
Performance Evaluation of WebRTC Data Channels
Rasmus Eskola

School of Science
Aalto University
Espoo, Finland

Email: rasmus.eskola@aalto.fi

Jukka K. Nurminen
School of Science
Aalto University
Espoo, Finland

Email: jukka.k.nurminen@aalto.fi

Abstract—This paper covers a study on WebRTC data channel
performance in current web browser implementations. The goal
is to find out whether WebRTC data channels are usable
today in web applications demanding throughput performance
for data transfers consisting of arbitrary data. Performance is
measured using a purpose-built web application and various
simulated network conditions. Packet capture is used for further
analysis. The results reveal that current WebRTC data channel
implementations do not adjust the SCTP window size from the
default setting. This results in bad performance when network
conditions and especially latency is not close to perfect. Changing
the window size results in significantly better performance on
high latency links, but the observed throughput performance is
still not ideal. We can conclude from the test results that current
WebRTC data channel implementations are not yet ready for
high performance requirements nor mobile environments where
battery life is important. The browsers need their WebRTC data
channel implementations optimized in order for the technology
to become truly useful.

Index Terms - WebRTC, WebRTC data channel, SCTP, web
browser, web application, performance measurement

I. INTRODUCTION

This paper presents and discusses performance aspects in
practice of WebRTC data channels. WebRTC is an emerging
web technology that enables realtime, true peer-to-peer com-
munications in modern web browsers without the need for any
browser extensions. WebRTC can be split into two separate
parts, data channels and media channels. The media channels
provide media functionality, while the WebRTC data channel
API allows web application developers to exchange arbitrary
data in a peer-to-peer fashion, with a rendezvous server needed
only during connection setup (this is called signaling). Peer-
to-peer connectivity is in many cases possible to achieve even
with NAT (Network Address Translation) units and firewalls
between the peers.

WebRTC data channels have only recently been imple-
mented experimentally in web browsers. Moreover, data chan-
nels in the Chromium web browser have until recently used
another protocol entirely than what has been standardized [1].
As such, there is currently a lack of study about standards-
compliant WebRTC data channels. [2]. WebRTC has been
largely targeted towards media, and the browsers have already
had implementations for WebRTC video and audio streams for
a few years. Most WebRTC related research so far has focused
on these video and audio streams, which are transported over

another protocol entirely than what the data channels use
(SCTP) [3]. Due to this fact, the research done on media
streams is mostly irrelevant for studying the behaviour of data
channels.

The goal of this paper is to find out if WebRTC data
channels are usable today in web applications demanding high
throughput performance, and to initiate a discussion about any
discovered performance issues with WebRTC data channels
in current experimental implementations. In this paper, the
data channels have been tested with the latest development
versions of both the Firefox and Chromium browsers at the
time of writing. Focus is put especially on the Firefox browser.
Performance through relay servers using TURN (Traversal
Using Relays around NAT) will not be covered, only true peer-
to-peer connections were tested.

The method used to benchmark WebRTC data channels
consists of a simple web application that sends data. This
application measures various performance aspects of the
WebRTC data channel, and provides statistics as a result.
The application was tested with various levels of simulated
network latency. Network traffic generated by the application
at various latencies was then dumped and analyzed both by
packet capture tools and by extracting the raw SCTP (Stream
Control Transmission Protocol) stream via Firefox debugging
options, giving us an insight into what happens at the lower
levels of the protocol stack.

The results reveal that current WebRTC data channel imple-
mentations never change the SCTP send and receive window
sizes from their initial values, so a low default value is used
in both tested browsers. As a direct consequence of this, data
throughput rates take a significant hit even with relatively small
network latencies, which can be problematic in applications
that need to transfer large amounts of data. After increasing
the window sizes, performance does improve in settings with
latencies typical for the public Internet, but the performance
is still not as good as when performing the same tests in local
networks.

The paper first presents related work (sec. II), and general
aspects of WebRTC connections. Then methods used to do
measurements will be presented in detail (sec. III); setting
up network latency emulation, presenting the web application
used for benchmarking and how results were gathered. Finally
(sec. IV), the test results are presented, discussed and analyzed
to find out what work there is left to do (sec. V).



II. RELATED WORK

WebRTC is a very exciting technology because there has
previously not been any viable way of doing true peer-to-peer
communication in the web browser without third party browser
extensions. As such there is naturally a lot of research and
papers discussing WebRTC and the multitude of possibilities
it brings. WebRTC standardization has been going on for a
few years already, with the first published W3C drafts from
23 August 2011 [4].

Research and testing similar to the work presented in this
paper has been performed on the WebRTC media streams,
which use the RTP protocol and Receiver-side Real-time
Congestion Control. Lozano [5] concludes that the media
streams are able to maintain high throughput even at relatively
high latencies for real time media (up to 200 ms). The media
streams work well even with some minor packet loss.

Fund et al. [6] have researched the impact on WebRTC
media streams in different wireless environments. They find
that despite adaptation mechanics that are in place in WebRTC
media streams, the tested implementation was not able to adapt
quickly enough to changes in network conditions resulting in
bad service quality. However, they found that even at fairly
high average RTT (Round-Trip Time), the video bitrate can
stay somewhat constant. This is interesting for our experiment,
because the WebRTC data channel does display a drop in
throughput at high RTT as opposed to the media channel
experiments.

While these research results on media channels seem to
point to a very well functioning protocol, they do not draw
any conclusions for SCTP-based data channels, which from
initial testing seem to work well at lower latencies but have
trouble keeping up throughput rates when latencies increase.
More experimentation and research has to be done in this area,
because data channels are a useful part of WebRTC with the
arbitrary data transfers they provide that media channels do
not.

III. MEASUREMENTS ARCHITECTURE

A. Network setup

All measurements are performed in a LAN, thus eliminating
most interference in latency and packet loss that could happen
over the public Internet. A high-end laptop and desktop PC
is used, and they are connected to a consumer-grade gigabit
switch via ethernet cables.

Both computers run Linux 3.15 and the latest available
versions of the Chromium (38.0.2067.0) and Firefox (33.0a1)
browsers at the time of writing. Note that any measurements
will be performed with Firefox only, but Chromium was also
tested in some cases.

In order to simulate network latency and packet loss a
network emulator in the Linux kernel called ”netem” is used.
Netem is controlled by a command line tool called ”tc”.
Adjustable and repeatable artificial network latencies can be
achieved with netem and tc.

B. Measurement methods
All generated network traffic was inspected with Wireshark.

Traffic was gathered by the means of packet capture either
directly from the network interface or by instructing Firefox
to dump the SCTP stream before encrypting it. Merely captur-
ing network packets is often insufficient when working with
WebRTC, due to this encryption. By running Firefox with the
following environment variables set we can turn on logging
for the browser’s SCTP and WebRTC data channel code:

NSPR LOG MODULES=”SCTP : 5 , DataChanne l : 5 ”
NSPR LOG FILE= d c l o g . l o g

The logs are written to the file dclog.log. This log file will
contain any debug prints from the relevant parts of Firefox
source code, and also any sent/received SCTP packets. We can
filter the SCTP packets from the log file and convert them into
a file format that is readable by Wireshark with the following
command:

g rep SCTP PACKET d c l o g . l o g \
| t e x t 2 p c a p −n − l 248 −D − t \
’%H:%M:%S . ’ − d c l o g . pcapng

Now we can open the ”dclog.pcapng” file in Wireshark and
inspect the SCTP stream in its unencrypted form.

C. WebRTC benchmarking application
The throughput benchmark application is a very simple

JavaScript application that performs the minimum amount of
required steps to set up a data channel. The data channel
API was used directly without any middleware libraries, and
signaling is performed via WebSockets.

Before running the test, both peers have to launch the web
application which connects them to the signaling server. Either
peer can then initiate the data channel setup process manually.

After the signaling process and once a data channel has
been set up, the initiating peer starts repeatedly sending a
JavaScript Uint8Array filled with successive integers. An array
size of 32 kilobytes resulted in the best performance in the test
environment. The data channel API will buffer the array and
send it in chunks. Sending larger arrays at once possibly leads
to less overhead both in networking and processing, as can
be seen if the array size is decreased dramatically; then the
throughput will also decrease.

The WebRTC data channel API abstracts the data channel
behind a JavaScript object representing the data channel.
The data channel object contains an important property for
throughput intensive tasks, bufferedAmount, which represents
the number of bytes that have been queued by the browser
for sending over the data channel [7]. For maximum data
throughput we need to keep track of this value, because
overfilling the buffer causes an error and allowing the buffer
to empty means the data channel will stay idle at times and in
that case we are not utilizing the full throughput capabilities
of the data channel.

In order to keep the send buffer filled, the application
repeatedly calls the data channel send method until the channel



bufferedAmount value has reached past a limit. In this test a
value of 1024 kilobytes was found to work well on Firefox,
with higher values possibly overfilling the send buffer and
lower values causing the buffer to occasionally empty. This
buffer filling loop function is called every time the JavaScript
interpreter runs its event loop by putting it inside of a
setTimeout call with zero timeout. By doing this instead of
sending data in an infinite loop, we avoid making the browser
unresponsive and possibly even freezing it depending on how
the browser would handle an infinite loop in JavaScript.

The receiving peer will display average data throughput
in MB/s. Data throughput is calculated by summing up the
amount of received bytes and dividing by the time in seconds
since the test was initiated. This value represents the effective
average throughput, that is, how much useful data can be sent
over the data channel.

IV. PERFORMANCE EVALUATION

A. Data channel throughput performance results

High throughput over data channels seems to be very heavy
on CPU usage, and the CPU load is largely single threaded.
On a recent high-end PC, throughput readings of up to 30.0
MB/s could be observed in local testing from one browser
process to another. At this point both browsers each put full
load on their respective CPU cores. So at very high throughput
we are CPU bound currently, even on a fast modern PC.

In the process of testing the data channel throughput perfor-
mance, it was discovered that at very low RTT values the data
channel is able to fully utilize the capacity of a 100 Mbit/s
link as long as both peers have enough CPU power. In our
test environment with one powerful desktop PC and one fairly
powerful laptop PC connected with a gigabit link, a 18.1 MB/s
throughput could be maintained with one of the laptop’s CPU
cores on full load. Interestingly, it seems that receiving is more
CPU intensive than sending, as when the laptop was on the
receiving side a throughput of only 15.5 MB/s was observed.

With the laptop on the sending side, desktop PC on the
receiving side, the following Wireshark IO graph was obtained
via the means of packet capture, as seen in figure 1.

Fig. 1. Throughput as measured with Wireshark in low-latency conditions

From figure 1 we can obtain the total throughput which is
slightly above 20.000.000 bytes/s or roughly 19 MB/s. The
average effective throughput as reported by the benchmarking
application was 18.12 MB/s. The line represents data flowing
from the sender to the receiver. There is also a small flow
of packets from the receiver to the sender not shown in

the figures. It consists mostly of SCTP SACK (Selective
Acknowledgement) messages as will be seen later when the
unencrypted SCTP stream is analyzed.

B. Data channel throughput with simulated latency

If we perform the exact same test but with 50 ms of
simulated RTT by netem, we will get very different results, as
can be seen from figure 2.

Fig. 2. Throughput as measured with Wireshark, 50 ms simulated RTT

Data throughput drops by an order of magnitude from 18
MB/s to under 2 MB/s. The average effective throughput as
reported by the benchmarking application was 1.82 MB/s.

If we zoom in on the graph (tick interval 0.001 s) we can
see a repeating pattern of short data bursts every 50 ms, see
figure 3.

Fig. 3. Throughput as measured with Wireshark, 50 ms simulated RTT,
zoomed in

The captures have been performed on the receiver’s side.
The results show that the sender has to wait for acknowledge-
ment messages from the receiver before sending more data.

If we dump the unencrypted SCTP stream as explained
previously, instead of only performing a packet capture on the
DTLS-encrypted SCTP stream, we notice something interest-
ing. Neither the Chromium nor Firefox current implementa-
tions of the data channel API adjust the SCTP send and receive
window sizes. Instead the SCTP userspace implementation’s
default value of 128 KiB window size is used, as is evident
from the SCTP stream dump from a Firefox peer; a rwnd
which is the advertised receive window size never changes
from the default of 131072 bytes. This relatively low window
size causes a great drop in throughput performance when there
is network latency between the peers. Further increasing the
latency causes additional reductions in data throughput, even
though the network link capacity stays constant.

The reason behind this is that the small send and receive
windows quickly get filled with data. At this point in SCTP,
just like in TCP, the sender must wait for an acknowledgement



message from the receiver before more data can be sent. Thus
the network link stays under-utilized for long periods of time.

According to the bandwidth-delay-product [8], the maxi-
mum amount of unacknowledged bytes in flight is equal to:

BDP = Max Throughput · RTT (1)

If the entire window can be acknowledged in one RTT, the
maximum value for data throughput is:

Max Throughput =
Window size (BDP)

RTT
(2)

As we can see from equation 2, at constant window sizes
the maximum throughput is inversely proportional to the RTT.
Doubling the RTT value will halve the maximum throughput.
At the default window size of 128 KiB, table I contains
the observed throughput results for different simulated RTT
values.

RTT Effective Throughput Total throughput Theoretical max
10 ms 8.84 MB/s 9.88 MB/s 12.5 MB/s
20 ms 4.67 MB/s 5.22 MB/s 6.25 MB/s
40 ms 2.37 MB/s 2.65 MB/s 3.13 MB/s
80 ms 1.20 MB/s 1.35 MB/s 1.56 MB/s
160 ms 0.60 MB/s 0.67 MB/s 0.78 MB/s
320 ms 0.30 MB/s 0.34 MB/s 0.39 MB/s

TABLE I
THROUGHPUT AT DIFFERENT RTT WITH DEFAULT WINDOW SIZE

We can see that doubling the simulated RTT indeed does
halve the observed throughput. We also can see that the
measured throughput rates stay fairly close to the theoretical
maximum rates. The table shows that throughput performance
gets unacceptably low with anything but the lowest latency
links for any kind of bulk data transfer. Worse yet, the observed
throughput performance at RTT values near those of cellular
technologies such as 3G and 4G is much lower than the
bandwidth available using these technologies in our testing.
This has reprecussions in energy consumption on mobile
devices because for bulk data transfer the radio has to stay
on for longer than would otherwise be needed.

V. THROUGHPUT WITH A LARGER SCTP WINDOW

By modifying the source code of the Firefox browser we
changed the window size of the SCTP sockets when data
channels are initialized. The default window size value of 128
KiB was raised to one megabyte, allowing for a much larger
RTT before any throughput degradation should be possible
to observe in a 100 Mbit/s network, which is a good target
considering the CPU limitations discussed in the previous
section.

The same throughput test at 50 ms was performed once
more now with the modified Firefox browser. The resulting
throughput graph can be seen in figure 4.

We can tell from the throughput graph that performance is
considerably better than before with a simulated RTT of 50
ms. We are now able to reach average throughput speeds of
approximately 10 MB/s at 50 ms RTT.

Fig. 4. Throughput as measured with Wireshark, 50 ms simulated RTT, with
modified version of Firefox

At higher RTT, we can also see that the SCTP association
struggles to keep up the high throughput speeds in its conges-
tion avoidance phase like it does at smaller RTT. The sawtooth-
like wave indicates that SCTP is in congestion avoidance.
While the congestion control algorithm tries to increase the
data transmit rate, at some point congestion is detected and the
transmit rate is halved, resulting in the sawtooth-like wave that
can be seen. This sawtooth pattern continues for the duration
of the data transfer.

Looking at the dumped SCTP stream we can see that right
before the data transmit rate is halved, the value of cumula-
tive tsn sack in SCTP SACK packets will stop incrementing.
The cumulative TSN (Transmission Sequence Number) ACK
marks the last consecutive TSN of received DATA packets
on the receiver side. As per RFC 2960 [9] this value will ac-
knowledge all smaller or equal TSNs. This behaviour indicates
a dropped SCTP DATA packet. A retransmitted packet with
the correct TSN can be seen roughly one RTT later, which
indicates that a fast retransmit has occurred. Still the SCTP
stream will halve its throughput rate.

When performing a SCTP stream dump on both the receiv-
ing and sending sides, we can see that packet loss indeed does
occur. On the sender side the dump shows that a packet was
sent, but on the receiver side it was never received. Oddly
enough packets were dropped in the experiment, even though
the throughput rates were significantly under the maximum
rates of the network. The network was also tested with normal
TCP and UDP connections, which were able to perform at
up to half the maximum throughput rate of the test network
without any signs of packet loss especially in the UDP case.
TCP connections were able to gracefully handle the minor
packet loss at higher throughputs, and reach througphut rates
of up to 1 Gbit/s, which hits the hardware limitations of the
test network.

SCTP was also tested outside the browser implementations
in a program called iperf. Iperf does not normally support
SCTP, but there are patched versions available that use the
operating system’s (Linux in this case) own kernel SCTP
implementations. Similar results were found here, throughput
performance is lowered a lot when the latency between hosts
increases. This is possibly a wider issue with SCTP than only
the browser WebRTC datachannel implementations.



Increasing the default SCTP window sizes for WebRTC data
channels is a must. As we can see from the results, problems
aside with the congestion control mechanism, performance still
did improve by a huge margin. There are however potentially
some issues with large window sizes, such as a big window
potentially having to be resent if packet loss does occur. This
may lead to longer delays in delivering already received data
to the application, since we are stuck waiting for the lost
packet or worse yet entire window to be retransmitted. A
better compromise between throughput and potential latencies
when packet loss does occur needs to be found. The WebRTC
developers clearly preferred low latency over throughput when
selecting the default value or didn’t want to commit to any
default values yet.

VI. FUTURE WORK

WebRTC data channels have potential to become a very
useful technology in enabling cross platform, secure, high
performance WebRTC applications, but there are still a few
obstacles to overcome. Research has to be performed not
only in measuring throughput rates, but also requirements
for processing power, battery life on mobile devices and
possibilities of optimizing the SCTP protocol and also the
implementations of the WebRTC datachannel protocol in areas
that have not yet been tested very much such as wireless
environments.

A lot of experiments that have been performed on the
WebRTC media channels still are necessary to also perform
on WebRTC datachannels due to the protocol differences.
Optimizing WebRTC to be latency and packet-loss tolerant
needs to be of high priority for WebRTC developers in the
near future. Performance in different network conditions such
as cellular and wireless networks with varying packet loss and
latencies and measurements in other similar realistic scenarios
has to be analyzed more closely to draw conclusions on real-
world WebRTC application performance.

It would be desireable to implement an adaptive window
scaling mechanism into the browsers’ implementations of
SCTP data channels or at least increase the default window
size as discussed. WebRTC is already experimented with by
some early adopters, but for its success it is essential that
WebRTC works just as fast as we would expect a TCP
connection to perform. There are currently possibilities to
dramatically increase the data channel performance for a lot
of use cases, especially in the mobile world where currently,
WebRTC application performance and battery life suffers.

VII. ACKNOWLEDGEMENTS

This work was partly supported by Tekes (The Finnish
Funding Agency for Technology and Innovation) project Ev-
eryday Sensing.

REFERENCES

[1] Google Inc., “WebRTC Status - Chrome,” 2014, webrtc.org WebRTC
status. Cited 11.8.2014. [Online]. Available: http://www.webrtc.org/
chrome

[2] M. R. Jesup, E. S. Loreto, and M. U. o. A. S. M. Tuexen, “WebRTC Data
Channels,” IETF, Internet-Draft, Jun. 2014, work in progress. [Online].
Available: http://tools.ietf.org/id/draft-ietf-rtcweb-data-channel-11.txt

[3] C. Jennings, T. Hardie, and M. Westerlund, “Real-time communications
for the web,” Communications Magazine, IEEE, vol. 51, no. 4, pp. 20–26,
2013.

[4] A. Bergkvist, D. C. Burnett, C. Jennings, and A. Narayanan,
“WebRTC 1.0: Real-time Communication Between Browsers,” W3C,
Editor’s Draft, obsoleted, Aug. 2011, obsoleted. [Online]. Available:
http://dev.w3.org/2011/webrtc/editor/archives/20140617/webrtc.html

[5] A. A. Lozano, “Performance analysis of topologies for web-
based real-time communication (webrtc),” Master’s Thesis, Aalto-
university, School of Electrical Engineering, Espoo, 2013, avail-
able: https://aaltodoc.aalto.fi/bitstream/handle/123456789/11093/master
Abell%C3%B3 Lozano Albert 2013.pdf. Cited 13.8.2014.

[6] F. Fund, C. Wang, Y. Liu, T. Korakis, M. Zink, and S. S. Panwar,
“Performance of dash and webrtc video services for mobile users,” in
Proceedings of the 2013 20th International Packet Video Workshop, San
Jose, California, USA, 2013, pp. 1–8.

[7] A. Bergkvist, D. C. Burnett, C. Jennings, and A. Narayanan,
“WebRTC 1.0: Real-time Communication Between Browsers,” W3C,
Editor’s Draft, Jun. 2014, work in progress. [Online]. Available:
http://dev.w3.org/2011/webrtc/editor/webrtc-20110823.html

[8] K. Chen, Y. Xue, S. H. Shah, and K. Nahrstedt, “Understanding
bandwidth-delay product in mobile ad hoc networks,” Computer Com-
munications, vol. 27, no. 10, pp. 923–934, 2004.

[9] S. et al., “RFC 2960: Stream Control Transmission Protocol,”
Oct. 2000, status: Proposed standard. [Online]. Available: http:
//tools.ietf.org/html/rfc2960


