with data projecting Liverpool demographics (by age, sex, and National Index of Multiple Deprivation quintile groups, QIMD). A subsample of Health Survey for England (HSE) participants living in Northwest England was utilised to estimate current and past population exposures to seven CVD risk factors; inadequate fruit & vegetable consumption, physical inactivity, smoking, excess body mass index (BMI), hypertension, high cholesterol, and diabetes mellitus, for years 2002 to 2014. Then, past risk factor exposures were projected to the year 2040 stratified by age, sex, and QIMD to estimate future population exposures. Subsequently, the different scenarios were modelled through their effect on these risk factors for selected individuals or the whole synthetic population.

2.3. Co-production of scenarios

Four performance scenarios were designed in collaboration with stakeholders from Liverpool City Council to reflect the real-world decision challenges that they were grappling with. These four scenarios varied the coverage – the proportion of the population invited for a health check every year, and the uptake – the proportion of invitees attending cardiovascular screening. Optimal annual performance would be coverage of 20% (as it is a rolling five year programme with 20% of the population invited each year) and uptake of 100%. However, we used 20% coverage and 66% uptake as a maximum that was considered to be achievable. We compared a 'no health checks' scenario with the 'current' performance scenario of cardiovascular screening performance in Liverpool (where coverage was 13.8% per year, uptake was 32.3%); a hypothetical scenario of 'increased' performance (coverage increased to 20%, uptake increased to 66%); and a hypothetical 'universal plus targeted' top-up scenario, where coverage in the most deprived fifth would increase to 20% per year and uptake would increase to 66% per year, but coverage and uptake in the rest of the population would not
increase (Table 1).

2.4. Intervention costs

The intervention cost in the ‘current’ scenario was £5.11 per invitation and £15.00 per attendance. Our stakeholders suggested that the extra effort involved for the hypothetical ‘increased’ and ‘universal plus targeted’ scenarios would attract slightly higher costs of £15.00 per attendance than the current cost of £13.28 per attendance. For the ‘increased’ and ‘universal plus targeted’ scenarios, changes in performance occurred from 2017 onwards (see Appendix and previous paper for full details of modelling methods).

2.5. Outcomes

The main outcomes were net health benefits (Stinnett and Mullaly, 1998), and change in slope index in inequalities (SII) per 100,000 person-years. We also looked at ICERs (incremental cost effectiveness ratios – incremental net cost per QALY gained) and gross health benefits. QALYs in the model were measured across the whole population aged 30–84 and the quality of life decrements were deficit measures for CVD and diabetes only. We did not include people under 30 or over 84 as CVD prevention has limited impact in those age groups. The costs were intervention costs, and ongoing CVD and diabetes health and social care costs. Costs and QALYs were discounted at 3.5% per annum and adjusted for inflation to 2016 pounds sterling. For socioeconomic status, we used national quintile groups (IMD fifths) of index of multiple deprivation (IMD) scores, based on the small area (lower layer super output area) where individuals lived. We used IMD 2010 which was current when the simulation begins in 2011. When capturing trends, older versions of the IMD were used and assumed to be similar to 2010 version. The dynamic model was run for a 30-year time horizon from 2011 to 2040. This time horizon was chosen to give cardiovascular screening time to imbed and produce health gains.

Net health benefits were calculated in the standard way by combining changes in QALYs with changes in net costs, converted into QALYs based on a health production cost (Kypridemos et al., 2016). For this study, we made two enhancements to standard health economic methods. First, we compared a standard health production cost with a universal plus targeted scenario, and adjusted for inequalities it means that, when £13000 of health spend was diverted across the whole population, the most deprived fifth lose 12% more of this spend and the resulting QALYs that could have been produced. The rate at which healthcare spend is used is £11,564 per QALY gained in the most deprived fifth, compared with £14,471 in the least deprived fifth. Or in the hybrid scenario when £2000 of public health spend was diverted across the whole, every £1779 diverted takes away a QALY from the most deprived fifth, compared with £2226 per QALY in the least deprived fifth (Stinnett and Mullaly, 1998).

So all together this gave four alternative assumptions for health production costs; 1a. £13000/QALY for both medical and public health spend, unadjusted for inequalities; 1b. £13000/QALY average for both medical and public health spend, adjusted for inequalities; 2a. hybrid of £13000/QALY for medical spend and £2000/QALY for public health spend, unadjusted for inequalities; 2b. hybrid of £13000/QALY for medical spend and £2000/QALY for public health spend, adjusted for inequalities.

To measure equity impacts we used the adjusted reduction in slope index of inequality (SII, the linear regression coefficient) of rates of incremental net health benefit per 100,000 person years across IMD fifths. To account for population size differences in each fifth, each IMD fifth (quintile group) was characterized by a ridit value that corresponds to the average cumulative frequency of the IMD fifth (Bross, 1958). So for example an SII reduction of 0.5 means that the gradient (the estimated linear regression coefficient reflecting the difference between the most and least deprived person) has reduced by 0.5 QALYs/100,000 population. Liverpool has around 60% of its population in the most deprived quintile group. Because the Liverpool population had less than 0.5% of its population in the least deprived IMD fifth nationally (quintile 1), comparisons were made only on IMD fifths 2–5, where 5 was the most deprived (see chart in Appendix). This was because even with a 30-year time horizon, the outcomes in quintile 1 were subject to a high level of stochastic uncertainty.

3. Results

The ICERs were reported in our previous paper and appendices and are shown in Table 2 (Kypridemos et al., 2018a). Compared with a ‘no Health Checks’ scenario over a time horizon of 30 years from 2011 to 2040, the incremental cost effectiveness ratio (ICER) of the current Health Checks scenario was approximately £11,000 per QALY, £7400 per QALY for the ‘increased’ scenario, and £1500 per QALY for the ‘universal plus targeted’ scenario. Reducing the time horizon to 20 years increased these ICERs to around £21,000 per QALY for the current scenario, £13000 per QALY for the ‘increased’ scenario, and £14,000 per QALY for the ‘universal plus targeted’ scenario. Compared with the current Health Checks scenario over a 30 year time horizon, the ICER for the ‘increased’ scenario was dominant (£1900 saved per QALY gained), while the ‘universal plus targeted’ scenario was also dominant – it was cheaper (cost £2million less) and more effective (delivered 280 more QALYs). The ‘universal plus targeted’ scenario also dominated the ‘increased’ scenario – it cost around £3million less and delivered 150 more QALYs. Over 20 years, ‘increased’ was dominant when compared to ‘universal plus targeted’, indicating that the ‘universal plus targeted’ scenario takes more than 20 years to become the dominant scenario. These results are presented in more detail in the previously published findings paper, which also includes additional scenarios (Kypridemos et al., 2018a).

3.1. Change in outcomes when using different health production costs

Fig. 1 shows the gross health benefits (total QALYs gained per 100,000 person years only, irrespective of costs) and SII reduction for the three scenarios with 50% uncertainty intervals, or interquartile ranges. The gross health benefits ranged from 2.4 QALYs (95% Uncertainty Interval – 4.5 to 11.1) per 100,000 person years for the
Modelled results of scenarios: Net health benefits (QALYs gained per 100,000 person-years), change in SII in net health benefits (QALYs per 100,000 person-years), median net costs, median incremental QALYs gained, and median ICER, for three Health Check scenarios (current, increased, universal plus targeted [shown as ‘targeted’]), compared with ‘No Health Checks’. Modelled data for Liverpool, 2011–040. Shown for £13000 per QALY health production cost, and hybrid health production cost (£2000 for Public Health and £13000 for NHS medical spend).

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Health production cost</th>
<th>Hybrid</th>
<th></th>
<th>Median net costs</th>
<th>Median incremental QALYs gained</th>
<th>Median ICER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>£13000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current unadjusted</td>
<td>−6.469</td>
<td>−0.493</td>
<td>12.495</td>
<td>−19.45</td>
<td>£3,438,881</td>
<td>218</td>
</tr>
<tr>
<td>Current adjusted</td>
<td>−7.259</td>
<td>−0.755</td>
<td>6.472</td>
<td>−21.01</td>
<td>£4,397,549</td>
<td>360</td>
</tr>
<tr>
<td>Increased</td>
<td>−0.649</td>
<td>−0.043</td>
<td>13.448</td>
<td>−37.65</td>
<td>£1,277,495</td>
<td>498</td>
</tr>
<tr>
<td>Increased adjusted</td>
<td>0.431</td>
<td>0.226</td>
<td>23.706</td>
<td>−34.84</td>
<td>£27.58</td>
<td>218</td>
</tr>
<tr>
<td>Targeted adjustable</td>
<td>11.780</td>
<td>4.497</td>
<td>−14.969</td>
<td>−27.58</td>
<td>£1,277,495</td>
<td>498</td>
</tr>
<tr>
<td>Targeted unadjusted</td>
<td>11.787</td>
<td>4.476</td>
<td>−6.322</td>
<td>−24.84</td>
<td>£27.58</td>
<td>218</td>
</tr>
</tbody>
</table>

All scenarios are compared with counterfactual of no Health Checks. Median ICERs are based on joint distribution of costs and incremental QALYs, which is why they do not equal median costs divided by median QALYs. QALYs: quality adjusted life years. ICER: Incremental Cost Effectiveness Ratio (cost per QALY gained). SII: slope index of inequality. NHB: net health benefit.

Fig. 1. Gross health benefits (Net QALYs gained per 100,000 person-years) and change in SII in net QALYs gained per 100,000 person years for three Health Check scenarios (current, increased, universal plus targeted [shown as ‘targeted’]), compared with ‘No Health Checks’ scenario. Modelled data for Liverpool, 2011–2040. Ellipses depict 50% uncertainty intervals.

Fig. 2. Net health benefits (QALYs gained per 100,000 person-years) and change in SII in net health benefits (QALYs per 100,000 person-years) for three Health Check scenarios (current, increased, universal plus targeted [shown as ‘targeted’]), compared with ‘No Health Checks’. Modelled data for Liverpool, 2011–040. Ellipses depict 50% uncertainty intervals. Note: based on £13000 per QALY health production costs adjusted and unadjusted for deprivation (assumption 1a and 1b).
is very close to the health production cost (they are both around £13000). Adjusting for inequalities also slightly reduces the change in SII for the ‘targeted’ scenario but it still would be reducing inequalities.

4. Discussion

This study demonstrates how a cardiovascular screening programme might be redesigned if reducing health inequalities was a primary aim. We started with real world data for a city with a high level of CVD risk, which should be a good candidate for cardiovascular screening to improve health and reduce inequalities. Previous studies estimated that cardiovascular screening was likely to be cost effective. Cardiovascular screening in England was prospectively modelled by the Department of Health (DH) in 2008 (Department of Health, 2008) which found an incremental cost-effectiveness ratio (ICER) of £2480 per QALY which may be regarded as being very cost effective. Other papers have found ICERs from £900/QALY (Hinde et al., 2017) to around £23,000/QALY (Crossan et al., 2017). Our results were similar to this, in that cardiovascular screening is likely to be considered cost effective using the traditional NICE threshold of £20000 to £30000 per QALY gained.

However, as in other studies (Chang et al., 2019), this analysis found that the current performance of cardiovascular screening in Liverpool is not equitable and may not even be cost effective depending on the health production cost or ‘shadow price’ applied. If performance was increased (more higher risk people attending and given lifestyle advice or medication), then the programme would be more likely to be cost effective over the period studied, but would still increase inequalities (it could be a win-lose). However, if cardiovascular screening were targeted to the most deprived fifth, it could be a win-win; this would increase the cost effectiveness and reduce inequalities.

This study adds to the literature that such programmes should adopt proportionate universalism in targeting in proportion to need. A strength is that the dynamic model measures differences in costs and outcomes over the whole running time of the model so we can determine how long the programme takes to become cost effective. Our dynamic model may find cardiovascular screening is less effective than other studies because key CVD risk factors are generally showing a secular trend of reducing over time.

4.2. Limitations

Though the model includes risk of death from all causes, this study only uses a deficit measure comparing QALYs lost and gained from CVD and diabetes and through ageing, not from other specific diseases. Furthermore, Liverpool only has a very small number of people in the most affluent IMD fifth which means that the slope index of inequalities was only measured for fifths 2–5. One way of accounting for this would have been to use local deprivation quintiles for Liverpool instead of national. However, this was not possible as some model inputs came from national datasets.
health gains for the most deprived fifth around 7 times greater than in the least deprived (Robson et al., 2017).

Future studies of cardiovascular screening could model inequalities between ethnic groups, gender differences, or other PROGRESS-Plus factors (Welch et al., 2012). Understanding more about the drivers of inequalities in health spending (e.g. supply, demand, compressed years) may tell us more about how the health foregone from disinvestment varies by socioeconomic group. Understanding more about what GPs need to do to increase uptake in deprived groups, and the true additional costs of ‘going the last mile’ to get the most vulnerable people to attend Health Checks would be valuable.

5. Conclusions

Based on real world data from Liverpool and considering sector and deprivation specific opportunity costs, current implementation of universal cardiovascular screening does not reduce inequalities. Deprived populations could therefore lose out twice, as cardiovascular screening programmes may be favoured over other programmes that would actually reduce inequalities. In contrast, redesigning with a universal plus targeted approach might be more cost effective and would reduce inequalities. Most importantly, this study has shown that understanding the true opportunity costs for different sectors of the economy is important as it can vastly affect the cost effectiveness calculation.

Acknowledgements

The authors would like to thank Richard Jones for their support in collecting the data and discussing the policy options. This study was partly funded by NIHR NETSCC ID 16/165/01 workHORSE. We also thank Liverpool City Council for some initial funding. CK was supported by the Medical Research Council, MOF and SC by HEFCE, HB and BC by the US National Institutes of Health.

Role of funding source

Initial funding from Liverpool City Council, with partial funding through NIHR HTA project 16/165/-1 workHORSE. Funders had no role in the manuscript apart from coauthors from Liverpool City Council Public Health who were involved in designing the scenarios for Health Checks and writing the manuscript. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health.

Ethics committee approval

As this paper is a synthetic population model which re-uses routine audit data and other survey data, ethics committee approval was not sought or given.

Data sharing

Data are available from the corresponding author. In addition, model methods are published online at https://github.com/ChristK/IMPACTncd/Liverpool.

Transparency declaration

The lead author (the manuscript’s guarantor) affirms that the manuscript is an honest, accurate, and transparent account of the study being reported; that no important aspects of the study have been omitted; and that any discrepancies from the study as planned (and, if relevant, registered) have been explained.

Declaration of competing interest

The authors declare that they received some funding from Liverpool City Council and from NIHR for this piece of work. Prof Cookson has received other grants from NIHR that are not relevant to this piece of work. There were no other conflicts of interest.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ypmed.2019.105879.

References


