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AI-assisted interactive annotation is a powerful way to facilitate data annotation – a prerequisite for constructing robust AI models.
While AI-assisted interactive annotation has been extensively studied in static settings, less is known about its usage in dynamic
scenarios where the annotators operate under time and cognitive constraints, e.g., while detecting suspicious or dangerous activities
from real-time surveillance feeds. Understanding how AI can assist annotators in these tasks and facilitate consistent annotation is
paramount to ensure high performance for AI models trained on these data. We address this gap in interactive machine learning (IML)
research, contributing an extensive investigation of the benefits, limitations, and challenges of AI-assisted annotation in dynamic
application use cases. We address both the effects of AI on annotators and the effects of (AI) annotations on the performance of
AI models trained on annotated data in real-time video annotations. We conduct extensive experiments that compare annotation
performance at two annotator levels (expert and non-expert) and two interactive labelling techniques (with and without AI-assistance).
In a controlled study with 𝑁 = 34 annotators and a follow up study with 51 963 images and their annotation labels being input to the
AI model, we demonstrate that the benefits of AI-assisted models are greatest for non-expert users and for cases where targets are
only partially or briefly visible. The expert users tend to outperform or achieve similar performance as AI model. Labels combining AI
and expert annotations result in the best overall performance as the AI reduces overflow and latency in the expert annotations. We
derive guidelines for the use of AI-assisted human annotation in real-time dynamic use cases.
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1 INTRODUCTION

High quality labeled data is a prerequisite for constructing powerful AI models. While the process of assigning labels
is seemingly simple, in reality it is wrought with difficulties as the process requires significant time and resource
investment and is prone to noise and errors [7, 31, 49]. AI-assisted interactive labeling (Figure 1) seeks to reduce the
resource and cognitive demands of labeling and to improve the quality of labels by supporting the human annotation
effort through interactive AI [4, 11, 54, 56]. Examples of AI techniques include visualizations that highlight patterns in
the data [3, 55] and suggestions of the most likely labels [12, 47].

Evaluations of AI-assisted interactive labeling techniques have shown that, at best, the AI support can significantly
decrease the time of labeling while also improving the quality of data [12, 62]. Furthermore, if the AI assisted annotations
cover data that are infrequent or otherwise difficult [19], this often provides the best improvements for the final AI
models that are trained on the data. While these benefits are promising, there are two main limitations to existing
research. First, they have focused exclusively on static tasks where the human annotators can invest time to scrutinize
and revise their annotations without examining how AI-assists in dynamic real-time tasks where the annotation
is carried out in parallel to a real-world task. Second, thus far limited understand exists about the effects of using
AI-assisted annotations to train AI models.

(a) (b) (c)

Fig. 1. Examples of existing AI-assisted video annotation interfaces: (a) Supervisely Video Labeling Tool; (b) CloudFactory’s Accelerated
Annotation; (c) Computer Vision Annotation Tool (CVAT).

The present paper contributes by systematically assessing the benefits and limitations of AI-assisted interactive
labeling in real-time labeling tasks. We design a simple AI-assisted labeling interface and conduct extensive experiments
that compare annotation performance between expert and non-expert users with and without interactive AI-assistance.
To understand the impact of the labeling performance, we also separately investigate how annotations by these different
groups impact the ML models that are trained from the data. We conduct our study considering a benign application
scenario, marine biodiversity estimation, which serves as a representative example of tasks that require real-time
annotation capability. Besides offering a challenging real-world task, the data that needs to be labeled also contains
significant variations as it covers diverse water conditions, background details, fields of view, and so forth. This allows
us to obtain better insights both into the performance of human annotators and the AI models that are trained with such
Manuscript submitted to ACM
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data. We compare expert and non-expert annotations, considering both AI-assisted interactive labeling and interactive
annotations without any AI support. In total 𝑁 = 34 annotators participate in our evaluations.

The results of our evaluations show that the benefits of AI-assisted models are greatest for non-expert users and for
cases where targets are only partially or briefly visible. Indeed, expert users tend to outperform – or at least achieve
similar performance – as AI models whereas the use of AI can bring non-expert users close to expert levels. The main
challenge for real-time feeds is to accurately determine the start and end points of the periods where objects are visible
and AI assistance can result in annotations overflowing the actual time that an object is visible. We also conduct a
follow up study where we analyse how different annotations affect the performance of AI models that are trained from
the annotated data. Labels combining AI and expert annotations result in best overall performance as the AI reduces
overflow and latency in the expert annotations, providing the most consistent annotations and thus making it easier for
the AI to learn a robust and general model. Besides presenting the results of our studies, we derive guidelines for the use
of AI-assisted human annotation in real-time use and discuss what the limitations mean for AI models that use the data.
Summary of Contributions. This paper enhances the current state of the art in interactive intelligent systems by:

• Extensive assessment of the benefits, limitations and challenges of AI-assisted annotation in dynamic application use
cases considering both domain experts and non-experts.

• Novel insights into the performance of AI-assisted annotation in dynamic application use cases. For example, we
demonstrate that non-experts achieve highest benefits, scenes with occlusions are most impacted by AI-annotations,
and that the main challenge is to identify event start and end points accurately.

• Follow-up assessment of the impacts of AI-annotated labels on AI-models trained on the data. The results show that
expert annotations combined with AI-annotations achieve best AI model performance, even if the benefits of AI are
small for experts.

• Based on our results, we derive guidelines and best practices for interactive AI annotation in dynamic use cases.

2 TOWARDS REAL-TIME ANNOTATION

The focus of our work is on real-time annotation of continuous video feeds which differs from the predominantly static
annotation scenarios considered in existing research [25]. Indeed, even if most research explores continuous video,
they do not consider constraints posed by real-time nature of the annotation. This means that existing works largely
focus on scenarios where annotators can pause or adjust the speed of the video and perform operations on the video
feed (e.g., pan, zoom or tag) [24, 46, 50, 69]. In these kind of tasks, the annotators can split their time and cognitive
capacity between the video feed and the interactive AI, instead of the different views competing for the same cognitive
resources of the annotators. Static annotation also differs from real-time annotation in that users can freely pick the
label to assign, whereas real-time annotation requires users to rapidly select the right label, making it necessary to
consider only a small number of labels.

Figure 2 illustrates challenges in performing the annotations in real-time using detection of suspicious activity as an
example. The events of interest are rare, the time window to detect them is short, and the detection process is prone to
errors due to distractions and dullness [53]. As illustrated in Figure 2, the annotator may also struggle to identify the
suspicious activity due to lack of context, difficulty in understanding the events that are happening in the scene, lack of
focus in the picture, or lack of precision due to obstacles, environmental variations or other factors. Finding these events
after the event has occurred means the negative consequences of the actions have already occurred and even this task
is difficult as examining large amounts of video is resource intensive. The video material is also continually increasing,
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(a) (b) (c) (d)

Fig. 2. Challenges for AI in identifying objects of interest in video streams: (a) lack of context - a thief in action or a friendly person?
The AI needs to have a memory for understanding the exact sequence of happenings; (b) lack of identifying unpredictable behaviours
- an object moving towards the door may not be understood as a human performing the hazardous behaviour; (c) lack of focus -
focusing on people or luggage; (d) lack of precision - discriminating persons in front of the lights using thermal imagery.

requiring lots of resources to stay up-to-date with the events that would be relevant for labeling. The detection of
suspicious activity is but one example of the application domains that require real-time annotation. Other examples
include remote operated search and rescue operations [60], remote surgery [5], and maritime monitoring carried out on
board ships or using remotely accessed video streams [36]. Understanding how AI can assist human labeling in these
kinds of everyday tasks is essential for understanding the quality of data these tasks provide – as well as the potential
limitations they pose on the AI models developed from such data.

3 ANNOTATION PIPELINE

We study real-time annotation using labeling of marine species from continuous video streams as a representative
example of tasks that require real-time capability. Currently, this task is carried out by dedicated watchers who record
sightings made aboard vessels and these records are used to establish counts of marine species, an indicator of marine
biodiversity. The work in this paper is part of a longer-term project that seeks to support this process, including using
AI and interactive technologies. We investigate annotation performance by conducting experiments that use video clips
of marine species collected from marine excursions and openly available images. The video footage was labeled by two
of the authors who also labeled the additional images. The two authors performing the annotations have long-term
expertise in working with marine species and thus are qualified to analyze the footage. From the labeled footage, we
extract individual frames and combined them with the image data. The AI model used for annotation was trained using
the image data, and the annotation experiments were conducted on the video footage. The overall pipeline is illustrated
in Figure 3. Below we describe the used datasets, creation of the base AI model to support the AI-assisted interface and
additionally performed video analysis.

3.1 Dataset Collection

Obtained Imagery. To train the model, we collected imagery using online search. We downloaded 10 010 images of
the aforementioned 5 marine species (Table 1) seen from diverse field of views (e.g. top-down, profile, semi-profile, etc),
with mixed scenes (underwater, surface, aerial), etc. All obtained imagery was taken from 3 different online sources
including: Open Images Dataset (OID) [32, 59], Kaggle and bulk image collection from Google Image Search.
Obtained Footage. To test the model, we collected video footage (Figure 5). As the primary source of data we considered
proprietary real-time video footage obtained from four dolphin-watching trips. To ensure generality and increase
Manuscript submitted to ACM
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Fig. 3. Man and the Machine Pipeline - Human and AI collaborative object annotation and image classification pipeline.

variations in the footage, we further augmented this data with video footage available on YouTube. The video footage
from the dolphin watching trips (16 videos, 30.85 minutes, 720p resolution) contain different dolphin species and were
recorded with a mobile camera being held horizontally from the sea-vessel front deck during the trip, facing the sea
surface towards spotted dolphins. The YouTube videos (12 videos, 26.9 minutes, 1080p resolution) contain other marine
species (commonly seen on such trips): whales, seabirds, turtles and seals, and were uploaded by users after they have
taken trips abroad vessels. All samples were recorded with 30𝐹𝑃𝑆 . Detailed video timings are shown in Table 2. Figure 5
shows the screenshots of the footage and corresponding keywords depicting the scene type, with Figures 5 (a)-(l)
correspond to YouTube footage and the remaining 16 screenshots (Figures 5 (m)-(ab)) are examples of data collected
during the dolphin watching trips (indicated with § symbol).

Table 1. Total obtained images from online and personal footage including number of annotations as bounding boxes and labels
prepared for model training using MobileNet. Grayed areas indicate difficult videos.

# Objects No. of Images, (%) No. of Images, (%)
(after augmentation)

No. of Objects, (%)
(after cleaning)

No. of Objects, (%)
(after augmentation)

1 Sea Turtles 1787 .18 3887 .20 2552 .13 4983 .13
2 Seabirds 1660 .17 3217 .16 4185 .20 8101 .20
3 Dolphins 2217 .22 4310 .22 4487 .22 8718 .22
4 Whales 1966 .20 3805 .19 2132 .11 4123 .11
5 Seals 2380 .23 4634 .23 6501 .33 12678 .33

Total 10010 19853 19857 38603

3.2 Base AI Model Procedures

Object Annotation. Each image was further subject to object annotation by manually placing rectangle bounding
boxes around the spotted objects of interests (in this case, species), performed by the two authors of the study. From
all images, 19 857 annotated objects were obtained, presented in the Table 1. Together with rectangle objects, 5 main
classes were used as labels for each species: (i) whales - baleen whales (e.g. Blue Whale); (ii) dolphins - toothed cetaceans
(e.g. Bottlenose dolphin); (iii) sea turtles - e.g. loggerhead turtle; (iv) seabirds - e.g. seagull; and (v) seals - e.g. monk
seal. The total amount of labels was identical to the total amount of objects (19 857) having one object per image. All
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(a) Training epoch benchmark (b) Human vs Machine vs GT

Fig. 4. From left to right: (a) Evolution of accuracy with more iteration steps indicates that all objects of interest reached an adequate
accuracy after 100k epochs; (b) Comparison between annotation times of ground truth annotators (GT), human annotators and AI,
relative to total cumulative video length indicating the human annotators to be overall better in recognizing the objects of interest
across all videos. The vertical line indicates threshold 50% accuracy.

obtained imagery was downsampled to match the minimum image resolution of the image sample (800 × 600). Note
that these measurements are solely used for training the AI model and they are not part of the annotation experiments.
Dataset Augmentation. To enhance the accuracy of image classification [38] and increase model robustness, i.e.,
mitigating ambiguous pixel representations such as water reflection that lead to false positives by the AI [58], we
applied data augmentation techniques on the training images: (i) Vertical flip, (ii) Hue-Color Saturation; (iii) Blur ; and
(iv) Noise. With this step, training image sample increased from 10 010 to 19 853 images, while the annotation objects
and labels increased from 19 857 to 38 603 respectively (see Table 1 for details).
Model Training.We trained a Convolutional Neural Network (CNN) model to recognize marine species. As state-of-the-
art trained models do not support fully detecting marine species (e.g., YOLO5 dataset may recognize fish [23] or specific
types of birds but not separate between marine species), we created a custom model (hereinafter, OceanusNet) that is
based on Single Shot Detection (SSD) and MobileNetV2 architecture. Similar approach was used when discriminating
marine litter underwater [44]. Model was trained on all sample imagery (19 857) using all object annotations (38 603).
Default MobileNet hyperparameters were used: accuracy threshold of .5, batch size of 24, learning rate of 0.004, ReLU6
activation function, and without dropout layers. Number of different epochs was used to select the top model, comparing
1k, 10k, 50k and 100k iterations. To boost model performance, the model was further quantized [48, 70] by converting
32-bit floating points to 8-bit integers as this does not result in significant loss of accuracy while it reduces the bandwidth
and the memory storage.
Model Inference. To validate the performance, 15 obtained video clips depicted with asterisks in Figure 5 were used.
We selected these videos as their average time was around 3 minutes per video clip having balanced three video clips
per each class (dolphins, whales, seals, seabirds, and sea turtles). For evaluating the AI performance, we computed
cumulative times that the objects of interests were spotted by the AI model inside of the video clip. We propose to use
this metric to simulate the real-time video feed, as traditional object detection metrics such as intersection of union [68]
may be too laborious and may require more annotation time.

All 5 classes of marine species have been successfully identified by the OceanusNet in both types of footage (collected
from the internet and collected from the field trip). As expected, the more iterations the model had, the higher was
the average accuracy (Figure 4a). The highest average accuracy for identifying all 5 marine species was with the
100k iterations model, reaching 70.58%. The accuracy for individual classes were: sea turtles (87.87%), whales (59.69%),
dolphins (48.75%), seabirds (88.54%), and seals (68.04%). These performance numbers are in line with state-of-the-art
object recognition results for sea mammals, even if the models usually have focused on single class classification:
Manuscript submitted to ACM
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(a) Large * (b) Small * (c) Contrast †* (d) Splash * (e) Aerial * (f) Multiple * (g) Closeup †*

(h) Distant * (i) Ambiguous * (j) Clear * (k) Light * (l) Detailed * (m) Glare §†* (n) Waves §†*

(o) Hindered §† (p) Waves §†* (q) Beneath §† (r) Distorted §† (s) Mixed §† (t) Noise § (u) Unknown §†

(v) Luminosity § (w) Reflection § (x) Angle §† (y) Beneath §† (z) Nearby §† (aa) Light §† (ab) Aerial §

Fig. 5. Obtained sample footage screenshots with observed video and object characteristics. Symbol nomenclature: (§) proprietary
obtained footage from dolphin-watching trips; (†) difficult video; (*) video clips used in first study.

whales [1, 8], dolphins [37], sea turtles [6, 9]. Training footage for the sea turtles contained very clear shots of the
turtles, reaching highest confidence (96.52%) as turtles in images were occupying larger portion of the screen and were
not against complex backgrounds. Seals had more ambiguity which resulted from ambient conditions, such as water
reflections, affecting the accuracy. Contrary, as expected traditional MobileNet model was unable to detect any animals
except seabirds (YOLO5 constraint).

Obtained results highlight that the use of existing trained models may not be suitable for recognizing specific objects
of interests, however suggesting state of the art architectures as adequate. This further motivates the need of the
proposed OceanusNet model and confirms the robustness of transfer learning [41]. Still, using these metrics, we notice
the difficulties in detecting whales and dolphins as such stem from the inclusion of aerial footage, which makes hard to
distinguish the two from frames where the animals are only partially visible. Nevertheless, as stated, the performance
of our model is in line with state-of-the-art results for the individual animal classes, even if there is room for further
improvements by considering more varied training data, adding processing techniques that eliminate reflections and
other effects, and considering further data augmentations.

3.3 Video Procedures

Video Annotation. We next used annotations by two of the authors (non-expert users who have many years of
knowledge of working in the field and have sufficient knowledge of correctly identifying the marine species focused in
this work) as the gold standard labels. The researchers annotated all 28 video clips (Figure 5) by looking at the video,
and counting the duration that the species were inside of the frame. Each video has been individually labelled1 with the
species name by inspecting each video with pause, rewind, and forward functions. All disagreements between the two
annotators were carried out verbally until a consensus was achieved. This was performed to ensure high consistency
in the annotations and ensure the annotations of other groups can be analyzed in detail. In cases where the baseline

1Throughout the paper, we use term "annotation" to indicate the labeling, i.e. if single frame has an object of interest in it, the whole image frame belongs
to one class.
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annotations had disagreements, a third researcher was invited to inspect the same frame until a consensus was found.
These generally corresponded to situations where the object were partially visible or subject to long interpretation,
e.g., a whale that jumps can leave a splash on sea surface and there is ambiguity on whether the animal can be seen in
subsequent frames or not.
Video Properties. Asides annotations, all videos were analyzed to by categorizing them into different properties
(Table 2). Properties are presented as follows: (type) - the type of the scene (aerial, surface or underwater); (FOV) - the
camera field of view or perspective, being from boat, from diver or drone; (quality) - video recording quality, being
good or bad, based on observable pixels in video; (visibility) - size of the object of interest compared to the video frame
size; (recording) - being edited or raw, from amateur or professional sources; (pace) - the rate of change between scenes
as slow, fast or extreme fast (fast+); and (hard) - indicating the video clip overall difficulty which is further calculated
using annotator performance. These properties are used in the analysis and will be elaborated later in the paper.

Table 2. Video clips parameters used in the study. Asterisk (*) indicates video clips used in first study.

# Object of Interest Duration (m) Frames Difficult Type FOV Quality Pace Recording Visibility
1 Birds * 1.47 2625 aerial from boat good slow amateur >50%
2 Birds * 0.78 1396 aerial from boat good slow amateur >50%
3 Birds * 2.45 4391 ✓ mixed mixed good fast+ prof.
4 Whales * 3.28 5920 surface from UAV good slow prof. >50%
5 Whales * 1.50 2289 mixed mixed (UAV, underwater) good slow prof. >50%
6 Whales * 4.82 7219 surface from UAV good slow prof. >50%
7 Seals * 1.02 5736 ✓ mixed mixed good mixed mixed
8 Seals * 1.13 5108 surface audience good slow amateur >50%
9 Seals * 1.08 6068 surface from boat good slow amateur >50%
10 Turtles * 3.20 1830 underwater diver recording good slow+ prof. >50%
11 Turtles * 2.85 2008 underwater diver recording good slow+ prof. >50%
12 Turtles * 3.38 1627 underwater diver recording good slow+ prof. >50%
13 Dolphins * 0.57 991 ✓ surface from boat good fast amateur
14 Dolphins * 0.38 663 ✓ surface from boat good fast amateur
15 Dolphins 0.23 406 ✓ surface from boat good fast amateur
16 Dolphins * 0.40 702 ✓ surface from boat good fast amateur
17 Dolphins 0.67 1184 ✓ surface from boat good fast amateur
18 Dolphins 0.90 1589 ✓ surface from boat good fast amateur
19 Dolphins 0.15 268 ✓ surface from boat good fast amateur
20 Dolphins 5.55 9982 surface from boat good slow amateur
21 Dolphins 0.67 1185 ✓ surface from boat good fast amateur
22 Dolphins 3.95 7090 surface from boat bad slow amateur
23 Dolphins 6.97 12533 surface from boat bad slow amateur
24 Dolphins 4.32 6193 ✓ surface from boat good fast amateur
25 Dolphins 4.00 5741 ✓ surface from boat good fast amateur
26 Dolphins 1.08 1538 ✓ surface from boat good fast amateur
27 Dolphins 1.02 1440 ✓ surface from boat good fast amateur
28 Dolphins 4.32 6191 surface from UAV good slow prof.

4 EFFECTS OF AI ON HUMAN ANNOTATIONS

We first compare the effects of AI on human annotations by conducting a study where non-experts and experts annotate
the videos with or without AI-assistance. We refer to these four groups as experts (E), non-experts (NE), experts+AI
(EAI), and non-experts+AI (NEAI). We next detail our experiment, analysis, and the key findings.

4.1 Experimental Setup

Annotation Interface. The core idea in AI-assisted labeling (or annotation) is to take advantage of AI techniques for
reducing the cost and labour-effort needed for collecting high quality labeled data. To assess the benefits and limitations
of AI-assisted interactive annotation in real-time labeling tasks, we designed an AI-assisted annotation interface that
is motivated by mixed-initiative interaction [14, 22] and interface design for video annotation [43]. In line with the
Manuscript submitted to ACM
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core principles of mixed-initiative interfaces, the main control is with the user performing the annotations, and the
AI is merely a support tool that offers suggestions. The interface used for annotation has been designed to enforce
real-time annotation by not allowing any frame-per-frame video analysis, such as pausing, rewinding, fast forwarding,
speeding-up or slowing-down the video feed. The interface, shown in Figure 6, was designed as web-based and to be
used on portable devices. The interface assumes video clips to be played in sequence (following the same order as
in Table 1) where once the first video clip "stream" ends, the interface awaits for annotator confirmation to proceed
with the next video. Annotations are made on separate buttons (5 buttons, one for each animal type); see Figure 6a.
Restricting the number of options is necessary to ensure the annotators can choose the right option in real-time and
this is in line with other real-time annotation tasks, as described in Section 2. Once the button is pressed, the annotation
remains active until the button is pressed again. Annotation can be used with or without AI-assistance. When the
AI-assistance is enabled, the AI benchmark model described in the previous section was used to perform real-time
inference and to visualize the results as bounding boxes and confidence scores overlaid on top of the video whenever
the AI detects an animal in the video; see Figure 6b. The motivation is to direct the user’s attention to a sub-region that
has the highest likelihood of containing relevant information, thus minimizing cognitive overload. This strategy is also
supported by the literature where similar strategies have been shown to be effective at improving labeling efficiency for
other content types, such as document labels [11]. To give visual feedback to the annotators, the interface displays the
text "I see: «specie(s)»" while the button is in the ON state. Although real-time video streams typically do not contain
indicators of video length, we included a vertical bar matching the video clip duration in the interface to give the test
subjects an indication of task length and to ensure they do not get frustrated with the task length as this could decrease
their performance.
Participants. In total, 34 participants were recruited for the study. This comprised of participants with domain expertise
(E) and those without (NE). As the experts, we consider 14 marine ecologists all of whom had prior field experience
in recognizing aforementioned marine species. Additional participants with no domain expertise (NE) were 20 CS
students, who did not have knowledge of those species. Both the expert and non-expert groups were split into even-sized
subgroups with one using AI-assistance and the other not. Participants of the controlled groups (E, NE) use the non-AI
annotation interface2 (see Figure 6a) whereas those of the treatment groups (EAI, NEAI) use our developed AI annotation
interface (see Figure 6b). We run the study as between-groups design as the tasks were the same and knowledge of
the video contents would affect performance significantly. As ground truth, we consider the annotations from the two
separate researchers, as described in Section 3. As an additional baseline for comparison, we consider the annotations
made solely by the benchmark AI model trained with 100k iterations; see Section 3.
Procedure. The user study was conducted in blocks of 75 minutes per each human annotator (groups E, EAI, NE, and
NEAI), during 4 consecutive days. Each participant annotated 28 video clips (all videos from Figure 5), totaling 62.07
minutes. To simulate real-time video streaming, the playback of a video clip (30 FPS) cannot be paused once its start
playing. Participants can have a break between video clips. All annotators were distributed into separate rooms and
were given a laptop computer with the annotation web-based interface. Participants performed annotation using a
computer mouse to select any of the 5 objects of interest. The research author showcased the annotation procedure
to each annotator individually using the first video after which participants started the annotation starting from the
beginning on that same video. At the end of the experiment, participants were invited to share their thoughts and
provide open feedback. Participants were asked to turn off their mobile devices prior to the study.

2https://wave-labs.org
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(a) Annotation UI (b) AI-assisted annotation UI

Fig. 6. Designed AI-assisted interface for real-time Video stream annotation.

Annotation Timelines as Evaluation Metric. We assess performance using annotation events which corresponds to
situations where at least one of the buttons was in active state. We derive an annotation timeline from the events by
considering the presence or absence of events in frames as a binary variable. When multiple species are spotted in a
specific frame, we consider only the selection of the main object of interest (species) as a single event. Likewise in the
case of AI, all multiple occurrences in video frame are treated as a single annotation event. Since we consider either one
or multiple annotations per frame as single annotation event, we stack and normalize all annotation timelines across
one group, allowing us to empirically compare different groups. An example is shown in Figure 7. The maximum on the
vertical axis (i.e., 100%) is reached when all individuals from the same group annotate an at that specific video frame at
least one object. GT annotations were always kept at the maximum (100%) as they were derived as a consensus. For AI
annotations the ordinate value represents the confidence score, where the minimum threshold (50% or .5) was used
as suggested by the literature [63]. Figures are depicted with the ground truth (GT) in black color, while the model
predictions (AI) is in yellow color. The AI-assisted groups are seen in red color and non-AI assisted groups are seen in
blue color. Different signal patterns may be observed. For instance, observing the formed areas, Figure 7a depicts an
overlap among all 6 groups, suggesting an easy video. Conversely, Figure 7b showcases greater differences in areas
among groups, indicating that the video may be considered as difficult.
Data Inquiry. To further compare obtained timelines between different sample groups, we calculate the annotations
per each video clip frame, per each annotator group (E, EAI, NE or NEAI). For each video clip, each user annotated
frame was multiplied with the baseline frame (GT, AI, or another user group). Multiplication with AI signal indicates
the impact of AI, the multiplication with GT indicates the annotation performance, and multiplication with another
user group indicates correlation between annotations of both groups. We further sum and normalize these product
frames, obtaining the correlation coefficient. This metric is known as the normalized cross-correlation (NCC) or Pearson
Correlation Coefficient, where the product between two groups is a coefficient between 0 and 1. The higher the NCC
value, the higher is the agreement between the two sample annotation groups. NCC per each video clip and per each
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(a) Easy video timeline

(b) Difficult video timeline

Fig. 7. Example of annotation timelines depicting timestamps for each sample group and for single videos. The maximum on the
vertical axis (i.e., 100%) is reached when all individuals from the same group annotate at that specific video frame at least one object.
GT annotations were always kept at the maximum (100%) as they were derived as a consensus. Color legend: (AI) model results
(yellow), (GT) ground truth by research authors (black), (E) experts or (NE) non-experts (red) and (EAI) experts with AI or (NEAI)
non-experts with AI (blue).

sample group is computed using next expression:

𝑁𝐶𝐶 (𝑥,𝑦) =

𝑁∑
𝑛=1

𝑥 (𝑛) ∗ 𝑦 (𝑛)√︄
𝑁∑
𝑛=1

𝑥2(𝑛) ∗
𝑁∑
𝑛=1

𝑦2(𝑛)

, (1)

where 𝑥 and 𝑦 are two different sample groups, and 𝑛 and 𝑁 are current and total amount of frames in a given footage,
respectively. Based on the NCC scores, we group videos into two categories: hard (NCC < .95 correlation) and easy
(NCC ≥ .95 correlation) videos. Videos with NCC score of 1.0 (i.e., 100% correlation) are consider to be the easy as
there is full agreement between the two annotator groups. NCCs are further compared with aforementioned video clip
parameters, such as field of view, video quality, visibility, video pace; see Table 2.

4.2 Experimental Findings

We first briefly provide the obtained findings through video parameter analysis where we detail about the most
representative parameters. Next, we compare the in-between group agreement, observing whether there were any
differences among the user group annotators. Afterwards, we check whether there was an influence of the AI to the
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annotator groups. Finally, we check to which extent was the AI-assisted interface providing the influence (whether
positive or negative) on all sample annotator groups.
Video parameters analysis.We start with aggregating all NCCs in Table 3 (columns D-I), and observing how they
relate to the proposed categorization of video parameters. Considering all NCCs with the aforementioned threshold
(.95), we define the easy and difficult videos for annotators in column C (presented previously in Table 2). Regarding
the parameter "field of view" (FOV), a mix of multiple options (being with video scenes changing from a boat to a
diver, to a drone) was found to harm the correlation between groups, resulting in hard videos. Videos exclusively taken
from Unmanned Aerial Vehicles (UAVs) or from solely diving footage resulted in "easy" videos. Similarly, as seen with
parameter "type", a combination of multiple typologies of images (being surface, aerial or underwater) in the same
video clip also resulted in worse correlations. Only underwater- or aerial- only videos were perceived as being easy
videos. Parameter "recording" seems to follow the parameter "FOV" where amateur videos were mostly taken from
the boat, or as in surface as parameter "type". Additional inspection of low NCC correlations happens when seeing
from surface the underwater species, which was also the case in our previous study. In such cases, sea glare or splashes
hinder the visibility of species, which is also noticeable in the AI timeline. Parameter "quality" of the footage did not
affect the correlation as not enough lower-quality videos were used throughout the study. Regarding the parameter
"visibility", all clips with objects occupying appx. 50% of the screen resulted in being easy videos. The "pace" parameter
of the video was shown to be the variable of the most impact which is presented as lowest correlation scores in Table 3
seen as column "hard". This showcases a linear agreement that if the video scenes are with the rapid change (fast, or
extremely fast abbreviated as "fast+" in the "pace" column), then it results in being a hard video. Conversely, slow pace
videos were with high correlations (NCC ≥ .95).

Table 3. Normalized cross correlation (NCC) coefficients and T-test scores with p-values for in-between groups.

Paired t-Test p values NCC Groups vs AI NCC Groups vs GT NCC In-between group agreement NCC
A B C D E F G H I J K L M N O P Q R S T U V W X
# Object Difficult NE-NEAI NE-E NE-EAI NEAI-E NEAI-EAI E-EAI E-AI EAI-AI NE-AI NEAI-AI E-GT EAI-GT NE-GT NEAI-GT NE-NEAI NE-E NE-EAI NEAI-E NEAI-EAI E-EAI AI-GT
1 Birds .03 .45 .64 .02 .22 .39 .93 .93 .93 .94 .99 .99 .99 .99 1 1 1 1 1 1 .93
2 Birds .49 .93 .26 .48 .89 .28 .70 .71 .70 .71 .98 .98 .98 .98 1 1 1 1 1 1 .69
3 Birds x .11 .40 .02 .40 .52 .09 .54 .57 .54 .58 .90 .93 .90 .93 .96 .99 .96 .96 .99 .97 .56
4 Whales .45 .31 .96 .31 .55 .55 .93 .92 .92 .92 .99 .99 .99 .99 1 1 1 1 1 1 .93
5 Whales .98 .05 .15 .06 .15 .07 .85 .85 .85 .85 .97 .96 .96 .96 .99 1 .99 .99 .99 .99 .85
6 Whales .37 .42 .51 .92 .22 .22 .56 .56 .55 .55 .97 .96 .97 .96 1 .99 .99 .99 .99 .99 .54
7 Seals x .46 .47 .02 .87 .25 .14 .76 .75 .77 .76 .95 .94 .95 .94 .99 1 .99 .99 .99 .98 .76
8 Seals .29 .96 .46 .37 .80 .53 .29 .29 .29 .30 .99 .99 .99 .99 1 1 1 1 1 1 .29
9 Seals .22 .69 .32 .41 .89 .47 .70 .70 .70 .69 .99 .99 .99 .99 1 1 1 1 1 1 .70
10 Turtles .35 .61 .23 .76 .13 .02 .91 .91 .91 .91 .96 .96 .96 .96 1 1 1 .99 1 .99 .92
11 Turtles .03 .82 .16 .16 .82 .21 .93 .93 .93 .92 .99 .99 .99 .99 1 1 1 1 1 1 .94
12 Turtles .06 .68 .14 .14 .31 .29 .89 .88 .89 .88 .98 .98 .98 .98 1 1 1 1 1 1 .90
13 Dolphins x .49 .71 .74 .46 .79 .50 .00 .00 .00 .46 .07 .18 .09 .35 .40 .34 .69 .56 .65 .50 .00
14 Dolphins x .21 .50 .23 .47 .95 .55 .09 .21 .10 .17 .21 .27 .13 .21 .76 .85 .82 .85 .93 .83 .08
15 Dolphins x .99 .13 .28 .12 .27 .69 .00 .00 .00 .00 .68 .63 .69 .67 .97 .98 .96 .96 .95 .97 .00
16 Dolphins x .33 .03 .06 .46 .58 .84 .22 .23 .20 .23 .92 .93 .92 .93 .98 .97 .98 .99 .99 .99 .24
17 Dolphins x .17 .52 .21 .20 .32 .12 .36 .53 .54 .59 .61 .55 .56 .40 .79 .98 .93 .78 .80 .92 .70
18 Dolphins x .25 .82 .19 .36 .95 .14 .79 .77 .77 .76 .88 .86 .86 .88 .98 .98 .99 .98 .99 .98 .80
19 Dolphins x .07 .67 .14 .15 .23 .57 .40 .46 .35 .45 .61 .54 .53 .57 .95 .95 .99 .94 .96 .95 .73
20 Dolphins .16 .19 .12 .88 .46 .28 .54 .54 .53 .56 .97 .96 .96 .96 .98 .99 .98 .99 .99 .99 .54
21 Dolphins x .14 .05 .01 .89 .73 .61 .34 .32 .13 .37 .36 .38 .19 .27 .59 .66 .71 .95 .80 .85 .71
22 Dolphins .90 .95 .07 .90 .44 .16 .62 .60 .62 .63 .97 .95 .96 .96 .99 .99 .99 .99 .99 .98 .60
23 Dolphins .10 .43 .67 .18 .12 .43 .67 .66 .66 .68 .99 .99 .99 .98 .99 1 1 .99 .99 .99 .65
24 Dolphins x .71 .44 .42 .93 .41 .28 .55 .58 .56 .56 .95 .93 .94 .92 .98 .99 .99 .96 .98 .97 .56
25 Dolphins x .78 .53 .01 .95 .14 .04 .59 .62 .61 .63 .94 .93 .94 .93 .98 .98 .98 .96 .98 .96 .61
26 Dolphins x .30 .47 .85 .14 .32 .46 .34 .35 .34 .37 .96 .95 .96 .93 .98 .99 .99 .96 .98 .98 .38
27 Dolphins x .37 .03 .08 .91 .95 .68 .05 .16 .12 .22 .76 .86 .75 .82 .78 .88 .81 .78 .84 .79 .11
28 Dolphins .47 .99 .03 .56 .28 .35 .03 .03 .01 .14 .97 .96 .97 .96 .99 .99 .99 .98 .99 .98 .00

In-between Groups Agreement. To understand if applied methodology caused any impact on different user groups,
paired two-tailed t-tests were computed for all 6 combinations (NE-NEAI, NE-E, NE-EAI, NEAI-E, NEAI-EAI, E-EAI),
presented in Table 3 (columns D-I). Next color coding was used to depict the obtained p-values: extremely significant
differences (dark red, 𝑝 < .0083 with Dunn-Bonferroni correction), statistical significance (red, .0083 < 𝑝 < .05), no
statistical differences (dark green, .05 < 𝑝 < .5), mild agreement (light green, .5 < 𝑝 < .95) and high agreement
(white, .95 < 𝑝 < 1.0). Then, we performed a count of aforementioned color coding cells, thus indicating tendencies
Manuscript submitted to ACM
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of disparity between all the combinations. We identified a relevant change in the annotations of non-experts, due to
existing disagreement from NE with E and EAI, while NEAI indicates agreement with same groups (E and EAI). This
suggests that annotations from non-experts were somehow affected, which led their results to switch from disagreeing
to agreeing with experts’ annotations. Further analysis found mixed agreement in combinations NE-NEAI and E-EAI,
indicating adjustment of annotations to our system.
Correlation with AI.We next analyze the impact of AI on the sample annotators by computing the NCCs using the
AI as the baseline (Table 3, columns J-M). Averaged NCCs are computed and shown for both easy and hard videos per
group, as seen in image 9a. The correlation of all groups with AI indicates that both non-experts (NE) and experts (E)
were affected by the AI. T-test for paired two-sample towards means indicated extremely relevant statistical differences
between easy and hard videos among all groups (𝑝 < .005). On average, for all videos, non-experts (NE) increased
an agreement with AI by 5% (going from average .52 to .57 NCC). Experts increased from .52 to .54 on average NCC
score, showing a 2% effect. However, looking only at hard videos, experts increased agreement with AI by 4% (going
from .36 to .40 NCC) while non-experts increased agreement by 8% (going from .36 to .44). In contrast, the easy videos
portray similar agreement with or without the AI, deviating only 1% for non-experts (going from .68 to .69) while
creating no significant changes to experts. In addition, when comparing in-between groups agreement and observing
summary Figure 8, some statistical differences are visible (𝑝 < .05). Combinations of different interfaces, meaning that
one group is with the AI-assisted interface and the other has the normal interface (NE-NEAI, NE-EAI, E-NEAI, and
E-EAI) paired t-test for means indicated statistical difference for all pairs (𝑝 < .05), as seen if summary Figure 8 with
full lines. Conversely, performed paired t-test for means between groups using the same interface (groups on the same
side of the figure with combinations in dashed lines), demonstrate mixed levels of agreement for combinations E-NE
and EAI-NEAI. It was not possible to identify if the performance of AI affected the performance on users using the
AI-assisted interface, presented in Table 3, column X. Thus, results indicate that a difference between the annotations of
groups exists, and confirming the AI-assisted annotation interface as the source of these differences. In the following,
we will analyze to what extent. In overall, the non-experts (NE) annotators were mostly affected by the AI-assisted
interface. We estimate that even if AI classifications were incorrect, they managed to improve the attention span of
some users, i.e. by providing visual feedback with bounding boxes and confidence levels (both low and high). This is also
in line with participants’ comments after the end of experiment: "AI was so wrong", "AI identified boats as whales", and
"AI sees people as seals". This indicates that the AI-assisted interface managed to captivate the non-expert’s attention
towards detecting the objects of interest in footage and therefore improve their engagement.

Fig. 8. Obtained statistical significance between groups and used interfaces. Full lines indicate statistical significance, while dashed
lines indicate no statistical significance. Asterisk (*) indicates significant statistical significance with 𝑝 < .05.

Correlation with GT. Next, we validate the NCCs of each annotator group against the ground-truth (GT) as a baseline
to portray the overall annotation performance of all annotators (Table 3, columns N-Q). When observing differences
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between hard and easy videos for all groups, paired two-tailed t-test towards means indicates extremely relevant
statistical differences (𝑝 < .005). Results are seen in Figure 9b, which depict easy videos with a grand average value of
.98, while hard videos grand average obtained was .70. All videos demonstrate differences between results of groups
using the AI-assisted interface. In all videos, experts saw a decrease of performance by 2% (decreasing from .86 to .84)
and non-experts an improvement of 1% (going from .83 to .84). For easy videos only, the low standard deviation is
observed in each annotator group, indicating almost perfect agreement (all groups with .98 NCC). However, meaningful
differences occurred as a consequence of hard videos, where experts dropped by 4% (going from .74 to .70 NCC) and
non-experts improved by 3% (going from .67 to .70 NCC). Findings indicate that the AI affected both groups, where the
non-experts (NE) were affected positively, while experts (E) were affected negatively. Regarding t-tests towards the
coefficient correlation between groups, only single statistical difference was identified with 𝑝 =< .05 between NE vs E
for hard videos (Figure 9b). These findings suggest that initially, non-experts’ annotations were significantly different
when compared to experts. However, while using the AI-assisted interface both groups achieved a bigger agreement,
thus removing the inherited statistical difference. Therefore, we find non-experts’ annotations with an AI-assisted
interface to be similar with experts without the AI-assistance.

(a) Annotator groups with AI (easy against hard videos) (b) Annotator groups with GT (easy against hard videos)

Fig. 9. Correlation with AI and GT as two separate baselines for both hard and easy videos. Asterisks indicate next p-value significance:
(*) 𝑝 < .05, (**) 𝑝 < .005, and (***) 𝑝 < .0005.

In-between Groups Agreement. Lastly, we computed the grand average NCCs between all combination pairs of all 4
annotator sample groups (Table 3, columns R-W): (i) NE-NEAI; (ii) NE-E; (iii) NE-EAI; (iv) NEAI-E; (v) NEAI-EAI; and
(vi) E-EAI. The biggest agreement resulted in combination (v), with a grand average of NCC .96, supporting previous
results. Moreover, combination (i) had the smallest grand average NCC .93. This suggests that the non-experts (NE)
were the group that was the most affected by the AI-assisted interface. Additionally, the comparison between experts
and non-experts with and without AI, saw a slight increase of correlation on hard videos by .1 NCC when using the AI.
Therefore, the non-experts saw a bigger agreement with experts when interacting with the AI-assisted interface. As
described previously, significant differences occurred from the comparison of groups solely on hard videos, due to easy
videos varying .003 between all groups with a maximum NCC of .996, and a minimum NCC of .993. Hard videos had a
minimum NCC of .863 and a maximum of .917, with a total variance of .054.
Results Summary. The main results are summarized as follows: (i) AI-assisted interface improved the performance of
non-experts, making them annotate as experts; (ii) AI-assisted interface worsen the performance of experts, due to
inherited habits and distraction; (iii) Video’s pace was the most discriminant video parameter being proportional to the
NCC correlation threshold (≤ 95 for easy videos); and (iv) Easy videos presented the highest levels of agreement among
participants, while hard videos were mostly responsible for any significant differences between groups’ annotation
scores.
Manuscript submitted to ACM
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Fig. 10. Correlation between groups for hard and easy videos using ground truth (GT) as a baseline. NE: non-experts; NEAI: non-experts
with AI; E: experts; and EAI: experts with AI. Asterisks indicate next statistical significance: (*) < .05, (**) 𝑝 < .005, and (***) 𝑝 < .0005.

5 EFFECTS OF ANNOTATIONS ON AI PERFORMANCE

The results of the previous section demonstrated that AI-assistance can have significant impact on human performance
but this is moderated by human expertise. We next demonstrate that AI-annotation not only affects the accuracy of
labels but also affects the performance of AI models that are trained on the annotated data. To assess this, we compare
how the labels derived with or without AI-assistance impact AI models that are trained with such data – the ultimate
goal of any annotation process.

5.1 Experimental Setup

From the 28 videos, we focus on the annotation frames obtained from Experts (E), Non-Experts (NE), Experts with AI
(EAI), and Non-Experts with AI (NEAI). For each annotator group we train a multi-class image classification model
based on traditional LeNet architecture [33] using 6 classes ("whale", "dolphin", "seal", "seabird", "turtle" and "none").
Note that the reference AI model was designed to perform object classification and present confidence scores in images,
whereas we are simply interested in detecting whether the frame contains an animal or not. As this differs from the
task of the reference model, we use a simpler model that has better discriminating power in classification tasks. Object
detectors can also be converted into classifiers by applying a threshold on the confidence scores or by comparing the
intersections of unions between detected objects and ground truth. However, this is sensitive to the threshold that
is used for comparison, and hence a dedicated classifier is likely to achieve better performance. For each frame in a
video for annotation class we consider the majority of annotators in a single frame (e.g. if 3 out of 5 annotators have
seen an object of interest inside of the same frame, we consider that frame with one of the species classes). Conversely,
if the majority of annotators agree that there are no objects of interest in the video, we assign it a class "none". Five
models were trained (the four user groups and also ground truth) with average 100 epochs, reaching early stopping if
there has been no improvement in validation accuracy for 10 consecutive epochs. We used standard hyperparameters
and model choices: the loss function was categorical cross-entropy, the optimizer was Stochastic Gradient Descent
(SGD), and learning rate was set to .001. From all videos, each image frame has been downsampled to 300 × 300𝑝𝑥
resolution and was used as an input into the neural network. Used batch size was 256. The default aspect ratio was
preserved by filling in with white color the remainder vertical spacing. Due to resource constraints, we downsample
the input dataset imagery by selecting every second frame from each video (i.e., the input frame rate is 15 fps). The
total amount of images and labels were 51963. All images were further split into three sets training (80%), validation
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Table 4. Confusion matrices of AI models trained with annotated frames using randomized whole videos (inference on testing set).

E - Accuracy = .828 EAI Accuracy = .867 NE Accuracy = .842 NEAI Accuracy = .841 GT Accuracy = .807 AI Accuracy = .784

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 255 42 466 15 63 28 0 183 36 378 10 33 29 0 223 41 472 18 55 28 0 175 60 480 17 33 31 0 138 59 562 10 45 49 0 3497 19 8 45 33 92

1 20 758 2 7 14 0 1 6 786 2 3 10 1 1 5 784 3 1 8 2 1 5 769 5 2 5 0 1 5 748 8 12 13 1 1 125 14 0 9 0 0

2 168 1 1967 2 5 3 2 106 5 2197 0 4 0 2 80 1 2086 1 4 2 2 73 1 2128 1 1 4 2 68 8 2088 1 5 8 2 555 0 2 0 0 3

3 2 2 0 244 3 3 3 3 3 1 240 4 8 3 3 5 3 229 4 9 3 4 9 3 214 12 8 3 4 3 17 219 8 9 3 50 0 0 149 0 1

4 15 2 7 3 316 11 4 20 3 7 0 334 12 4 26 10 13 7 292 6 4 12 11 23 0 326 13 4 16 16 29 3 259 28 4 65 0 0 0 124 0

Ac
tu
al

5 2 0 1 0 0 740

Ac
tu
al

5 0 2 0 0 2 739

Ac
tu
al

5 2 2 5 0 0 737

Ac
tu
al

5 2 3 1 1 2 733

Ac
tu
al

5 3 0 7 0 0 718

Ac
tu
al

5 109 0 0 0 0 267

Predicted

(10%), and testing (10%), comprising 41598, 5198, and 5167 images respectively. This dataset is comparable to datasets
that are commonly used to evaluate object detection models (see the discussion) and is sufficient for showcasing the
potential and pitfalls of annotations. Results of model inference for 6 AI models based on their annotations including
training and validating performance are depicted in Table 4.

5.2 Experimental Findings

Model trained with randomized annotations from experts with AI (EAI) obtained the highest performance (.867 accuracy),
followed by the experts without AI. For non-experts, AI improved the quality of annotations but did not improve the
performance of AI models that are trained from the data. The performance of the AI without any human annotations
was the lowest, indicating human annotations are necessary. Using ground truth to train the AI model actually decreased
overall performance compared to experts or non-experts. Inspection of the confusion matrices indicates that this is due
to the model trained with ground truth data missing the animals in many cases even if it can accurately distinguish
between them. Overall, the results thus suggest that AI can improve the consistency in expert labels and this combination
is best for training AI models. For non-experts, annotation quality goes up but this does not necessarily translate into
better AI accuracy as there can be more variation in the annotations.

6 DESIGN GUIDELINES AND DISCUSSION

Based on findings from the our experiments, in the following we discuss lessons learned to derive some guidelines for
delivering successful AI-assisted annotations of video streams. In addition, naturally there is also room for improvement
and further work and below we discuss some of these points.
Assessing Annotator’s Expertise. Infusing AI assistance into annotation interface draws annotators’ attention the
detected objects of interest, helping them reduce decision space. As demonstrated in our experiments, AI-assisted
annotation interface helps non-experts to annotate better but reduces experts’ annotation performance. These findings
highlight applying AI intelligence in real-time annotation of video streams is not "one-size-fit-all" but that it is necessary
to assess annotators’ expertise level before recommending an AI-assisted annotation interface to annotators. At the
same time, the AI benefited both groups – raising the level of non-experts while reducing the risk of sleeping for expert
users. Thus, the nature of the AI assistance should be tailored according to user expertise levels.
Annotation Input Modality. Real-time annotations are also affected by latency and cognitive bandwidth of the users.
Indeed, for fast-paced videos we observed that some users struggled to keep pace with the video and this resulted in
incorrect labels due to delayed reactions. Minimizing this effect requires optimized interface designs for the interface so
that annotators can quickly choose the correct labels without it demanding significant amounts of cognitive resources.
Manuscript submitted to ACM
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For binary tasks this is reasonably simple whereas for multi-class tasks this is non-trivial as any shortcuts easily demand
cognitive resources (especially memory) which risks errors in the annotations. At the same time this result also enforces
the need to keep the number of classes low and sufficiently distinctive to ensure the annotators’ cognitive resources are
not overwhelmed by the selection of right label to apply.
Engagement and Task Duration. The non-expert group had two outlier users that consistently left the annotations
on regardless of there being AI assistance or not (so-called sleepers). Findings from the post-task survey indicated that
participant engagement was a critical factor in the attention they paid on the videos and hence ensuring sufficient
engagement is essential for accurate labels. Non-experts indicated that they felt fatigued faster than experts, and hence
there is a need to incorporate techniques that help maintain engagement over a longer period of time. One option is
to rely on gamification techniques as these can potentially help to preserve engagement, as has been shown, e.g., for
web-based interfaces [10].
Annotating in Context. The experiments simulated in-situ settings by playing back the video feed without options to
pause the content. In some applications, such as detecting suspicious activity from surveillance feeds, this is sufficient
but in other tasks there are further aspects to consider. For example, in our target domain, biodiversity annotation,
the annotations need to be made on-board sea vessels – or at least on content captured from sea vessels. Waves and
swaying of the vessel would affect the annotation process and make it harder to perform the annotations accurately.
Potential ways to overcome this is to use a remote interface, e.g., a kiosk or a remote computer, that receives a real-time
feed of the imagery captured by the vessel instead of having the annotator onboard the vessel.
Real-time AI. Incorporating the AI model as part of the annotation process requires the inference process to be able to
keep up with the pace of the input data as otherwise the AI induces latency onto the process and can result in additional
errors. This either requires sufficient resources and heavy optimization of the AI models or adjusting the rate of the
input data. The AI model used in our experiments and on our hardware supports around 10 − 15 frames per second.
While more than sufficient for our target application of biodiversity estimation, this would result in noticeable delays in
the video stream and potentially decrease engagement. Thus, in real-time applications, it is necessary to find optimal
balance between AI performance and the final user interface.
Over-reliance and Ethics. We demonstrated that, when used correctly, AI-assistance can provide significant benefits
for annotations, and improve the AI models that are trained on the labeled data. Conversely, there are also risks in
adopting AI-assisted labeling. For example, people can become over-reliant on AI assistance, which can decrease
label quality and degrade the performance of the AI models trained on the labeled data. Mitigating over-reliance is
currently an active research area and there are solutions that could be adopted to facilitate overcoming this issue.
For example, brief explanations can reduce over-reliance [57], but at the same time integrating explanations into
dynamic real-world scenes is challenging as they can further increase the annotator’s cognitive overhead. There are
also differences across individuals on how easily they become reliant on AI performance and thus it is important to be
aware and analyze potential effects of over-reliance. Adopting AI-assistance should also account for potential ethical
issues. For example, when annotating data with human subjects, such as detecting suspicious activity, it is important to
ensure the annotations are fair and free of subjective biases. Following the principle of transparency, users of annotated
data should also be able to obtain information about the annotation process, including the people that performed the
annotations and their background. These issues, however, are not unique to AI-assisted annotation but hold generally
for any AI-based systems [29].

Manuscript submitted to ACM



885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

18 Radeta et al.

Room for Improvement. As with any research, naturally there is room for further work. Our experiments focused on
a single target domain (marine biodiversity) and other domains may have different characteristics that affect annotation
performance. The experiments on the effect of annotations on AI performance could also be repeated with larger datasets
and other AI models. The dataset we considered is comparable to those that are used to test image recognition models.
For example, MobileNet was tested using the CIFAR-10 dataset which has 60 000 samples [51] whereas our experiments
considered 51 963 images (19 853 images were used for training the baseline model). As AI models are becoming
increasingly popular, it is likely that AI-assistance would be adopted using commonly available architectures and
default parameters. While other AI models might perform differently, we considered standard architectures (MobileNet
and LeNet) that are commonly used as off-the-shelf tools for object recognition and thus our setup represents issues
that a non-expert would face when adopting AI-annotation support. Architectures used in this study are relatively
shallow compared to most recent state-of-the-art (e.g. ResNets), which makes them less likely to overfit. Taken together,
our experiments should provide a sufficient foundation for analyzing AI annotation (in dynamic real-time application
use cases). Nevertheless, we fully acknowledge the need for future work on benchmarking more complex (neural
network) architectures, and to further explore the extent that AI may be improved by the annotators. Finally, the
experiments considered scenes where at most a single object would be visible at a time. Real-world scenes may be more
complex and have multiple targets that need to be detected simultaneously. In such scenarios, users might rely more on
AI-annotation support to reduce cognitive demands of tracking and identifying targets. These are but some examples of
future directions for our work.

7 RELATEDWORK

Human-in-the-loop machine learning (HITL-ML) broadly encompasses: (i) Active Learning (AL) where the system
remains in control, (ii) Interactive Machine learning (IML) with closer interaction between users and system and (iii)
Machine Teaching (MT) where the domain experts have a control over the learning process [40]. Another categorization
of HITL-ML has been proposed to be focused on: (i) improving model performance, (ii) improving model through
intervention and (iii) system independent HITL [65]. Recent HITL-ML minimizes human queries which are typically
required to train complex models [20]. Focused on IML and on understanding what is the effect of the AI on video
annotators and vice versa, our research is inspired by previous works on AI-assisted labeling and studies that compare
human domain expertise and AI performance. Below we briefly summarize relevant works in these fields.
AI-assisted labeling. Solutions for AI-assisted labeling can be categorized into model-based and interactive solutions
with our research falling into the latter category. Model-based solutions attempt to identify candidate patterns that
would be useful for labeling and to query a human annotator to label these patterns. The resulting labels can then
be propagated to other data points that are sufficiently similar. Examples of model-based solutions include active
learning [42, 67], semi-supervised learning [16], and few-shot learning [66]. Interactive solutions, in turn, focus on
offering interactive feedback that can assist in assigning labels. Examples of interactive solutions include interactive
visualizations of patterns [3, 55], the most likely labels [12], or the identification of new labels [14]. At best, AI-assisted
labeling can increase human accuracy and decrease the time that is required for labeling [12, 14, 21, 56]. However,
there are also concerns that excessive use of AI can result in over-reliance on the AI and result in decreased quality
of data [2].Assigning the main responsibility on the human annotators can also be problematic. For example, if the
set of labels is not limited, this can result in the labels diverging and the quality of the labels decreasing due to
differences between the annotators [14]. Existing studies on the effects of AI-assisted labeling have focused on tasks
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where annotators can scrutinize and revise their annotations and the studies have largely focused on tasks where
different cases can be easily distinguished. Our research contributes insights into the benefits and disadvantages of AI
assisted annotations in complex real-world domains where the cognitive demands of the annotation compete with the
AI support and where the distinctions between different categories are ambiguous.
Man vs. the Machine. Recent advance of machine learning (ML) user interfaces are seen in augmenting the human
performancewhen performing different tasks [34, 64], involving humanmemory [39], assisting navigation of drivers [35],
and aiding impaired senses of people [26]. Although human classification performance can be increased with the
support of ML [45], ML solely is not yet comparable with human performance in complex situations, as such approaches
are prone to errors and low precision in a wide variety of cases [30]. For instance, deep learning has been reported to
achieve high classification accuracy with high resolution images, however its performance drops significantly when
low resolution or blurred images are used as an input [13]. Other causes of errors include classification of objects from
different angles and with diverse shapes [52], distances [15] and in distinct environmental/adversarial conditions [18].
The resulting classification errors can be severe and their exact cause can be challenging to understand thoroughly [30].
Although laborious, human observation remains to be the preferred means of classification for tasks that are complex
or performance critical. Despite significant strides in AI and machine learning, humans continue to outperform the
automated processes [17, 27]. Examples of such tasks include recognizing relevant data from noisy images [18, 28], e.g.,
CAPTCHA codes, and completing missing information [61]. More human-in-the-loop studies should be performed in
involving human in video annotation.

8 SUMMARY AND CONCLUSION

Annotation of real-time video feeds is a difficult task where the annotators must divide their attention between the feed
and the annotation interface. We studied the role AI-assistance has on annotation performance in real-time settings, and
reversely how the differences in human labels affect performance of AI models. We compared two user groups, those
with domain expertise and those without, in two conditions: with and without AI assistance. We found expert annotators
generally having the highest performance. For non-experts AI significantly improves annotation performance and helps
them to reach close to expert levels. When the annotated data is used to train AI models, expert users supported by AI
have highest performance whereas for non-expert no improvements in AI performance can be observed. This largely
stems from the consistency of the non-expert annotators having higher variation even when supported by AI whereas
expert annotators tend to have more consistent agreements and disagreements. Based on our results, we discussed
design considerations for interactive annotation of real-time streams and highlighted some open research issues. Taken
together, our work offers new insights into designing AI-assisted annotation interfaces for real-time tasks and provides
knowledge of how annotation characteristics influence the performance of AI models.
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