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Abstract

Background: It is established that Alzheimer’s disease (AD) patients experience sleep

disruption. However, it remains unknown whether disruption in the quantity, quality or

timing of sleep is a risk factor for the onset of AD.
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Methods: We used the largest published genome-wide association studies of self-

reported and accelerometer-measured sleep traits (chronotype, duration, fragmentation,

insomnia, daytime napping and daytime sleepiness), and AD. Mendelian randomization

(MR) was used to estimate the causal effect of self-reported and accelerometer-

measured sleep parameters on AD risk.

Results: Overall, there was little evidence to support a causal effect of sleep traits on AD

risk. There was some suggestive evidence that self-reported daytime napping was asso-

ciated with lower AD risk [odds ratio (OR): 0.70, 95% confidence interval (CI): 0.50–0.99).

Some other sleep traits (accelerometer-measured ‘eveningness’ and sleep duration, and

self-reported daytime sleepiness) had ORs of a similar magnitude to daytime napping,

but were less precisely estimated.

Conclusions: Overall, we found very limited evidence to support a causal effect of sleep

traits on AD risk. Our findings provide tentative evidence that daytime napping may re-

duce AD risk. Given that this is the first MR study of multiple self-report and objective

sleep traits on AD risk, findings should be replicated using independent samples when

such data become available.

Key words: Sleep; Alzheimer’s disease, dementia, Mendelian randomization, causal inference

Introduction

Alzheimer’s disease (AD) has been estimated to affect 47

million people worldwide and the prevalence is expected

to double in the next 20 years.1 Current treatments are un-

able to reverse or delay progression of the disease,

highlighting the importance of prevention. Identifying

causal, modifiable risk factors is crucial for developing suc-

cessful prevention strategies. It is well established that

patients with AD experience sleep disruption (e.g. shorter

duration, greater fragmentation).2 However, it remains un-

known whether disruption in the quantity, quality or tim-

ing of sleep is a causal risk factor for the onset of AD.

Various sleep parameters have previously been sug-

gested as potential risk factors for AD,3–6 but research to

date has yielded inconsistent findings. Authors of the

recent Lancet commission on ‘Dementia prevention, inter-

vention, and care’, did not include sleep in their calcula-

tions of population-attributable fractions of the most

‘potent’ dementia risk factors (despite acknowledging sleep

as a potentially important risk factor) due to the absence of

systematic reviews or enough consistent, high-quality evi-

dence.3 Inconsistencies in the sleep-AD literature may, at

least in part, be explained by bias due to reverse causation.

Most studies have been conducted in clinical populations

(e.g. patients with mild cognitive impairment or early AD),

making it difficult to rule out that associations are not due

to sleep disruption as a result of accumulating AD pathol-

ogy. Very few studies have been conducted in healthy

(non-clinical) populations and, even those that have, tend

to include older participants (i.e. mid- to-late life at base-

line).7 AD has a long prodromal phase of up to 20 years.8

Thus, even in apparently healthy populations, measuring

sleep in later life makes it difficult to rule out that those

participants with sleep disruption are those with prodro-

mal AD. Another potential explanation for the inconsisten-

cies may be the considerable heterogeneity in existing

study designs, which have examined various exposures

(e.g. sleep duration,9 time spent in sleep stages,10 fragmenta-

tion,11 insomnia12 and frequency and duration of daytime

napping13 measured both subjectively and objectively) and

Key Messages

• It is currently not clear whether disrupted sleep is a causal risk factor for Alzheimer’s disease; current observational

associations are likely biased by reverse causation and confounding.

• We employ the largest genome-wide association studies of multiple sleep traits in Mendelian randomization analyses,

to examine whether sleep disruption is causally linked to Alzheimer’s disease risk.

• We find very limited evidence of link between disrupted sleep and risk of Alzheimer’s disease. However, there is ten-

tative evidence that daytime napping may be protective.
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outcomes (e.g. cognitive function at a single time point,14

cognitive decline over time,15 mild cognitive impairment,16

AD diagnoses16 and putative AD biomarkers such as

amyloid-beta and tau13). Finally, the majority of studies

conducted to date are observational, meaning confound-

ing is a plausible explanation for the findings.

Mendelian randomization (MR) is a method that uses ge-

netic variants as instrumental variables for environmental

exposures, to estimate the causal effect of an exposure on an

outcome. Due to their random allocation at conception, ge-

netic markers of a risk factor are largely independent of po-

tential confounders that may otherwise bias the association

of interest. They also cannot be modified by subsequent dis-

ease, thereby eliminating potential bias by reverse causa-

tion.17 Thus, MR is a useful tool for helping to establish

whether sleep traits are causally related to risk of onset of

AD, or whether associations observed to date are likely a re-

sult of bias by confounding and/or reverse causation. In this

study, we aimed to establish whether both self-report and

accelerometer-measured sleep traits have a causal effect on

AD risk, using a two-sample MR design.18

Methods

Methods for conducting two-sample MR analyses have

been published previously.18 Briefly, two-sample MR pro-

vides an estimate of the causal effect of an exposure on an

outcome, using independent samples to obtain the gene-

exposure and gene-outcome associations, provided three

key assumptions hold: (i) genetic variants are robustly as-

sociated with the exposure of interest (i.e. replicate in inde-

pendent samples); (ii) genetic variants are not associated

with potential confounders of the association between the

exposure and the outcome; and (iii) there are no effects

of the genetic variants on the outcome, independent of the

exposure (i.e. no horizontal pleiotropy).19

Data

Genome-wide association studies (GWAS) have been pre-

viously performed for seven self-reported measures of ha-

bitual sleep patterns: chronotype,20 sleep duration,21 long

sleep duration,21 short sleep duration,21 frequent insom-

nia,22 excessive daytime sleepiness23 and daytime napping.

GWAS have also previously been performed for three

accelerometer-measured measures of sleep including timing

of the least active 5 h of the day (L5 timing), nocturnal

sleep duration and sleep fragmentation.24 Note that the as-

sessment of accelerometer-derived sleep for up to 7 days

per individual in UK Biobank was performed, on average,

5 years after the self-report sleep data were collected.25

Full details of each GWAS (e.g. cohorts included, ancestral

groups, exclusion criteria, covariate adjustment etc.)

are provided in Supplementary Table A, available as

Supplementary data at IJE online. Table 1 provides a brief

description of each of the sleep traits, the units in which

they were measured, participant numbers, the number of

approximately independent genome-wide significant (P< 5

x 10-8) loci identified and the F statistic. F statistics provide

an indication of instrument strength26 and are a function

of how much variance in the trait is explained by the set of

genetic instruments being used, the number of genetic

instruments being used and the sample size. F 10 indicates

that the analysis is unlikely to suffer from weak instrument

bias.27 For the outcome, we used the large-scale GWAS

meta-analysis of AD, conducted by the International

Genomics of Alzheimer’s Project (IGAP) (n¼ 17 008 AD

cases and 37 154 controls).28 Ethics approval was obtained

by the original GWAS studies. Figure 1 is a flow chart de-

scribing the data sources for each set of analyses performed.

Statistical analysis

Estimating the causal effects of the sleep traits on

risk of Alzheimer’s disease

Full details of the harmonization procedure can be found in

the online supplement. Supplementary Table B, available as

Supplementary data at IJE online, shows the single nucleo-

tide polymorphism (SNP) flow through the harmonization

procedure. MR-Base (www.mrbase.org)29 was employed to

perform all two-sample MR analyses. Effect estimates and

corresponding standard errors of the genome-wide signifi-

cant SNPs were extracted from each sleep GWAS and the

AD GWAS. The SNP-exposure (sleep trait units detailed in

Table 1 and Figure 2) and SNP-outcome [AD, in units of log

odds ratios (ORs] coefficients were combined using an

inverse-variance-weighted (IVW) approach to give an over-

all estimate of the causal effect across all SNPs included for

each sleep trait. The estimator is a Wald ratio and is equiva-

lent to a weighted regression of the SNP-outcome coeffi-

cients on the SNP-exposure coefficients with the intercept

constrained to zero. The results of all analyses were con-

verted to ORs for AD. For binary exposures (i.e. frequent

insomnia, and long and short sleep duration), SNP-exposure

coefficients were estimated using logistic regression and are

therefore on the log odds scale. Causal effect estimates (i.e.

ORs for AD) have been rescaled so that they are interpreted

per doubling of genetic liability for the sleep trait, as recom-

mended by Burgess et al.30 For ordered categorical expo-

sures, SNP-exposure coefficients were estimated using linear

regression, and causal effect estimates are interpreted per

category increase in the sleep trait. For continuous expo-

sures, SNP-exposure coefficients were estimated using linear
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regression, and causal effect estimates are interpreted per

unit increase in the sleep trait (units detailed in Table 1 and

Figure 2).

Sensitivity analyses

A series of sensitivity analyses were conducted to check for

violation of the key MR assumptions. The rationale and

methodological details for each of these analyses are pro-

vided in the online supplement. The IVW method assumes

no horizontal pleiotropy but will be unbiased if there is

balanced horizontal pleiotropy.19 Thus, results from the

IVW method were compared with those from MR-Egger19

and weighted median regressions31 which relax this as-

sumption. The IVW method also assumes no measurement

error in the gene-exposure association estimates (i.e. the

Table 1 Description of the sleep genome-wide association studies (GWAS) included in the two-sample Mendelian randomiza-

tion analyses

Trait definition (units) Participants, n(cases/controls

for binary traits)

Loci identified,

n, in GWAS

F statistic

Self-report measures

Chronotype20 Whether a person identifies as being a

‘morning person’ or an ‘evening person’

(ordered categorical variable of definitely

a morning person, more a morning than

an evening person, do not know, more an

evening than morning person and defi-

nitely an evening person)a

449 734 351 33.1

Sleep duration21 Average number of hours slept in 24 h, in-

cluding naps (continuous variable, hours)

446 118 78 39.6

Short sleep duration21 Person has an average of 6 h or less per

night vs 7-8 h per 24 h (binary variable

of yes/no)

411 934 (106 192/305 742) 27 25.6

Long sleep duration21 Person has an average of 9 h or more per

night vs 7-8 h per 24 h (binary variable

of yes/no)

339 926 (34 184/305 742) 8 30.6

Frequent insomnia22 Person has trouble falling asleep at night or

wakes up in the middle of the night (bi-

nary variable of usually vs never/rarely)

453 379 (131 480/321 899) 48 41.7

Excessive daytime

sleepiness23

Person dozes off or falls asleep during the

day without meaning to (ordered cate-

gorical variable of never or rarely, some-

times, often and all the time)

452 071 37 42.3

Daytime napping Person naps during the day (ordered cate-

gorical variable of never, sometimes,

usually)

452 633 112 46.1

Accelerometer measures

L5 timing24 Timing of the least active 5 h of the day

(continuous variable of hours elapsed

since previous midnight; provides indica-

tion of phase of most restful hours with

later times indexing greater tendency to-

wards ‘eveningness’)

85 205 6 55.3

Sleep duration24 Average number of hours of nocturnal sleep

per night (continuous variable, hours)

84 810 11 52.1

Sleep fragmentation24 The average number of nocturnal sleep epi-

sodes separated by at least 5 min of

wakefulness per night (continuous vari-

able, number of episodes)

84 810 21 38.6

aNote that in the original chronotype GWAS, categories were ordered from more ‘eveningness’ to more ‘morningness’. In this analysis, to ensure that the ordi-

nal chronotype variable correlated positively with the accelerometer-measured measure of L5 timing, single nucleotide polymorphism (SNP)-exposure coefficients

for chronotype were reordered from more ‘morningness’ to more ‘eveningness’ (where ‘definitely a morning person’ is the reference category).
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NOME assumption).19 We assessed this using an adapta-

tion of the I2 statistic32 (referred to as I2
GX) which provides

an estimate of the degree of regression dilution in the MR-

Egger causal estimate due to uncertainty in the SNP-

exposure estimates. Simulation extrapolation (SIMEX)

was then used to adjust the MR-Egger estimate for this di-

lution.33 Heterogeneity (i.e. variability in causal estimates

from different genetic variants) was assessed using

Cochran’s Q statistic.19 Funnel plots were then generated

to enable visual assessment of the extent to which

Figure 2 Associations of sleep traits with Alzheimer’s Disease. Note that the MR Egger estimate for the effect of daytime sleepiness was not plotted

due to imprecision. IVW, Inverse Variance Weighted

Figure 1 Flow chart detailing data sources for each analysis performed. AD, Alzheimer’s disease; GWAS, genome-wide association study; MR,

Mendelian randomization; IGAP, International Genomics of Alzheimer’s Project; IVW, Inverse Variance Weighted; PGC, Psychiatric Genomics

Consortium; ADSP, Alzheimer’s Disease Sequencing Project
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pleiotropy is likely to be balanced (or directional) across

the set of instruments used in each analysis. Radial MR

was used to detect and remove any SNP outliers (i.e. those

SNPs that contribute the most heterogeneity to Cochran’s

Q, based on a multiple testing corrected P-value thresh-

old). Leave-one-out permutations were conducted to assess

the undue influence of potentially pleiotropic SNPs on the

causal estimates.34 We checked that results were similar af-

ter excluding palindromic SNPs.35 Steiger filtering was per-

formed to test that the hypothesized causal direction was

correct for each SNP (i.e. that the genetic instruments in-

fluence the exposure first and then the outcome, through

the exposure).36 Finally, we investigated potential bias due

to ‘winner’s curse’ where the magnitude of the effect sizes

for variants identified within a single discovery sample are

likely to be larger than in the overall population, even if

they are truly associated with the exposure. Assessment of

winner’s curse was only possible for frequent insomnia and

sleep duration, where the GWAS were replicated in inde-

pendent samples [the Nord-Trøndelag Health Study

(HUNT) and the Cohorts for Heart and Aging Research in

Genomic Epidemiology (CHARGE), respectively]. Details

of the replication samples and winners curse analyses are

in the online supplement.

Additional analyses

To examine whether the previously observed associations

between AD (as an exposure) and sleep disruption (as an

outcome)2 could be supported through applying MR ana-

lytical approaches, we tested whether genetic liability for

AD was causally associated with the self-reported and

accelerometer-measured sleep traits. We used 20 indepen-

dent genome-wide significant AD SNPs identified in the

IGAP AD GWAS meta-analysis (described previously)28 as

genetic instruments in these analyses. As with the main

analysis of sleep traits on AD risk, SNP-exposure and SNP-

outcome coefficients were combined using an inverse-

variance-weighted (IVW). MR-Egger, weighted median,

radial MR and Steiger filtering were performed to assess

potential violation of the MR assumptions. Analyses were

conducted both with and without the apolipoprotein E

(APOE) variant included, as APOE has been previously

shown to be pleiotropic37 (which violates an MR assump-

tion). We also examined associations of APOE (as a single

genetic instrument) with the sleep traits. As AD is a binary

exposure and SNP-exposure coefficients are on the log

odds scale, causal estimates for the effect of AD on sleep

traits are rescaled so that they are interpreted per doubling

of genetic liability for AD.

It is worth noting that there are several important limi-

tations to these analyses. First, the average age of AD

diagnosis in the UK is around 75 years,38 with the neuro-

psychological effects of prodromal disease detectable up to

8 years preceding a diagnosis of mild cognitive impairment

(i.e. around 10–12 years before AD diagnosis).39 Thus, the

majority of UK Biobank participants are likely too young

(average age at recruitment 56 years40) to have even pro-

dromal disease at the time the sleep traits were measured.

Examining the effect of AD on sleep traits in a relatively

young, healthy population (when we hypothesize that any

effects of AD on sleep traits will likely be a result of in-

creasing pathological burden) may not yield reliable

results. Second, there is ‘healthy selection’ into the UK

Biobank; only approximately 5% of those invited to par-

ticipate in the study accepted the invitation,41 and there is

evidence that genetic liability to AD is associated with

lower participation rates in the optional components of

UK Biobank.42 This makes it less likely that participants

with an existing AD diagnosis or undiagnosed prodromal

disease would have been recruited into the study, and

again, may induce bias in the causal effect estimates.

Post hoc analyses

After the completion of the analyses for this paper, an

updated AD GWAS meta-analysis was published43 includ-

ing the aforementioned IGAP, the AD working group of

the Psychiatric Genomics Consortium and the AD

Sequencing Project (Phase 1; n¼ 24 087 cases and 55 058

controls compared with n¼ 17 008 AD cases and 37 154

controls for IGAP alone). We therefore conducted a sensi-

tivity analysis to assess whether causal effects were consis-

tent when using the newer GWAS. We a priori decided not

to use summary statistics from the Phase 3 meta-analysis

(which includes UK Biobank), but instead use the Phase 1

(which excludes UK Biobank) for two reasons: first, all

sleep trait GWASs include the UK Biobank, meaning there

would be significant overlap between the exposure and

outcome samples in each MR analysis. This can yield bi-

ased causal effect estimates.44 Second, the Phase 3 AD

GWAS meta-analysis includes only AD-by-proxy cases

from the UK Biobank (i.e. no diagnosed cases). AD-by-

proxy cases were defined as a positive response to the ques-

tion ‘Has your mother or father ever suffered from

Alzheimer’s disease/dementia’. There are several potential

problems with this for MR analyses: participants defined

as cases have not themselves been diagnosed with AD; the

question does not specify Alzheimer’s disease but asks

about any form of dementia; and finally, the question does

not ask if family members were diagnosed by a doctor. For

ease of the reader, we will henceforth refer to the main

IGAP analyses as being in the ‘IGAP-only data’, and the
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additional analyses with the newer published GWAS as be-

ing in the ‘META data’.

Results

Main analyses in ‘IGAP-only data

Supplementary Table C, available as Supplementary data at

IJE online, shows the phenotypic correlations between each

of the sleep traits. Correlations between accelerometer

measures have been published previously.24 Correlations

were generally weak, ranging from r ¼ -0.001 (between

accelerometer-measured L5 timing and accelerometer-

measured sleep duration) to r ¼ -0.32 (between self-report

frequent insomnia and self-report short sleep duration). It is

also worth noting that correlations were weak between self-

reported and accelerometer-measured sleep duration

(r¼ 0.15). This may reflect that accelerometer data in the

UK biobank were collected between 2 and 9 years (mean

5 years)24 after baseline, when self-reported sleep measures

were assessed. It may also reflect that self-reports of global

sleep duration (vs daily self-reported) can be influenced by

distress/affect.45

Figure 2 shows results for the analysis of the sleep traits

on risk of AD. Full results can be found in Supplementary

Table D, available as Supplementary data at IJE online.

Point estimates for self-reported chronotype, insomnia and

sleep duration were very close to or on the null. Both

shorter and longer self-reported sleep duration and

accelerometer-measured sleep fragmentation yielded posi-

tive estimates with AD risk, but were imprecisely esti-

mated. There was some tentative evidence of a protective

effect of self-reported daytime napping on AD risk, with

odds of AD being 33% lower (95% CI: 55% lower to 2%

higher) per category increase from ‘never’, ‘sometimes’ to

‘usually’ napping. However, this was again imprecisely es-

timated. Odds ratios for greater accelerometer-measured

‘eveningness’, longer accelerometer-measured sleep dura-

tion and self-reported daytime sleepiness were similar in

magnitude to daytime napping, although again with wide

confidence intervals.

Sensitivity analyses in IGAP-only data

For all analyses, there was little evidence of directional

pleiotropy from the MR-Egger regression intercepts

(Supplementary Table E, available as Supplementary data

at IJE online), and causal effect estimates from the MR-

Egger and weighted median regressions generally agreed

with those from the IVW regressions; in all cases there was

substantial overlap between the confidence intervals for

each estimate (Supplementary Table D, available as

Supplementary data at IJE online). As expected, precision

was less for MR-Egger (due to estimating both an intercept

and slope in the MR-Egger regression as opposed to only a

slope in the IVW regression) and weighted median (due to

assuming only 50% of the instruments are valid). I2
GX sta-

tistics are provided in Supplementary Table F, available as

Supplementary data at IJE online and SIMEX-adjusted

MR-Egger estimates in Supplementary Table D. These esti-

mates were consistent with regression dilution of the MR-

Egger causal effect estimates due to measurement error in

the SNP-exposure estimates. There was evidence of

between-SNP heterogeneity in the self-reported chronotype

and daytime napping, and accelerometer-measured L5-tim-

ing analyses (Supplementary Table G, available as

Supplementary data at IJE online). However, these were not

unduly asymmetrical in the funnel plots (Supplementary

Figures A–C, available as Supplementary data at IJE on-

line), suggesting that directional pleiotropy is unlikely to

bias the effect estimates for these sleep traits. A total of three

outliers were detected by radial MR for sleep fragmentation

(rs12714404, rs429358 and rs4974697) and one for L5 tim-

ing (rs1144566). Point estimates for these two traits attenu-

ated towards the null after removal of these outliers

(Supplementary Table H, available as Supplementary data

at IJE online). Results were similar after removing each SNP

in turn in the leave-one-out permutations (Supplementary

Figures D–M, available as Supplementary data at IJE on-

line), suggesting that no single SNP was having undue influ-

ence on the overall causal effect estimates. Results were also

similar when palindromic SNPs were excluded from the

analyses (Supplementary Table I, available as

Supplementary data at IJE online). Steiger filtering provided

evidence that for each MR analysis, SNPs explained more

variation in the sleep trait than in AD. Findings for the sleep

duration and insomnia results were similar when repeating

analyses using the available replication datasets (i.e. using

SNP-exposure estimates from independent datasets)

(Supplementary Table J, available as Supplementary data at

IJE online), providing evidence that bias due to winner’s

curse is unlikely.

Additional analyses in IGAP-only data

Associations between genetic liability for AD and all sleep

traits are provided in Supplementary Table K, available as

Supplementary data at IJE online. All point estimates are

interpreted per doubling of genetic risk for AD. There was

little evidence that genetic liability for AD was associated

with short sleep duration (<6 h vs 7–8 h per 24 h) or day-

time sleepiness. Increased genetic liability for AD was asso-

ciated with less frequent insomnia, reduced daytime

napping and reduced sleep fragmentation. The effects were
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very small in magnitude (e.g. a doubling of genetic liability

for AD was associated with, on average, a 0.4% lower risk

of frequent insomnia). Point estimates for associations of

genetic liability for AD with all other sleep traits were also

very close to or on the null (e.g. a doubling of genetic lia-

bility for AD was associated with, on average, 0.3 min

lower sleep duration). P-values were small, likely due to

the strength of APOE as an instrument for AD. This is sup-

ported by the fact that, when using the full set of AD ge-

netic instruments minus APOE, point estimates remained

largely unchanged but confidence intervals were wider

(Supplementary Table L, available as Supplementary data

at IJE online). Given that these causal effect estimates are

per doubling of genetic liability for AD, the magnitude of

effect is very small and not likely to be clinically important.

Results were similar when using APOE alone as an instru-

ment for AD (i.e. excluding all other AD SNPs,

Supplementary Table M, available as Supplementary data

at IJE online). Results were comparable when using MR-

Egger and weighted median regressions (Supplementary

Table K) and after removal of outliers detected by radial

MR (Supplementary Table N, available as Supplementary

data at IJE online). Steiger filtering provided evidence that

for each MR analysis, all AD SNPs explained more varia-

tion in AD than in the sleep trait. Given our concerns

about selection bias in the UK Biobank for these analy-

ses,46 we performed a post hoc analysis to assess whether

causal effect estimates were comparable when using a dif-

ferent outcome sample. Methods for these analyses are

provided in the online supplement. We tested the associa-

tion between genetic liability for AD and frequent insom-

nia in n¼62 533 participants from the Nord-Trøndelag

Health Study (HUNT).47 HUNT is a less selected sample

with over 60% response rate (compared with <5% for UK

Biobank). Results were comparable to the main analyses

using UK Biobank, except that confidence intervals were

wider (IVW odds ratio: 0.98 per doubling of genetic

liability for AD, 95% CI: 0.95 to 1.01 in HUNT, vs IVW

odds ratio: 0.99 per doubling of genetic liability for AD,

95% CI: 0.99 to 1.00 in the UK Biobank, Supplementary

Table O, available as Supplementary data at IJE online).

Post hoc analysis in the ‘META data’

Causal effect estimates for associations of sleep traits on

risk of AD were very similar when using the largest meta-

analysis GWAS for AD, typically with more precision

around the causal estimates (Figure 3). There was consis-

tent evidence of a protective effect of daytime napping on

Alzheimer’s risk, with odds of AD being 36% lower (95%

CI: 11% to 45%) per category increase from ‘never’,

‘sometimes’ to ‘usually’ napping in the IVW analysis.

Effects were consistent across several pleiotropy-robust

methods, including MR Egger and weighted median

approaches.

Discussion

We have used the largest genome-wide association studies

available of self-report and accelerometer-measured sleep

traits and diagnosed Alzheimer’s disease, to provide evi-

dence on possible causal relationships between them.

Overall, based on both the IGAP-only data and the META

data presented in this study, we found very little evidence

to support a causal link between these sleep traits and risk

of AD, except for some suggestive evidence that daytime

napping may be associated with lower risk of AD. It is

worth noting that odds ratios for accelerometer-measured

‘eveningness’, accelerometer-measured sleep duration and

self-reported daytime sleepiness were similar in magnitude

to daytime napping, but that confidence intervals were too

wide to draw any meaningful conclusions (indicating that

power is likely a key limitation here).

Figure 3 Comparing results for associations of sleep traits on risk of Alzheimer’s disease (AD) when using the International Genomics of Alzheimer’s

Project (IGAP) genome-wide association study (GWAS) alone (n¼ 17 008 AD cases and 37 154 controls; IGAP) vs the GWAS meta-analysis of IGAP,

the AD working group of the Psychiatric Genomics Consortium and the AD Sequencing Project (n¼ 24 087 cases and 55 058 controls: META data).

Note that the MR Egger estimate for effect of accelerometer-measured sleep fragmentation using IGAP data was not plotted due to imprecision. MR,

Mendelian randomization; AM, accelerometer-measured; SR, self-report
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We found increased genetic liability for AD was associ-

ated with less frequent insomnia, reduced daytime napping

and reduced sleep fragmentation. However, it is important

to note that point estimates were very close to the null, and

given that they are per doubling of genetic liability for AD,

are unlikely to be clinically important. Confidence inter-

vals around these point estimates were likely narrow due

to the inclusion of APOE as a genetic instrument for AD

(as it is strongly and robustly associated with a 3- to 15-

fold increase in AD risk43); confidence intervals were much

wider when we excluded this instrument. Although these

associations are in the opposite direction to what we

expected, these results should be treated with caution be-

cause of the potential for selection bias within the UK

Biobank (which can cause spurious associations46) where

participants are relatively young and healthier than the

general population. In light of this and based on our largely

null results, we would not rule out reverse causation as a

potential explanation for previous findings in observa-

tional studies.

We looked only at frequency (not duration) of daytime

napping, as information on duration of naps is not cur-

rently available in the UK Biobank. Previous studies have

reported both positive and negative outcomes observed in

relation to napping, and there is evidence that the duration

may be particularly important (with shorter naps being

beneficial, and longer naps being detrimental for various

health outcomes including cardiovascular risk, cognitive

impairment and memory consolidation).48,49 Most studies

to date linking daytime napping to poor health outcomes

have been done in elderly populations,50,51 making it diffi-

cult to rule out that (in those studies) daytime napping is

not merely a result of underlying disease, rather than being

a cause of the poor outcomes. In addition, it is often not

possible in those studies to separate whether it is poor noc-

turnal sleep or the consequential daytime napping that is

associated with the adverse outcomes. Conversely, there is

some evidence that daytime naps offer a variety of benefits

including memory consolidation52 and improvements in

subsequent learning,53 executive functioning and emo-

tional processing,54 all of which are impaired in AD.55

There is also evidence that short, restorative naps

(<60 min in duration) may reduce the rate of cardiovascu-

lar disease and low-grade inflammation.49 Thus, daytime

napping (before the onset of preclinical disease) may po-

tentially serve as a useful compensatory mechanism for

poor nocturnal sleep, enabling the brain to carry out tasks

it was unable to complete during the night (for example,

due to fragmented or short sleep).

There have been three twin-studies examining the rela-

tionship between sleep disruption and dementia risk,

which may help mitigate bias due to confounding.56–58

However, two studies acknowledge that they are under-

powered and include the null value,56,57 making it difficult

to draw any inferences about causality, and one study in-

cluded participants over age 65 years (with most being

over age 70 years), making it plausible that estimates are

biased by reverse causation.58 A recent MR study exam-

ined the causal effects of sleep duration on various demen-

tia and cognitive function outcomes. Using standard MR

methods, greater sleep duration was associated with slower

reaction times and more errors in visual memory (with

both outcomes measured as continuous variables), but

there was no robust evidence of causal effects on reaction

time or visual memory (both binary variables derived from

the standardized regression-based method), all-cause de-

mentia or, similar to our study, Alzheimer’s disease.

Observing no associations with any of the binary outcomes

may be due to a lack of power, as in our study. The authors

also explored possible non-linearity in a one-sample frame-

work, by generating three subgroups based on the residuals

of sleep duration after adjustment on genetic instruments.

This method explores the linear effect of sleep duration

within each of these subgroups, and tests for evidence of a

difference in associations (interactions) across them. They

found evidence that associations with poorer visual mem-

ory and reaction time were stronger for both the lower and

the higher duration subgroup than the middle one.

However, it is worth noting that this method is limited for

assessing non-linearity (as it is only really possible to ob-

tain three strata) and may induce collider bias in cases

where data are not measured continuously (as with self-

report sleep duration in UK Biobank, which is measured

categorically).59

Strengths and limitations

To our knowledge, this is the first study to examine the

causal effect of various sleep traits on risk of AD, using

MR. We have both self-reported and accelerometer-

assessed measures of sleep, allowing a comprehensive eval-

uation of various sleep parameters and a comparison

across the two methods of assessment. We conducted a

comprehensive series of sensitivity analyses to examine

whether our results were robust to the various assumptions

of MR or were likely to be biased by horizontal pleiotropy.

We were also able to replicate some of our findings using

independent exposure datasets (i.e. for self-report sleep du-

ration and insomnia), and results were consistent, suggest-

ing our findings are unlikely to be biased by winner’s

curse. Findings were also largely consistent when we per-

formed MR using summary statistics from a more recent

GWAS meta-analysis of Alzheimer’s disease.43
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There are, however, several limitations to our study.

The first limitation is statistical power; confidence intervals

were wide for most sleep traits (despite using the largest

available GWASs), limiting our ability to draw meaningful

conclusions for many associations. Identifying stronger

instruments for these sleep traits may increase statistical

power and enable us to estimate their causal effects on AD

risk more precisely. The second limitation is that some

SNPs may overlap across sleep traits. It would be of inter-

est to perform multivariable MR analysis to fully delineate

the independent effects of each of the sleep traits, but we

would be underpowered to draw inferences from this with

seven traits, some of which have very few genetic markers.

This should, however, have little consequence for the inter-

pretation of our results. Concern here would be about hor-

izontal pleiotropy (an observed causal effect on the

outcome that does not go via the exposure of interest, but

another trait). Pleiotropy is important to consider in the

context of non-null results, as we want to have some cer-

tainty that the pathway from gene to outcome goes via the

exposure of interest. Our results are largely null, meaning

there is little evidence of a direct effect of the exposure, or

a pleiotropic effect, on the outcome. It is plausible that

pleiotropy could act in the opposite direction to the true

causal effect and bias estimates towards the null. However,

this is unlikely given: (i) that none of the extensive sensitiv-

ity analyses performed suggest that pleiotropy is biasing ef-

fect estimates; and (ii) we observe no causal effects for any

other (pleiotropic) sleep traits. Thus, pleiotropy is an un-

likely explanation for our findings. The third limitation is

that, for some sleep traits (e.g. self-report long-sleep dura-

tion and for accelerometer L5 timing and sleep duration),

there were very few genome-wide significant SNPs identi-

fied in their respective GWASs (and thus available for use

in our MR analyses). This made it difficult to examine po-

tential directional horizontal pleiotropy using funnel plots

for these traits. However, given that there was only evi-

dence of heterogeneity for L5 timing, daytime napping and

chronotype (and the chronotype and daytime napping

showed no marked asymmetry in the funnel plot), horizon-

tal pleiotropy is unlikely to explain our findings. Third, we

did not correct for multiple testing because several of the

sleep traits are correlated, but the results need to be inter-

preted in this light, and replication of our findings is re-

quired. Fourth, it is possible that the specific features of

sleep that are implicated in the pathogenesis of AD (for ex-

ample, disruption of slow-wave sleep) are not detectable

using accelerometers or subjectively. Fifth, there may be a

threshold effect of daytime napping by which shorter naps

are beneficial and long, frequent naps may be detrimental.

Previous studies have suggested this may be the case (par-

ticularly for cardiovascular risk, cognitive impairment and

memory consolidation49) but we are unable to unpick

these effects with current data in an MR framework. Sixth,

most analyses were conducted using data from the UK

Biobank, which may not be representative of the general

population (due to selection into the study).41 That said,

results were similar when using data from independent rep-

lication samples (including HUNT and CHARGE). All

GWAS samples were also restricted to participants of

European ancestry and therefore may not be generalizable

to other populations. Finally, no sleep diaries were col-

lected in the UK Biobank to identify time in bed and out of

bed, which may introduce measurement error into some of

the accelerometer measures. However, for the sleep data

used in this study, times in and out of bed were estimated

using a validated algorithm to determine the sleep period

time window.60

Conclusions

We found very limited evidence to support disrupted sleep

as a causal risk factor for AD. Our results tentatively sug-

gest that daytime napping may reduce AD risk. Given that

this is the first MR study of multiple self-report and objec-

tive sleep traits on AD risk, findings should be replicated

using independent samples when such data become avail-

able. Identifying stronger instruments for all sleep traits

will be useful in more precisely estimating any causal

effects on AD risk.
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