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ABSTRACT
People increasingly carry wearables and the capabilities of these
devices have reached a point where it is increasingly possible to
harness the devices to support everyday interactions. We contribute
a new use of wearables by demonstrating how they can be used to
safeguard against drink spiking, the deliberate act of adding sub-
stances to another person’s drink. We design Hedgehog, a pervasive
sensing approach that re-purposes the optical sensors in off-the-
shelf wearables to identify spiked drinks by analysing differences in
light reflectivity resulting from small particles inside the drink. We
present a wearable prototype inspired by a smart ring design and
conduct rigorous experiments that show the Hedgehog reaches up
to 89.71% accuracy in detecting drinks that are tampered with. Our
work demonstrates how pervasive sensing enables innovative ap-
plications and how smart wearables can be re-purposed to support
personal safety.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting.
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1 INTRODUCTION
Drink spiking, the deliberate act of adding substances to drinks, is a
worrisome trend that is being fueled by easier access to substances.
Drink spiking is generally perpetrated by someone with the inten-
tion to making a victim more vulnerable to assault. A study among
student populations showed that almost 8% of all students have
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had their drink spiked at some point [16], highlighting how drink
spiking is indeed a significant and a real threat to people. The public
perception is that drink spiking is limited to slipping drugs or seda-
tives into alcoholic drinks. However, drink spiking can also target
non-alcoholic drinks, such as water, soda, soft drinks, or juices.
Drink spiking is a critical problem to overcome as it can cause
victims severe danger, anxiety, and physical or mental harm [2, 15].

Detecting drink spiking is unfortunately difficult as the spiking
typically happens in crowded social occasions where it is impossible
to consistently keep a watchful eye on the drink container and its
contents. Substances that are commonly used in drink spiking also
are not directly visible, making it difficult to realize when the drink
has been tamperedwith. To safeguard individuals against drink spik-
ing, there is a need for solutions that can identify when the drinks
have been tampered with. At the same time, these methods need to
be unobtrusive to ensure they are acceptable in social contexts. Cur-
rently, no such solution exists, and the primary countermeasure has
been to design guidelines and advice for raising awareness about
the problem. For instance, requesting sealed products when buying
them, keeping an eye on the drink, avoiding leaving drinks unat-
tended and so forth. Unfortunately, these methods are ineffective in
reducing the issue as people tend to underestimate the possibility
of spiking. Indeed, spiking can occur in a short amount of time
without the victim realizing it. It is also difficult to visually identify
whether a drink has been spiked or not. While drug manufactur-
ers are starting to take steps to reduce the possibility of spiking,
e.g., by incorporating a colorant that reacts heavily with water, not
all drugs can include colorants. Similarly, while there have been
some technological solutions for identifying spiked drinks, e.g., by
analysing samples of the drink contents, these are not feasible as
a practical solution for everyday interactions as they lack porta-
bility and require specialized equipment. Thus, new solutions to
overcome these limitations are needed.

We contribute Hedgehog as an innovative pervasive sensing so-
lution for identifying drink spiking. Hedgehog re-purposes optical
sensors on wearables, such as smart rings or smartwatches, to iden-
tify changes in light reflectance that are caused by small particles
inside a drink. Hedgehog identifies drink spiking by first establish-
ing a reference fingerprint of a drink and then monitoring changes
in this reference fingerprint. Through rigorous benchmarks that
consider different types of drinks and pill-sized doses of compounds
being introduced into drinks, we demonstrate that Hedgehog can
accurately and robustly identify drink spiking and achieve up to
89.71% accuracy in detecting drinks that have been tampered with.
Our results demonstrate a novel use for wearables that can improve
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Figure 1: Characterization of drinks with light. (a) Hedgehog design, (b) light reflectivity pattern, (c) Location(s) for sampling,
(d) Sampling through a transparent surface, (e) Sensing pipeline for analysis of collected samples.

personal safety and pave the way toward harnessing wearables for
supporting everyday interactions.

2 IDENTIFYING DRINK SPIKING
Hedgehog smart ring design: Figure 1 (a, top) shows a classical
smart ring design where sensors collect measurements from the
individual’s skin to derivemetrics, such as skin temperature or heart
rate [20]. Figure 1 (a, bottom) shows the design of Hedgehog, which
re-purposes the light sensor by placing it on the exterior of the ring
to collect light reflectance measurements from liquid containers.
This requires the sensor to be placed on the surface of the liquid
container and the container to be transparent or translucent. One
key design challenge is how to optimally position the sensor to take
high quality measurements. Our experiments consider drinks in
glass containers and demonstrate that measurements can be taken
robustly on a smart ring.
Theoretical foundation: Hedgehog exploits the principle of light
scattering and reflectivity to assess changes in drinks [1, 22]. First,
when the user touches a liquid container, light measurements are
taken to establish a reference fingerprint of the liquid inside the
glass (drink characterization, Figure 1(b)-(d)). The contents are then
continuously monitored and changes in the fingerprint are used to
determine if the drink has spiked. The fingerprint consists of pa-
rameters that characterize the distribution of light intensity values,
and thus in practice Hedgehog operates by monitoring changes in
the distribution of the light intensity values. This requires measure-
ments to be collected over a sufficiently long period to ensure the
distribution can be estimated consistently. This, in turn, depends on
the sampling frequency of the underlying sensor and the stability of
the measurement context. In practice, 50-100 measurements (10-20
seconds depending on sampling frequencies) suffice.
Sensing pipeline: The sensing pipeline used to process measure-
ments is summarized in Figure 1(e). First, light measurements are
cleaned using median filtering and convolution smoothing. Next,
the reference fingerprint is established and assigned to a specific
liquid-filled container. Successive fingerprints are then compared
to the reference fingerprint, and these fingerprints are used as input
for machine learning classifiers to determine whether the drink has
been spiked or not. We consider two simple and easy-to-implement
classifiers: Random Forest (RF) and Gradient Boosting (GB).

3 EXPERIMENTS
We evaluate Hedgehog through four experiments which focus on
(i) characterizing different drink contents, (ii) detecting mixtures of

soluble compounds, (iii) detecting compounds and (iv) demonstrat-
ing practicability in the field. In all experiments, measurements are
taken using a smart ring prototype that integrates a red light sensor;
see Figure 1. Measurements were taken from three different fin-
gers: little finger (Position-1), middle finger (Position-2), and index
finger (Position-3), as shown in Figure 1(c). In all experiments, 225
milliliters of the given liquid were poured into a transparent glass
(cup1), and we conducted 4 trials per drink per position, with each
trial consisting of 6 one-minute measurement periods. We collected
data for one minute to ensure the data is representative data and
the impact of micro-hand movements, re-adjusting of the grip, and
other sources of noise are mitigated throughout the experiments.
We separately carry out further evaluations that consider the effect
of ambient luminosity, and different cups and drink types. Below
we detail our experiments.
Apparatus: We built a smart ring prototype that embeds the light
sensors on a ring and connects to a computing board that anal-
yses the light values; see Figure 2(a). The prototype uses a wire-
less M5StickC PLUS ESP32 development board that controls the
sampling frequency of the light sensor and uploads the samples
to a server in real time. It is also possible to use a smartphone for
analysing the measurements. TheM5StickC Plus contains an inbuilt
Wi-Fi connection facility, battery supplies (120 mAh @ 3.7V), and
an LCD screen to externalize the activities of the board. Moreover,
it is lightweight (21g) and portable, such that it can be placed in a
wristband (65 mm ×25 mm ×15 mm). A light sensor is integrated
through a separate wire that is attached to a plastic ring. The ring
is made from an elastic wire which makes it easy to adjust it to
different fingers. Our prototype takes light measurements using a
red laser diode (650 nm, 5 mW, 3 − 5V) and a photo-resistor (5MΩ).
The photoresistor measures the intensity of light reflected back
from the beam produced by the laser diode. The photoresistor cap-
tures analog voltage measurements, which are converted to digital
voltage representations. The output value of ADC (analog to digi-
tal conversion, with 12-bit resolution) is used as the physical unit
for reflected light intensity. The sample rate is configured at 5 Hz
frequency, and on average, 50 samples are needed to characterize a
drink with light measurements at 97.5% confidence.
(i) CharacterizingDrinks:Wefirst assesswhether light reflectance
measurements can be used to characterize and identify different
types of drinks. We consider six commonly available and consumed
drinks that can be easily manipulated in social contexts [17]. The
drinks are shown in (1) of Figure 2(b) and comprise (A) water, (B)
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Figure 2: (a) Smart ring prototype from different angles; (b)(1)
Drink characterization; (b)(2) Drink spiking with common
pills; (c) Milk drink with aggregated compound mixture; (d)
drink spiking with soluble pills.

carbonated soft drink, (C) beer (5.2% alcohol), (D) milk, (E) cold tea,
and (F) grape juice. We refer to this setup as DRINKS.
(ii) Soluble Compound: The second experiment (MIXTURE) incre-
mentally mixes a soluble compound – instant cocoa powder – into
milk. The powder was added in increments of 2 g until a total of 10
g had been added. After each increment, the mixture was stirred for
about a minute and left untouched until the liquid reached a stable
state (no motion) for light fingerprint measurement; see Figure 2(c).
(iii) Medical Compounds: The third experiment (PILLS) evalu-
ates water that has been spiked with medical pills. We consider
three different pills: aspirin (500 mg), paracetamol (500 mg) and
mirtazapine (30 mg). The first two are generic, freely available, over
the counter painkillers. The last one is an antidepressant that has
mild sedative effects and can only be obtained with a prescription.
The pills were ground into powder and mixed with a glass of water;
see (2) in Figure 2 (b). The resulting mixture is stirred thoroughly
prior to taking measurements.
(iv) Practicability: The final experiment assesses factors affecting
the light measurements. These experiments only consider measure-
ments from the middle finger (position-2) as the other experiments
demonstrate this position to provide the best performance (see be-
low). We carry out experiments with different cups, pill types, types
of drinks, and ambient luminosity levels. We consider transparent
and translucent glass cups: cup1 (2 mm thickness, baseline), cup2
(1 mm thickness, goblet) and cup3 (2 mm thickness, tinted cup);
with additional soluble pills: paracetamol (500 mg, no color change)
and multivitamin (color change); luminosity: indoor dark (Dark),
indoor ambient light (IAL) and outdoor ambient light (OAL); and
drink types: light beer (4.7% alcohol) and dark beer (5% alcohol);
see Figure 2(d).

4 RESULTS
Drink characterization:We start by demonstrating that individ-
ual drinks have light reflectance fingerprints that are unique to the
contents. This is essential for establishing reference fingerprints
that can then be used to determinewhether the contents of the drink
have been tamperedwith or not. Figure 3 (a)-(c) shows the results for

having the ring on different fingers. There are clear differences be-
tween the drinks, but these also differ according to the contact point.
Kruskal-Wallis tests [10] demonstrated that light reflectivity in dif-
ferent positions could characterize different drinks that are poured
into a standard transparent glass (Position-1: 𝜒2 = 131.12, 𝜂2 =

0.94, 𝑝 < .05; Position-2: 𝜒2 = 131.12, 𝜂2 = 0.94, 𝑝 < .05; Position-3:
𝜒2 = 131.93, 𝜂2 = 0.92, 𝑝 < .05). Pairwise post-hoc comparisons
for each sensor and drink indicated significant differences in all
but three cases. The exceptions were cold tea and grape juice mea-
sured on the little finger (𝜒2 = −1.30, 𝑝 > .05), and cold tea and
water measured on the middle (𝜒2 = 0.35, 𝑝 > .05) or index finger
(𝜒2 = −0.16, 𝑝 > .05). The index and the middle finger typically
result in a stronger grip than the little finger, which tends to im-
prove the quality of the measurements. Even then, however, the
quality depends on how the container is held and how exactly the
fingers are positioned. Our prototype is capable of piggybacking
measurements from multiple contact points and angles over time,
and taking advantage of this helps to improve the robustness of the
measurements. The results also demonstrate that, while differences
in contents can be clearly observed, identifying the exact liquid
type is challenging. We next demonstrate that the granularity of
these differences is sufficient for identifying drink spiking.
Aggregated drink mixture: Figure 3 (d)-(f) demonstrate how
the fingerprints of milk change as dissoluble compound (cocoa
powder) is added. Friedman test [6] verifies the differences in re-
flectance to be statistically significant for all fingers (Position-1:
𝜒2 = 115.26,𝑊 = 0.96, 𝑝 < .05; Position-2: 𝜒2 = 111.71,𝑊 =

0.93, 𝑝 < .05; Position-3: 𝜒2 = 120,𝑊 = 1, 𝑝 < .05). Pairwise post-
hoc comparisons using Wilcox-Bonferroni tests [18] further proved
that all differences in light values are statistically significant for
all compound amounts (𝑝 < .05) and each finger. These results
were also supported by visual inspection as the drink (naturally)
became darker. This result demonstrates that Hedgehog is capable
of detecting changes in drink characteristics.
Drink spiking: Figure 4 (a) shows the light reflectance measure-
ments when medical pills are added to water. Both the 500 mg
compounds (painkillers) and the 30 mg one (antidepressant) are
easily identifiable. Note that the pills are not designed to be solu-
ble, and on visual inspection, it is possible to see small particles
in the water. These particles cause the light to refract in different
directions, changing the way in which the light is captured by the
photoreceptor and causing significant alternations in the overall fin-
gerprint of a drink. From the figure, we can also observe that, while
the light intensity values vary across different sensor positions, the
changes in contents are consistent across all positions.

Friedman tests in all the sensor positions demonstrated signif-
icant differences for all the spiked drinks (𝑝 < .05). Placing the
sensor on the middle finger (position-2) provided the best results
overall (𝜒2 = 51.05,𝑊 = 0.71, 𝑝 < .05). Pairwise post-hoc com-
parisons (Wilcox-Bonferroni) proved that the differences in light
values are statistically significant for all the pairs (𝑝 < .05) ex-
cept the two painkillers, aspirin and paracetamol in position-1
(𝑍 = −0.04, 𝑝 > .05) and position-3 (𝑍 = −1.67, 𝑝 > .05). These
results indicate that drink spiking can be detected robustly but the
exact compound may be difficult to identify, especially if the com-
pounds have a similar structure (e.g., distinguish between the two
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(a) Position-1 (b) Position-2 (c) Position-3 (d) Position-1 (e) Position-2 (f) Position-3

Figure 3: DRINKS and MIXTURE results; (a)-(c): Drinks identification; (d)-(f): Milk mixed with powder.

painkillers). The middle finger (position-2) provides the best individ-
ual position for detecting changes, but overall using measurements
from multiple contact points is preferred as it improves detection
when the spatial distribution of the particles changes, e.g., the com-
pound can initially be mixed with the drink and slowly fall to the
bottom as it interacts with the liquid. This suggests that even partial
changes, such as the formation of sediments, could be detected as
long as multiple contact points are used for the sensors.
Spiking over time: After a drink has been spiked, many com-
pounds gradually sink to the bottom of the container over time.
Note that this does not hold for all substances as some can remain
submerged or float on the surface of the liquid, depending on their
density relative to the liquid and their chemical properties. We next
demonstrate that gradual changes also alter the light fingerprint
of a drink sufficiently to allow Hedgehog to detect the changes in
contents. To accomplish this, after a drink is spiked (S), we leave
it motionless for an hour and collect measurements (SN). We then
shake the spiked drink (SS) to verify whether it returns to its origi-
nal value after spiking. Figure 4 (b) shows the results, and a water
reference baseline is also included in the figure to facilitate its com-
parison. After an hour, the light fingerprint of the spiked drink
changes, returning to a characterization value close to the water
baseline. However, it goes back to its original spiked range as the
drink is shaken. This suggests unattended drinks need measure-
ments from multiple contact points, or they need to be shaken to
monitor whether they are spiked or not.
Classification performance: Hedgehog also supports binary clas-
sification of spiked drinks. We used 5-fold classification to train
two simple classifier models: Random Forest (RF) and Gradient
Boosting (GB). When only the light reflectivity values in one posi-
tion capturing drink spiking are considered, the average estimation
accuracy is 89.71% from the middle finger. The index finger results
in 82.24% performance, whereas the little finger results in only
48.64% accuracy. The reason for the poor performance of the little
finger comes from the grip of the user. Specifically, the grip force
exerted by the little finger is typically smaller when the user holds
an object, which results in the ring having weaker contact with
the glass container than when the middle or index finger is used.
When the diode is not tightly pressed against the container, the
gap between the diode and the container surface can reflect some
of the light back, causing noise in the light measurements. For the
index and middle finger, this noise is not present. The difference
between middle and index fingers, in turn, results from the middle
finger being more firmly planted on the surface of the container,
resulting in less noisy light measurements. These variations can
also be detected by examining characteristics of the light signals,
and the classification can target situations where the signal is clean,

Test conditions Trial1 Trial2 Trial3 Trial4 5-CV
IAL L,C,B 87.97 89.35 95.37 95.37 92.25

L,C,B,U 88.89 90.74 90.74 93.98 91.21
Dark L,C,B 100 98.14 99.07 97.69 99.30

L,C,B,U 100 98.14 99.07 97.69 99.30
OAL L,C,B 93.52 93.52 93.06 96.76 94.80

L,C,B,U 94.44 93.52 92.60 96.30 94.91
All L,C,B 83.64 83.03 82.72 85.03 85.92

L,C,B,U 93.98 92.44 91.67 94.75 94.29
Table 1: Drink spiking classification performance(%). Fea-
tures: light reflectivity value (L), glass cup type (C), beer type
(B) and light intensity LUX (U).

suggesting that over 80% accuracy is very much achievable as long
as poor quality signals are filtered out.
Practicability results: We also analyzed additional factors that
can influence the performance of Hedgehog. Figure 4 (c) shows
variations in ambient light intensity. Both indoor ambient light (IAL)
and dark have small variations in the light, but outdoor ambient
light (OAL) can result in additional reflections that impact the
detection. Figure 5 shows the results for different cups and drink
types under different light conditions. The results largely mirror
those before, showing that it is possible to distinguish spiked drinks
from those that are not spiked across all conditions. We also re-
trained the classification models to analyze how the new features
affect classification performance. As the features we consider the
light intensity captured by the photoreceptor (L), ambient light
intensity (U); drink type (B) and glass cup type (C). We train and
test using both 5-fold cross-validation and leave-one-trial-out cross-
validation to assess impact of training data and the robustness of the
models. Table 1 shows the overall average classification results. The
effect of luminosity is generally minimal (IAL: 92.25%, Dark: 99.30%,
OAL: 94.91%). From the table, we observe the variations between
lit and dark environments to be minimal, indicating Hedgehog is
resilient to changes in the luminosity of the ambient environment.
The best performance is obtained when all ambient conditions
are considered, resulting in an accuracy of 94.29%. A model that
considers only the light reflectivity values in different settings
results in about 61.65% accuracy, i.e., needs enough other ambient
light conditions for better classification performance.

5 GREEN LIGHT RE-PURPOSING
We next show that Hedgehog is not limited to rapid prototyping
devices by re-purposing a commercial off-the-shelf smartwatch to
capture light reflectance.
Apparatus:We use a Samsung Gear S3 Frontier smartwatch that
integrates two green LED lights and a photo-receptor, which it uses
for measuring heart rate data. We re-purpose the green light sensor
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(a) (b) (c) (d) (e)

Figure 4: PILLS results, ambient light values and smartwatch sensor re-purposing; (a) Water spiked by different pills, (b) Spiked
drink (Position-2 sensor only). S: Spiked, SN: Spiked-nomotion (for an hour), SS: Spiked-shaken (after an hour), (c) Light
intensity (LUX) in different environments; (d) Sensor at one side. (e) Sensor at the bottom.

(a) Light beer: IAL (b) Light beer: Dark (c) Light beer: OAL (d) Dark beer: IAL (e) Dark beer: Dark (f) Dark beer: OAL

Figure 5: Drink spiking with different soluble pills in different beers under different cups and environments.

of our smartwatch to identify spiked drinks by wearing the watch
with the clock-face down.
Setup: We replicated the third experiment (see Section 3) where
different dosages of pills are mixed with water. We used aspirin
(500 mg) and paracetamol (500 mg). We took measurements both
from the side and the bottom of the glass container.
Results: Figure 4 (d-e) shows the results for the smartwatch ex-
periments. The results mirror the characterization and the rel-
ative order of those obtained for red light with the smart ring
prototype. This indicates that off-the-shelf sensors can easily be
re-purposed to detect spiked drinks. Friedman test indicated sig-
nificant differences for measurements collected at the side of the
glass: (𝜒2 = 4796,𝑊 = 1.0, 𝑝 < .05) and at the bottom of the glass
(𝜒2 = 5598,𝑊 = 1.0, 𝑝 < .05). In both cases, pairwise post-hoc com-
parisons using Wilcox-test (with Bonferroni correction) indicated
significant differences for all pairs (𝑝 < .05) in both conditions. This
implies that the relative position of the device with the container
affects measurements. This can be detected using inertial sensors
embedded in the smartwatch.

6 DISCUSSION
Room for improvement: Our work demonstrated that light re-
flectivity could be used to both characterize drinks poured into
different transparent glasses and to accurately detect drinks that
are spiked. Further work is needed to generalize the method, par-
ticularly when the ambient environment frequently changes. For
instance, in a social gathering an individual can move through
rooms that are differently lit and be exposed to different types of
drinks and containers. To ensure accurate performance in these
kinds of dynamic settings, it is necessary to evaluate and ensure
the consistency of the fingerprints of drinks to minimize unwanted
false positives. This requires further measurements, which could
be collected by taking advantage of participatory crowdsensing.
Specifically, individuals can be probed (e.g., using experience sam-
pling) to provide measurements for drink profiles that then help

to identify drinks in diverse real-world settings, e.g., diverse lumi-
nosity, different hand movements, or sensor angles. We are also
interested in evaluating the method from the top of the glass as not
all glasses are transparent [4], e.g., mugs.
Other methods: Hedgehog considers light measurements taken
during natural hand interactions with drinks using a smart ring.
Sensor modalities used by state-of-art methods, such as RF sens-
ing [14] or audio sensing [12], could also be re-purposed to operate
in everyday settings. Compared to these alternatives, a key benefit
of Hedgehog is that it can be used without need for specialized
measurement setup, whereas further work would be needed to
design ways to integrate other modalities into wearables or other
devices that support everyday interactions. Indeed, unlike the sen-
sors needed by other state-of-the-art approaches, wearable devices
are already equippedwith the sensors to detect drink spiking, which
makes it easy to adopt and scale up the use of our Hedgehog.
Chemical effects of spiking: The presence and quantity of small
particles is commonly detected using light (scattering) refraction,
e.g., this principle is used to detect particulate matter in air and
to identify plastic pollutants [22]. We are interested in developing
models that can identify chemical effects caused by tampering,
e.g., using light refraction to detect particles that gradually sink to
the bottom or the formation of crystallized structures or to detect
soluble compounds that are mixed with drinks by stirring them.
Usage performance: Drink spiking can occur in a matter of sec-
onds and individuals only shave 5 to 20 minutes before the first
symptoms appear. This suggests warnings and possible alerts should
be presented as soon as possible. The measurement time of our ap-
proach can be further reduced by increasing the sampling frequency
of the sensors or by integrating models that predict the behavior
of compounds in drinks. Other alternatives to improve the safety
of individuals are to connect our solution with third-parties, e.g.,
police or relatives. Indeed, Hedgehog can automate the process of
requesting third-party help immediately when it recognizes that a
user gets in contact with drinks that have been tampered with.



HotMobile ’23, February 22–23, 2023, Newport Beach, CA, USA Yin, Z., et al.

Complex drink mixtures and other factors: Given the large
spectrum of different drinks, drug substances and combinations,
it can be challenging to determine whether an unknown drink
has been spiked or not. Further work is needed to generalize our
approach for more drink types and different concentrations, e.g.,
different drug dosages or alcohol percentages. Besides this, drinks
that combine different sources, e.g., cocktails, may first require
characterization of their contents before drink spiking events can
be detected. In addition, other factors can influence the identifica-
tion of drink spiking; for instance, objects inside the drinks can
significantly modify their measurements, e.g., ice, carbonation level,
spoons and straws. We are also interested in investigating whether
our method can be used with hot beverages as hot contents may
provide better means for dissolving foreign compounds.
Databases and models: Similarly to manufacturer databases and
online dictionaries that provide detailed specification about drugs,
Hedgehog provides a way to collect data about drink spiking, such
that drink spiking databases (or datasets) can be created. These
databases can provide details about the type of drink (mixed de-
tails) and substances (drug concentration and type) that were used.
These databases can also collect information from symptoms faced
by individuals while spiked. In parallel to this, AI models can be
trained from this data, such that robust detection and actionable
recommendations can be provided. As wearable devices continue to
evolve and change over time, the easy access to these databases and
models can also help in reducing false positives in drink spiking
for new wearables.
The road for new innovative applications: Besides drink spiking
detection, our developed method, and smart ring prototype can
enable new types of applications. For instance, the light sensor can
be re-purposed further to estimate the quality of vegetables [22].
Another example is to extend the light characterization to support
human recycling practices. This further highlights the potential of
our wearable design.

7 RELATEDWORK
Light reflectivity methods in the green spectrum are mostly used
in photoplethysmography to estimate heart rate via propagation
of light through the body [3]. Several works have investigated
approaches to re-purpose sensors from smart devices to identify
liquids and materials. For instance, alcoholic drinks, sugar, liquid
density, liquid surface tension and liquid viscosity [5, 7–9, 19, 21]
are some of them. Drink spiking has been investigated mainly by an-
alyzing the chemical composition of liquids. For instance, a method
using rapid capillary zone electrophoresis was proposed to iden-
tify benzodiazepine drugs (aka benzos) in (spiked) beverages that
include Coca-Cola, orange juice, beer, bourbon, and Bacardi [17].
Spectroscopy also has been used to identify spiked drinks. For ex-
ample, a fluorescence spectroscopy method was investigated to
detect flunitrazepam (Rohypnol benzodiazepine) in color-less alco-
holic liquids such as vodka and tequila [11]. Other methods have
also studied the use of ultraviolet and electrochemical approaches
for detecting benzodiazepines in liquids [13]. While these works
demonstrated that spiked drinks could be detected, those require
specialized and expensive instruments, which cannot be easily in-
tegrated into wearables, or deployed at large-scale. In parallel to

this, industrial manufacturers, such as DrinkSavvy, have designed
specialized cups, glasses and straws that instantly change the color
of a drink as it gets spiked. While the approach is convenient for
continuous monitoring, it can be easily disguised just by using
similar utensils. Moreover, the product just works for a limited set
of drugs. Unlike others, we developed a sensing method and a new
smart ring wearable to identify drink spiking.

8 SUMMARY AND CONCLUSIONS
We contributed Hedgehog, an innovative sensing method that can
be integrated into wearables for identifying drink spiking. Through
rigorous experiments, we demonstrated that Hedgehog can be used
to identify different types of drinks from specific light reflectivity
fingerprints, and to identify drink spiking robustly and accurately
(up to 89.71% accuracy). We also show that our proposed method
can be easily implemented using existing off-the-shelf commercial
smartwatches and that it works for different cup types, drinks, and
ambient luminosity conditions. Our research paves the way for new
innovative solutions for harnessing wearables to support personal
safety and identify spiked drinks.
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