Linguistic variation and adaptation in nominal morphosyntax
Some insights from previous and ongoing research

Francesca Di Garbo

University of Helsinki

24.01.2020
Research interests (broad)

- Linguistic diversity, its distribution in space and time, and its non-linguistic correlates.
Research interests (narrow)

- **Diachronic typology** – using synchronic distributions of language structures to draw inferences about language change.
Research interests (narrow)

- **Diachronic typology** – using synchronic distributions of language structures to draw inferences about language change.
- **Sociolinguistic typology** – understanding adaptive responses of language structures to the non-linguistic environment.
Research interests (narrow)

- **Diachronic typology** – using synchronic distributions of language structures to draw inferences about language change.
- **Sociolinguistic typology** – understanding adaptive responses of language structures to the non-linguistic environment.
- **Nominal morphosyntax**
 - Grammatical gender
 - Number
 - Evaluative morphology (diminutive and augmentative marking)
Research interests (narrow)

- **Diachronic typology** – using synchronic distributions of language structures to draw inferences about language change.
- **Sociolinguistic typology** – understanding adaptive responses of language structures to the non-linguistic environment.
- **Nominal morphosyntax**
 - Grammatical gender
 - Number
 - Evaluative morphology (diminutive and augmentative marking)
- **Africa**, with focus on Bantu and Cushitic
Research interests (narrow)

- **Dynamic typology** – using synchronic distributions of language structures to formulate inferences about patterns of language change.
- **Sociolinguistic typology** – understanding adaptive responses of language structures to the linguistic and non-linguistic environment.
- **Nominal morphosyntax**
 - Grammatical gender
 - Number
 - Evaluative morphology (diminutive and augmentative marking)
- **Africa**, with focus on **Bantu** and **Cushitic**
Three common remarks about grammatical gender systems:

1. They are highly grammaticalized and presuppose inflectional morphology (Corbett 1991; Dahl 2004).

2. They are very stable at the language-family level (Nichols 1992, 2003).

3. They are difficult to master in nonnative acquisition (McWhorter 2007) and break down under the pressure of language contact (Dahl 2019; Trudgill 1999).
Grammatical gender and sociolinguistic typology

Where we are at

Recent attempts to investigate the relationship between gender systems and sociohistorical/environmental factors from a quantitative point of view have only produced negative evidence (Lupyan & Dale 2010; Sinnemäki & Di Garbo 2018; Dahl 2019).
Recent attempts to investigate the relationship between gender systems and sociohistorical/environmental factors from a quantitative point of view have only produced negative evidence (Lupyan & Dale 2010; Sinnemäki & Di Garbo 2018; Dahl 2019).
Grammatical gender and sociolinguistic typology

Where we are at

Why so?

The WALS variables for gender may not be relevant to sociolinguistic typological questions.

Number of genders, Sex-based vs. Non-sex-based gender, Systems of gender assignment

None of these features is directly connected with morphosyntax, which has been shown to change under the influence of sociohistorical factors (Lupyan & Dale 2010; Bentz et al. 2015).

We must look beyond WALS (Sinnemäki & Di Garbo 2018; Dahl 2019).

Suggestion: to study the distribution of patterns of gender marking within genealogically related languages with different sociolinguistic profiles.
Grammatical gender and sociolinguistic typology

Where we are at

Why so?

► The WALS variables for gender may not be relevant to sociolinguistic typological questions.
Grammatical gender and sociolinguistic typology

Where we are at

Why so?

▶ The WALS variables for gender may not be relevant to sociolinguistic typological questions.
 ▶ Number of genders, Sex-based vs. Non-sex-based gender, Systems of gender assignment
Grammatical gender and sociolinguistic typology

Where we are at

Why so?

- The WALS variables for gender may not be relevant to sociolinguistic typological questions.
 - Number of genders, Sex-based vs. Non-sex-based gender, Systems of gender assignment
- None of these features is directly connected with morphosyntax, which has been shown to change under the influence of sociohistorical factors (Lupyan & Dale 2010; Bentz et al. 2015).
Grammatical gender and sociolinguistic typology

Where we are at

Why so?

▶ The WALS variables for gender may not be relevant to sociolinguistic typological questions.
 ▶ Number of genders, Sex-based vs. Non-sex-based gender, Systems of gender assignment

▶ None of these features is directly connected with morphosyntax, which has been been shown to change under the influence of sociohistorical factors (Lupyan & Dale 2010; Bentz et al. 2015).

▶ We must look beyond WALS (Sinnemäki & Di Garbo 2018; Dahl 2019).
Grammatical gender and sociolinguistic typology

Where we are at

Why so?

▶ The WALS variables for gender may not be relevant to sociolinguistic typological questions.
 ▶ Number of genders, Sex-based vs. Non-sex-based gender, Systems of gender assignment

▶ None of these features is directly connected with morphosyntax, which has been been shown to change under the influence of sociohistorical factors (Lupyan & Dale 2010; Bentz et al. 2015).

▶ We must look beyond WALS (Sinnemäki & Di Garbo 2018; Dahl 2019).

▶ **Suggestion:** to study the distribution of patterns of gender marking within genealogically related languages with different sociolinguistic profiles.
Correlates of restructuring in Bantu gender systems

Ongoing project with Annemarie Verkerk, University of Saarland

Bantu languages are usually described as a conservative block of highly complex gender systems. (1) Gender marking in Chichewa (Kiso 2012: 18)

- `chi-nkhanira`
 - `cl7-scorpion`
 - `cha-`
 - `chi-kazi`
 - `ass-cl7-`
 - `female`
 - `chi-ku-dzi-kanda`
 - `cl7.sbj-pres-refl-scratch`

'The female scorpion is scratching itself'.

Highly reduced systems are attested, but usually described as exceptional. (2) Gender marking in Kinshasa Lingala (Meeuwis 2013: 30)

- `Mw-ana`
 - `cl1-child`
 - `a-ko-kweya`
 - `3sg.anim-fut-fall`

'The child will fall.'

- `Ndako`
 - `cl9.-book`
 - `e-ko-kweya`
 - `3sg.inan-fut-fall`

'The house will fall.'

We want to find out how common these reduced systems are, what characterizes them structurally, and what explains their distribution.
Correlates of restructuring in Bantu gender systems

Ongoing project with Annemarie Verkerk, University of Saarland

- Bantu languages are usually described as a conservative block of highly complex gender systems.

 ▶ Gender marking in Chichewa (Kiso 2012: 18)

 chi-nkhanira
 cha-chi-kazi
 ku-dzi-kanda

 'The female scorpion is scratching itself'.

 ▶ Highly reduced systems are attested, but usually described as exceptional.

 (2) Gender marking in Kinshasa Lingala (Meeuwis 2013: 30)

 a. Mw-ana
 a-ko-kweya

 'The child will fall.'

 b. Ndako
 e-ko-kweya

 'The house will fall.'

 ▶ We want to find out how common these reduced systems are, what characterizes them structurally, and what explains their distribution.
Correlates of restructuring in Bantu gender systems

Ongoing project with Annemarie Verkerk, University of Saarland

Bantu languages are usually described as a conservative block of highly complex gender systems.

(1) Gender marking in Chichewa (Kiso 2012: 18)

- chi-nkhanira cha-chi-kazi
- chi-ku-dzi-kanda
- CL7-scorpion ASS-CL7-female CL7.SBJ-PRES-REFL-scratch

‘The female scorpion is scratching itself’.

Highly reduced systems are attested, but usually described as exceptional.

(2) Gender marking in Kinshasa Lingala (Meeuwis 2013: 30)

a. Mw-ana a-ko-kweya
 ‘The child will fall.’

b. Ndako e-ko-kweya
 ‘The house will fall.’
Correlates of restructuring in Bantu gender systems

Ongoing project with Annemarie Verkerk, University of Saarland

- Bantu languages are usually described as a conservative block of highly complex gender systems.

(1) Gender marking in Chichewa (Kiso 2012: 18)

chi-nkhanira cha-chi-kazi chi-ku-dzi-kanda
CL7-scorpion ASS-CL7-female CL7.SBJ-PRES-REFL-scratch

‘The female scorpion is scratching itself’.

- Highly reduced systems are attested, but usually described as exceptional.
Correlates of restructuring in Bantu gender systems

Ongoing project with Annemarie Verkerk, University of Saarland

► Bantu languages are usually described as a conservative block of highly complex gender systems.

(1) Gender marking in Chichewa (Kiso 2012: 18)

chi-nkhanira cha-chi-kazi chi-ku-dzi-kanda
CL7-scorpion ASS-CL7-female CL7.SBJ-PRES-REFL-scratch

‘The female scorpion is scratching itself’.

► Highly reduced systems are attested, but usually described as exceptional.

(2) Gender marking in Kinshasa Lingala (Meeuwis 2013: 30)

a. Mw-ana a-ko-kweya
CL1-child 3SG.ANIM-FUT-fall

‘The child will fall.’

b. Ndako e-ko-kweya
CL9.book 3SG.INAN-FUT-fall

‘The house will fall.’
Correlates of restructuring in Bantu gender systems

Ongoing project with Annemarie Verkerk, University of Saarland

- Bantu languages are usually described as a conservative block of highly complex gender systems.

 (1) Gender marking in Chichewa (Kiso 2012: 18)

 chi-nkhanira cha-chi-kazi
 CL7-scorpion ASS-CL7-female
 ‘The female scorpion is scratching itself’.

- Highly reduced systems are attested, but usually described as exceptional.

 (2) Gender marking in Kinshasa Lingala (Meeuwis 2013: 30)

 a. Mw-ana a-ko-kweya
 CL1-child 3SG.ANIM-FUT-fall
 ‘The child will fall.’

 b. Ndako e-ko-kweya
 CL9.book 3SG.INAN-FUT-fall
 ‘The house will fall.’

- We want to find out how common these reduced systems are, what characterizes them structurally, and what explains their distribution.
Hypothesis

▶ Experimental (Vihman et al. 2018) and historical-comparative studies (Igartua & Santazilia 2018; Seifart 2018) show that animacy distinctions in noun class systems may emerge in response to a learning bias, and increase the learnability of such systems.

▶ We test the hypothesis that animacy-based restructuring in Bantu gender systems is an adaptive response to non-linguistic factors related to population history and contact, which pressure them into increased semantic transparency and learnability.
Hypothesis

Experimental (Vihman et al. 2018) and historical-comparative studies (Igartua & Santazilia 2018; Seifart 2018) show that animacy distinctions in noun class systems may emerge in response to a learning bias, and increase the learnability of such systems.

We test the hypothesis that animacy-based restructuring in Bantu gender systems is an adaptive response to non-linguistic factors related to population history and contact, which pressure them into increased semantic transparency and learnability.

In order to test this hypothesis, we run

1. a study of the processes of language change through which animacy-based restructuring rises and spreads in a subset of Bantu languages (Di Garbo & Verkerk under review).

2. in-depth sociolinguistic and ethnographic analyses which we use as a baseline for statistical variable design (Verkerk & Di Garbo in preparation).
The sample

- 255 languages from zones ABCDH (marked in orange), what we call *Northwestern Bantu* (NWB).
- Data coverage for 174 of them (mostly from descriptive grammars).
The sample

- 255 languages from **zones ABCDH** (marked in orange), what we call **Northwestern Bantu (NWB)**.
- Data coverage for 174 of them (mostly from descriptive grammars).
- NWB forms a **coherent genealogical unit** (Grollemund et al. 2015).
- We have reasons to suspect that this area might be a **hotbed for reduced/eroded systems** (Maho 1999).
A bottom-up typology of NWB gender systems

From Di Garbo & Verkerk (under review)
Animacy-based restructuring: where and why

- In-depth analyses of **sociolinguistic and ethnographic** sources suggest that radically animacy-based gender marking and/or the erosion of gender marking may be connected with:
 - creolization of trade-languages (Fehderau 1966; Samarin 1991; Bokamba 2009; Meeuwis 2013). This applies e.g. to Kituba and Kinshasa Lingala.
 - early contact with Pygmy populations who later shifted to Bantu, Ubangi and/or Central Sudanic languages (Klieman 2003; G¨ uldemann 2018; Bostoen & Gunnink in preparation). This applies e.g. to the Ababuan languages.
 - more recent contact with languages without (Bantu-like) gender systems as in Ubangi and/or Central Sudanic languages (Bouquiaux & Thomas 1994; Wega 2012). This applies e.g. to Bodo and Homa.

- We use Generalized Linear Mixed-Effects Models to test these tendencies statistically.
Animacy-based restructuring: where and why

▶ In-depth analyses of sociolinguistic and ethnographic sources suggest that radically animacy-based gender marking and/or the erosion of gender marking may be connected with:
 ▶ creolization of trade-languages (Fehderau 1966; Samarin 1991; Bokamba 2009; Meeuwis 2013). This applies e.g. to Kituba and Kinshasa Lingala.
In-depth analyses of sociolinguistic and ethnographic sources suggest that radically animacy-based gender marking and/or the erosion of gender marking may be connected with:

- creolization of trade-languages (Fehderau 1966; Samarin 1991; Bokamba 2009; Meeuwis 2013). This applies e.g. to Kituba and Kinshasa Lingala.

- early contact with Pygmy populations who later shifted to Bantu, Ubangi and/or Central Sudanic languages (Klieman 2003; Güldemann 2018; Bostoen & Gunnink in preparation). This applies e.g. to the Ababuan languages.
Animacy-based restructuring: where and why

▶ In-depth analyses of sociolinguistic and ethnographic sources suggest that radically animacy-based gender marking and/or the erosion of gender marking may be connected with:

▶ creolization of trade-languages (Fehderau 1966; Samarin 1991; Bokamba 2009; Meeuwis 2013). This applies e.g. to Kituba and Kinshasa Lingala.

▶ early contact with Pygmy populations who later shifted to Bantu, Ubangi and/or Central Sudanic languages (Klieman 2003; Gültemann 2018; Bostoen & Gunnink in preparation). This applies e.g. to the Ababuan languages.

▶ more recent contact with languages without (Bantu-like) gender systems as in Ubangi and/or Central Sudanic languages (Bouquiaux & Thomas 1994; Wega 2012). This applies e.g. to Bodo and Homa.
Animacy-based restructuring: where and why

▶ In-depth analyses of sociolinguistic and ethnographic sources suggest that radically animacy-based gender marking and/or the erosion of gender marking may be connected with:

▶ creolization of trade-languages (Fehderau 1966; Samarin 1991; Bokamba 2009; Meeuwis 2013). This applies e.g. to Kituba and Kinshasa Lingala.

▶ early contact with Pygmy populations who later shifted to Bantu, Ubangi and/or Central Sudanic languages (Klieman 2003; Güldemann 2018; Bostoen & Gunnink in preparation). This applies e.g. to the Ababuan languages.

▶ more recent contact with languages without (Bantu-like) gender systems as in Ubangi and/or Central Sudanic languages (Bouquiaux & Thomas 1994; Wega 2012). This applies e.g. to Bodo and Homa.

▶ We use Generalized Linear Mixed-Effects Models to test these tendencies statistically.
Our predictors

1. Population size, data from Ethnologue (Lewis et al. 2016)
 Hypothesis: Languages of wider communication are more prone to animacy-based gender than smaller languages.

2. Longitude and latitude, data mostly from Glottolog (Hammarström et al. 2019)
 Hypothesis: Languages spoken close to each other (that is, with similar longitude and/or latitude) have similar gender systems. Animacy-based marking spreads areally.

3. Present/past location in the rainforest
 Hypothesis: Languages spoken in the rainforest (now or in the past) have animacy-based gender as a result of contact with early rainforest populations.

* For genealogical control, we use the Glottolog groupings (Hammarström et al. 2019) as well as the phylogenetic tree by Grollemund et al. (2015).
Our predictors

1. **Population size**, data from Ethnologue (Lewis et al. 2016)
 Hypothesis: Languages of wider communication are more prone to animacy-based gender than smaller languages.
Our predictors

1. **Population size**, data from Ethnologue (Lewis et al. 2016)

 Hypothesis: Languages of wider communication are more prone to animacy-based gender than smaller languages.

2. **Longitude and latitude**, data mostly from Glottolog (Hammarström et al. 2019)

 Hypothesis: Languages spoken close to each other (that is, with similar longitude and/or latitude) have similar gender systems. Animacy-based marking spreads areally.
1. **Population size**, data from Ethnologue (Lewis et al. 2016)
 Hypothesis: Languages of wider communication are more prone to animacy-based gender than smaller languages.

2. **Longitude and latitude**, data mostly from Glottolog (Hammarström et al. 2019)
 Hypothesis: Languages spoken close to each other (that is, with similar longitude and/or latitude) have similar gender systems. Animacy-based marking spreads areally.

3. **Present/past location in the rainforest**
 Hypothesis: Languages spoken in the rainforest (now or in the past) have animacy-based gender as a result of contact with early rainforest populations.
Our predictors

1. **Population size**, data from Ethnologue (Lewis et al. 2016)
 Hypothesis: Languages of wider communication are more prone to animacy-based gender than smaller languages.

2. **Longitude and latitude**, data mostly from Glottolog (Hammarström et al. 2019)
 Hypothesis: Languages spoken close to each other (that is, with similar longitude and/or latitude) have similar gender systems. Animacy-based marking spreads areally.

3. **Present/past location in the rainforest**
 Hypothesis: Languages spoken in the rainforest (now or in the past) have animacy-based gender as a result of contact with early rainforest populations.

* For genealogical control, we use the Glottolog groupings (Hammarström et al. 2019) as well as the phylogenetic tree by Grollemund et al. (2015).
Model 1

GLMMs using R package `brms` (Bürkner 2017)

- Dependent variable is a **binary variable**: “Languages with only lexically-specified gender” vs. “Anything else (i.e. any amount of animacy-based marking and/or loss of gender)”.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Post mean</th>
<th>Post sd</th>
<th>95% CI l</th>
<th>95% CI u</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>-2.40</td>
<td>1.67</td>
<td>-5.64</td>
<td>1.01</td>
</tr>
<tr>
<td>No. of L1 speakers</td>
<td>0.82</td>
<td>0.46</td>
<td>0.05</td>
<td>1.81</td>
</tr>
<tr>
<td>Current rainforest overlap</td>
<td>-0.50</td>
<td>0.24</td>
<td>-0.98</td>
<td>-0.03</td>
</tr>
<tr>
<td>Longitude</td>
<td>0.36</td>
<td>0.32</td>
<td>-0.27</td>
<td>1.00</td>
</tr>
<tr>
<td>Latitude</td>
<td>-0.11</td>
<td>0.28</td>
<td>-0.67</td>
<td>0.44</td>
</tr>
<tr>
<td>Ancestor in rainforest</td>
<td>2.24</td>
<td>1.12</td>
<td>0.24</td>
<td>4.63</td>
</tr>
</tbody>
</table>
Model 1

GLMMs using R package **brms** (Bürkner 2017)

► Dependent variable is a **binary variable**: “Languages with only lexically-specified gender” vs. “Anything else (i.e. any amount of animacy-based marking and/or loss of gender)”.

<table>
<thead>
<tr>
<th></th>
<th>mean Post</th>
<th>sd Post</th>
<th>l 95% CI</th>
<th>U 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>-2.40</td>
<td>1.67</td>
<td>-5.64</td>
<td>1.01</td>
</tr>
<tr>
<td>No. of L1 speakers</td>
<td>0.82</td>
<td>0.46</td>
<td>0.05</td>
<td>1.81</td>
</tr>
<tr>
<td>Current rainforest overlap</td>
<td>-0.50</td>
<td>0.24</td>
<td>-0.98</td>
<td>-0.03</td>
</tr>
<tr>
<td>Longitude</td>
<td>0.36</td>
<td>0.32</td>
<td>-0.27</td>
<td>1.00</td>
</tr>
<tr>
<td>Latitude</td>
<td>-0.11</td>
<td>0.28</td>
<td>-0.67</td>
<td>0.44</td>
</tr>
<tr>
<td>Ancestor in rainforest</td>
<td>2.24</td>
<td>1.12</td>
<td>0.24</td>
<td>4.63</td>
</tr>
</tbody>
</table>
Model 2
GLMMs using R package **brms** (Bürkner 2017)

- Dependent variables are two *count measures*, i.e., “The number of targets that receive lexically-specified gender marking” and “The number of targets that receive animacy-based gender marking” in each language.
Model 2

GLMMs using R package **brms** (Bürkner 2017)

- Dependent variables are two *count measures*, i.e., “The number of targets that receive lexically-specified gender marking” and “The number of targets that receive animacy-based gender marking” in each language.

<table>
<thead>
<tr>
<th>Target counts</th>
<th>mean Post</th>
<th>sd Post</th>
<th>l 95% CI</th>
<th>u 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lex.-based Intercept</td>
<td>2.18</td>
<td>0.30</td>
<td>1.56</td>
<td>2.75</td>
</tr>
<tr>
<td>Lex.-based No. of L1 speakers</td>
<td>-0.08</td>
<td>0.04</td>
<td>-0.15</td>
<td>-0.01</td>
</tr>
<tr>
<td>Lex.-based Current rainforest overlap</td>
<td>0.05</td>
<td>0.03</td>
<td>-0.01</td>
<td>0.12</td>
</tr>
<tr>
<td>Lex.-based Longitude</td>
<td>-0.07</td>
<td>0.05</td>
<td>-0.16</td>
<td>0.03</td>
</tr>
<tr>
<td>Lex.-based Latitude</td>
<td>-0.01</td>
<td>0.04</td>
<td>-0.09</td>
<td>0.06</td>
</tr>
<tr>
<td>Lex.-based Ancestor in rainforest</td>
<td>-0.09</td>
<td>0.12</td>
<td>-0.33</td>
<td>0.15</td>
</tr>
<tr>
<td>Ani.-based Intercept</td>
<td>-1.78</td>
<td>0.95</td>
<td>-3.72</td>
<td>0.09</td>
</tr>
<tr>
<td>Ani.-based No. of L1 speakers</td>
<td>0.03</td>
<td>0.08</td>
<td>-0.14</td>
<td>0.17</td>
</tr>
<tr>
<td>Ani.-based Current rainforest overlap</td>
<td>0.01</td>
<td>0.08</td>
<td>-0.15</td>
<td>0.18</td>
</tr>
<tr>
<td>Ani.-based Longitude</td>
<td>0.46</td>
<td>0.14</td>
<td>0.19</td>
<td>0.74</td>
</tr>
<tr>
<td>Ani.-based Latitude</td>
<td>-0.09</td>
<td>0.11</td>
<td>-0.31</td>
<td>0.12</td>
</tr>
<tr>
<td>Ani.-based Ancestor in rainforest</td>
<td>0.92</td>
<td>0.59</td>
<td>-0.12</td>
<td>2.20</td>
</tr>
</tbody>
</table>
Summary

- These results confirm that there is an effect of demography and geography on the distribution of our types:

 - Languages with small populations are more likely to have more lexically-based gender marking.
 - Languages with bigger populations are more likely to have at least some kind of animacy-based gender marking or no gender marking at all (Model 1 and 2).
 - Languages with past (but not necessarily present) connections with the rainforest tend to have more animacy-based marking and/or no gender marking (Model 1).
 - Languages to the east fringe of the NWB area are more likely animacy-based marking and/or no gender marking (Model 2).
Summary

▶ These results confirm that there is an effect of **demography** and **geography** on the distribution of our types:

▶ Languages with **small populations** are more likely to have **more lexically-based gender marking**, while languages with **bigger populations** are more likely to have at least some kind of **animacy-based gender marking** or **no gender marking at all** (Model 1 and 2).

▶ Languages with **past (but not necessarily present)** **connections** with the rainforest tend to have more **animacy-based marking and/or no gender marking** (Model 1).

▶ Languages to the **east** fringe of the NWB area are more likely **animacy-based marking and/or no gender marking** (Model 2).
From Verkerk & Di Garbo (in preparation)
From Verkerk & Di Garbo (in preparation)

- Beyond NWB: studying restructuring of gender in the **Southern** and **Eastern Bantu** languages
- Possible factors at stake there: contact with ‘Khoisan’ (for Southern Bantu), Swahili expansion (for Eastern Bantu)
Concluding remarks

This is the first large-scale quantitative study to confirm that the shape and fabrics of gender systems are sensitive to factors related to population history.
Concluding remarks

- This is the **first large-scale quantitative study** to confirm that the shape and fabrics of **gender systems are sensitive to factors related to population history**.

- In order to arrive at this result, we had to work A LOT on the refinement of the typological variables as well as on grounding the non-linguistic predictors in the social history of the communities under study.
Concluding remarks

- This is the **first large-scale quantitative study** to confirm that the shape and fabrics of **gender systems are sensitive to factors related to population history.**

- In order to arrive at this result, we had to work **A LOT** on the refinement of the typological variables as well as on grounding the non-linguistic predictors in the social history of the communities under study.

- Sociolinguistic typology is possible, but requires **long-term investment on variable design**...
Concluding remarks

▶ This is the first large-scale quantitative study to confirm that the shape and fabrics of gender systems are sensitive to factors related to population history.

▶ In order to arrive at this result, we had to work A LOT on the refinement of the typological variables as well as on grounding the non-linguistic predictors in the social history of the communities under study.

▶ Sociolinguistic typology is possible, but requires long-term investment on variable design...

▶ Which is one of the reasons why I’m so happy to be part of the GramAdapt team!
Thank you very much!
Kiitos paljon!

Di Garbo, Francesca & Annemarie Verkerk. under review. The typology of animacy-based restructuring of Northwestern Bantu gender systems.

Verkerk, Annemarie & Francesca Di Garbo. in preparation. Qualitative and quantitative approaches to the evolution of gender systems and its sociohistorical correlates: A study of Northwestern Bantu.
